1
|
Deng Y, Pan D, Jin Y. Jamming is a first-order transition with quenched disorder in amorphous materials sheared by cyclic quasistatic deformations. Nat Commun 2024; 15:7072. [PMID: 39152106 PMCID: PMC11329727 DOI: 10.1038/s41467-024-51319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Jamming is an athermal transition between flowing and rigid states in amorphous systems such as granular matter, colloidal suspensions, complex fluids and cells. The jamming transition seems to display mixed aspects of a first-order transition, evidenced by a discontinuity in the coordination number, and a second-order transition, indicated by power-law scalings and diverging lengths. Here we demonstrate that jamming is a first-order transition with quenched disorder in cyclically sheared systems with quasistatic deformations, in two and three dimensions. Based on scaling analyses, we show that fluctuations of the jamming density in finite-sized systems have important consequences on the finite-size effects of various quantities, resulting in a square relationship between disconnected and connected susceptibilities, a key signature of the first-order transition with quenched disorder. This study puts the jamming transition into the category of a broad class of transitions in disordered systems where sample-to-sample fluctuations dominate over thermal fluctuations, suggesting that the nature and behavior of the jamming transition might be better understood within the developed theoretical framework of the athermally driven random-field Ising model.
Collapse
Affiliation(s)
- Yue Deng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deng Pan
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
2
|
Blue SA, Wright SC, Owens ET. Experimental measurements of the granular density of modes via impact. Phys Rev E 2024; 110:014902. [PMID: 39160921 DOI: 10.1103/physreve.110.014902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
The jamming transition is an important feature of granular materials, with prior work showing an excess of low-frequency modes in the granular analog to the density of states, the granular density of modes. In this work, we present an experimental method for acoustically measuring the granular density of modes using a single impact event to excite vibrational modes in an experimental, three-dimensional, granular material. We test three different granular materials, all of which are composed of spherical beads. The first two systems are monodisperse collections of either 6 mm or 8 mm diameter beads. The third system is a bidisperse mixture of the previous two bead sizes. During data collection, the particles are confined to a box; on top of this box, and resting on the granular material, is a light, rigid sheet onto which pressure can be applied to the system. To excite the material, a steel impactor ball is dropped on top of the system. The response of the granular material to the impact pulse is recorded by piezoelectric sensors buried throughout the material, and the density of modes is computed from the spectrum of the velocity autocorrelation of these sensors. Our measurements of the density of modes show more low-frequency modes at low pressure, consistent with previous experimental and numerical results, as well as several low-frequency peaks in the density of modes that shift with applied pressure. Our method represents an experimentally simple technique for investigating the granular density of modes and may increase the accessibility and number of such measurements.
Collapse
|
3
|
Chakraborty S, Ramola K. Long-range correlations in elastic moduli and local stresses at the unjamming transition. SOFT MATTER 2024; 20:4895-4904. [PMID: 38860707 DOI: 10.1039/d4sm00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We explore the behaviour of spatially heterogeneous elastic moduli as well as the correlations between local moduli in model solids with short-range repulsive potentials. We show through numerical simulations that local elastic moduli exhibit long-range correlations, similar to correlations in the local stresses. Specifically, the correlations in local shear moduli exhibit anisotropic behavior at large lengthscales characterized by pinch-point singularities in Fourier space, displaying a structural pattern akin to shear stress correlations. Focussing on two-dimensional jammed solids approaching the unjamming transition, we show that stress correlations exhibit universal properties, characterized by a quadratic p2 dependence of the correlations as the pressure p approaches zero, independent of the details of the model. In contrast, the modulus correlations exhibit a power-law dependence with different exponents depending on the specific interaction potential. Furthermore, we illustrate that while affine responses lack long-range correlations, the total modulus, which encompasses non-affine behavior, exhibits long-range correlations.
Collapse
Affiliation(s)
| | - Kabir Ramola
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| |
Collapse
|
4
|
Interiano-Alberto KA, Morse PK, Hoy RS. Critical-like slowdown in thermal soft-sphere glasses via energy minimization. Phys Rev E 2024; 109:L062603. [PMID: 39020966 DOI: 10.1103/physreve.109.l062603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Using hybrid molecular dynamics/SWAP Monte Carlo (MD/SMC) simulations, we show that while the terminal relaxation times τ(ϕ) for FIRE energy minimization of soft-sphere glasses can decrease by orders of magnitude as sample equilibration proceeds and the jamming density ϕ_{J} increases, they always scale as τ(ϕ)∼(ϕ_{J}-ϕ)^{-2}∼[Z_{iso}-Z_{ms}(τ)]^{-2}, where Z_{iso}=2d and Z_{ms}(τ) is the average coordination number of particles satisfying a minimal local mechanical stability criterion (Z≥d+1) at the top of the final potential-energy-landscape (PEL) sub-basin the system encounters. This scaling allows us to collapse τ datasets that look very different when plotted as a function of ϕ, and to address a closely related question: how does the character of the PEL basins that dense thermal glasses most typically occupy evolve as the glasses age at constant ϕ and T?
Collapse
|
5
|
Clark AH, Olson DR, Swartz AJ, Starnes WM. An explicit granular-mechanics approach to marine sediment acoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3537-3548. [PMID: 38809097 DOI: 10.1121/10.0026126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Here, we theoretically and computationally study the frequency dependence of phase speed and attenuation for marine sediments from the perspective of granular mechanics. We leverage recent theoretical insights from the granular physics community as well as discrete-element method simulations, where the granular material is treated as a packing of discrete objects that interact via pairwise forces. These pairwise forces include both repulsive contact forces as well as dissipative terms, which may include losses from the fluid as well as losses from inelasticity at grain-grain contacts. We show that the structure of disordered granular packings leads to anomalous scaling laws for frequency-dependent phase speed and attenuation that do not follow from a continuum treatment. Our results demonstrate that granular packing structure, which is not explicitly considered in existing models, may play a crucial role in a complete theory of sediment acoustics. While this simple approach does not explicitly treat sound propagation or inertial effects in the interstitial fluid, it provides a starting point for future models that include these and other more complex features.
Collapse
Affiliation(s)
- Abram H Clark
- Physics Department, Naval Postgraduate School, Monterey, California 99343, USA
| | - Derek R Olson
- Oceanography Department, Naval Postgraduate School, Monterey, California 99343, USA
| | - Andrew J Swartz
- Physics Department, Naval Postgraduate School, Monterey, California 99343, USA
| | - W Mason Starnes
- Physics Department, Naval Postgraduate School, Monterey, California 99343, USA
| |
Collapse
|
6
|
Lerner E. Effects of coordination and stiffness scale separation in disordered elastic networks. Phys Rev E 2024; 109:054904. [PMID: 38907389 DOI: 10.1103/physreve.109.054904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 06/24/2024]
Abstract
Many fibrous materials are modeled as elastic networks featuring a substantial separation between the stiffness scales that characterize different microscopic deformation modes of the network's constituents. This scale separation has been shown to give rise to emergent complexity in these systems' linear and nonlinear mechanical response. Here we study numerically a simple model featuring said stiffness scale separation in two-dimensions and show that its mechanical response is governed by the competition between the characteristic stiffness of collective nonphononic soft modes of the stiff subsystem, and the characteristic stiffness of the soft interactions. We present and rationalize the behavior of the shear modulus of our complex networks across the unjamming transition at which the stiff subsystem alone loses its macroscopic mechanical rigidity. We further establish a relation in the soft-interaction-dominated regime between the shear modulus, the characteristic frequency of nonphononic vibrational modes, and the mesoscopic correlation length that marks the crossover from a disorder-dominated response to local mechanical perturbations in the near field, to a linear, continuumlike response in the far field. The effects of spatial dimension on the observed scaling behavior are discussed, in addition to the interplay between stiffness scales in strain-stiffened networks, which is relevant to understanding the nonlinear mechanics of non-Brownian fibrous biomatter.
Collapse
|
7
|
Grigas AT, Fisher A, Shattuck MD, O'Hern CS. Connecting polymer collapse and the onset of jamming. Phys Rev E 2024; 109:034406. [PMID: 38632799 DOI: 10.1103/physreve.109.034406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
Previous studies have shown that the interiors of proteins are densely packed, reaching packing fractions that are as large as those found for static packings of individual amino-acid-shaped particles. How can the interiors of proteins take on such high packing fractions given that amino acids are connected by peptide bonds and many amino acids are hydrophobic with attractive interactions? We investigate this question by comparing the structural and mechanical properties of collapsed attractive disk-shaped bead-spring polymers to those of three reference systems: static packings of repulsive disks, of attractive disks, and of repulsive disk-shaped bead-spring polymers. We show that the attractive systems quenched to temperatures below the glass transition T≪T_{g} and static packings of both repulsive disks and bead-spring polymers possess similar interior packing fractions. Previous studies have shown that static packings of repulsive disks are isostatic at jamming onset, i.e., the number of interparticle contacts N_{c} matches the number of degrees of freedom, which strongly influences their mechanical properties. We find that repulsive polymer packings are hypostatic at jamming onset (i.e., with fewer contacts than degrees of freedom) but are effectively isostatic when including stabilizing quartic modes, which give rise to quartic scaling of the potential energy with displacements along these modes. While attractive disk and polymer packings are often considered hyperstatic with excess contacts over the isostatic number, we identify a definition for interparticle contacts for which they can also be considered as effectively isostatic. As a result, we show that the mechanical properties (e.g., scaling of the potential energy with excess contact number and low-frequency contribution to the density of vibrational modes) of weakly attractive disk and polymer packings are similar to those of isostatic repulsive disk and polymer packings. Our results demonstrate that static packings generated via attractive collapse or compression of repulsive particles possess similar structural and mechanical properties.
Collapse
Affiliation(s)
- Alex T Grigas
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Aliza Fisher
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Xie Z, Atherton TJ. Jamming on convex deformable surfaces. SOFT MATTER 2024; 20:1070-1078. [PMID: 38206105 DOI: 10.1039/d2sm01608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Jamming is a fundamental transition that governs the behavior of particulate media, including sand, foams and dense suspensions. Upon compression, such media change from freely flowing to a disordered, marginally stable solid that exhibits non-Hookean elasticity. While the jamming process is well established for fixed geometries, the nature and dynamics of jamming for a diverse class of soft materials and deformable substrates, including emulsions and biological matter, remains unknown. Here we propose a new scenario, metric jamming, where rigidification occurs on a surface that has been deformed from its ground state. Unlike classical jamming processes that exhibit discrete mechanical transitions, surprisingly we find that metric jammed states possess mechanical properties continuously tunable between those of classically jammed and conventional elastic media. The compact and curved geometry significantly alters the vibrational spectra of the structures relative to jamming in flat Euclidean space, and metric jammed systems also possess new types of vibrational mode that couple particle and shape degrees of freedom. Our work provides a theoretical framework that unifies our understanding of solidification processes that take place on deformable media and lays the groundwork to exploit jamming for the control and stabilization of shape in self-assembly processes.
Collapse
Affiliation(s)
- Zhaoyu Xie
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| | - Timothy J Atherton
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| |
Collapse
|
9
|
Giannini JA, Lerner E, Zamponi F, Manning ML. Scaling regimes and fluctuations of observables in computer glasses approaching the unjamming transition. J Chem Phys 2024; 160:034502. [PMID: 38226824 DOI: 10.1063/5.0176713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Under decompression, disordered solids undergo an unjamming transition where they become under-coordinated and lose their structural rigidity. The mechanical and vibrational properties of these materials have been an object of theoretical, numerical, and experimental research for decades. In the study of low-coordination solids, understanding the behavior and physical interpretation of observables that diverge near the transition is of particular importance. Several such quantities are length scales (ξ or l) that characterize the size of excitations, the decay of spatial correlations, the response to perturbations, or the effect of physical constraints in the boundary or bulk of the material. Additionally, the spatial and sample-to-sample fluctuations of macroscopic observables such as contact statistics or elastic moduli diverge approaching unjamming. Here, we discuss important connections between all of these quantities and present numerical results that characterize the scaling properties of sample-to-sample contact and shear modulus fluctuations in ensembles of low-coordination disordered sphere packings and spring networks. Overall, we highlight three distinct scaling regimes and two crossovers in the disorder quantifiers χz and χμ as functions of system size N and proximity to unjamming δz. As we discuss, χX relates to the standard deviation σX of the sample-to-sample distribution of the quantity X (e.g., excess coordination δz or shear modulus μ) for an ensemble of systems. Importantly, χμ has been linked to experimentally accessible quantities that pertain to sound attenuation and the density of vibrational states in glasses. We investigate similarities and differences in the behaviors of χz and χμ near the transition and discuss the implications of our findings on current literature, unifying findings in previous studies.
Collapse
Affiliation(s)
- Julia A Giannini
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Francesco Zamponi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
10
|
Thomas EC, Hopyan S. Shape-driven confluent rigidity transition in curved biological tissues. Biophys J 2023; 122:4264-4273. [PMID: 37803831 PMCID: PMC10645569 DOI: 10.1016/j.bpj.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/09/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
Collective cell motions underlie structure formation during embryonic development. Tissues exhibit emergent multicellular characteristics such as jamming, rigidity transitions, and glassy dynamics, but there remain questions about how those tissue-scale dynamics derive from local cell-level properties. Specifically, there has been little consideration of the interplay between local tissue geometry and cellular properties influencing larger-scale tissue behaviors. Here, we consider a simple two-dimensional computational vertex model for confluent tissue monolayers, which exhibits a rigidity phase transition controlled by the shape index (ratio of perimeter to square root area) of cells, on surfaces of constant curvature. We show that the critical point for the rigidity transition is a function of curvature such that positively curved systems are likely to be in a less rigid, more fluid, phase. Likewise, negatively curved systems (saddles) are likely to be in a more rigid, less fluid, phase. A phase diagram we generate for the curvature and shape index constitutes a testable prediction from the model. The curvature dependence is interesting because it suggests a natural explanation for more dynamic tissue remodeling and facile growth in regions of higher surface curvature. Conversely, we would predict stability at the base of saddle-shaped budding structures without invoking the need for biochemical or other physical differences. This concept has potential ramifications for our understanding of morphogenesis of budding and branching structures.
Collapse
Affiliation(s)
- Evan C Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Dashti H, Saberi AA, Rahbari SHE, Kurths JFSTR. Emergence of rigidity percolation in flowing granular systems. SCIENCE ADVANCES 2023; 9:eadh5586. [PMID: 37656797 DOI: 10.1126/sciadv.adh5586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
Jammed granular media and glasses exhibit spatial long-range correlations as a result of mechanical equilibrium. However, the existence of such correlations in the flowing matter, where the mechanical equilibrium is unattainable, has remained elusive. Here, we investigate this problem in the context of the percolation of interparticle forces in flowing granular media. We find that the flow rate introduces an effective long-range correlation, which plays the role of a relevant perturbation giving rise to a spectrum of varying exponents on a critical line as a function of the flow rate. Our numerical simulations along with analytical arguments predict a crossover flow rate [Formula: see text] below which the effect of induced disorder is weak and the universality of the force chain structure is shown to be given by the standard rigidity percolation. We also find a power-law behavior for the critical exponents with the flow rate [Formula: see text].
Collapse
Affiliation(s)
- Hor Dashti
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Abbas Ali Saberi
- Department of Physics, University of Tehran, P. O. Box, 14395-547 Tehran, Iran
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - S H E Rahbari
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - J Formula See Text Rgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
12
|
Zhang J, Wang D, Jin W, Xia A, Pashine N, Kramer-Bottiglio R, Shattuck MD, O'Hern CS. Designing the pressure-dependent shear modulus using tessellated granular metamaterials. Phys Rev E 2023; 108:034901. [PMID: 37849141 DOI: 10.1103/physreve.108.034901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023]
Abstract
Jammed packings of granular materials display complex mechanical response. For example, the ensemble-averaged shear modulus 〈G〉 increases as a power law in pressure p for static packings of soft spherical particles that can rearrange during compression. We seek to design granular materials with shear moduli that can either increase or decrease with pressure without particle rearrangements even in the large-system limit. To do this, we construct tessellated granular metamaterials by joining multiple particle-filled cells together. We focus on cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus of a single cell depends linearly on p. We find that the slope of the shear modulus with pressure λ_{c}<0 for all packings in single cells with PBC where the number of particles per cell N≥6. In contrast, single cells with FXW and FLW can possess λ_{c}>0, as well as λ_{c}<0, for N≤16. We show that we can force the mechanical properties of multicell granular metamaterials to possess those of single cells by constraining the end points of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular metamaterials provide a platform for the design of soft materials with specified mechanical properties.
Collapse
Affiliation(s)
- Jerry Zhang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Dong Wang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Weiwei Jin
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Annie Xia
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Nidhi Pashine
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Rebecca Kramer-Bottiglio
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
13
|
Hara Y, Mizuno H, Ikeda A. Microrheology near jamming. SOFT MATTER 2023; 19:6046-6056. [PMID: 37525927 DOI: 10.1039/d3sm00566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The jamming transition is a nonequilibrium critical phenomenon, which governs characteristic mechanical properties of jammed soft materials, such as pastes, emulsions, and granular matters. Both experiments and theory of jammed soft materials have revealed that the complex modulus measured by conventional macrorheology exhibits a characteristic frequency dependence. Microrheology is a new type of method to obtain the complex modulus, which transforms the microscopic motion of probes to the complex modulus through the generalized Stokes relation (GSR). Although microrheology has been applied to jammed soft materials, its theoretical understanding is limited. In particular, the validity of the GSR near the jamming transition is far from obvious since there is a diverging length scale lc, which characterizes the heterogeneous response of jammed particles. Here, we study the microrheology of jammed particles by theory and numerical simulation. First, we develop a linear response formalism to calculate the response function of the probe particle, which is transformed to the complex modulus via the GSR. Then, we apply our formalism to a numerical model of jammed particles and find that the storage and loss modulus follow characteristic scaling laws near the jamming transition. Importantly, the observed scaling law coincides with that in macrorheology, which indicates that the GSR holds even near the jamming transition. We rationalize this equivalence by asymptotic analysis of the obtained formalism and numerical analysis on the displacement field of jammed particles under a local perturbation.
Collapse
Affiliation(s)
- Yusuke Hara
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
14
|
Thornton SJ, Liarte DB, Abbamonte P, Sethna JP, Chowdhury D. Jamming and unusual charge density fluctuations of strange metals. Nat Commun 2023; 14:3919. [PMID: 37400449 DOI: 10.1038/s41467-023-39499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
The strange metallic regime across a number of high-temperature superconducting materials presents numerous challenges to the classic theory of Fermi liquid metals. Recent measurements of the dynamical charge response of strange metals, including optimally doped cuprates, have revealed a broad, featureless continuum of excitations, extending over much of the Brillouin zone. The collective density oscillations of this strange metal decay into the continuum in a manner that is at odds with the expectations of Fermi liquid theory. Inspired by these observations, we investigate the phenomenology of bosonic collective modes and the particle-hole excitations in a class of strange metals by making an analogy to the phonons of classical lattices falling apart across an unconventional jamming-like transition associated with the onset of rigidity. By making comparisons to the experimentally measured dynamical response functions, we reproduce many of the qualitative features using the above framework. We conjecture that the dynamics of electronic charge density over an intermediate range of energy scales in a class of strongly correlated metals can be at the brink of a jamming-like transition.
Collapse
Affiliation(s)
| | - Danilo B Liarte
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA
- ICTP South American Institute for Fundamental Research, São Paulo, SP, Brazil
- Institute of Theoretical Physics, São Paulo State University, São Paulo, SP, Brazil
| | - Peter Abbamonte
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James P Sethna
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
15
|
Gómez LR. Finite amplitude waves in jammed matter. SOFT MATTER 2023; 19:1749-1758. [PMID: 36779234 DOI: 10.1039/d2sm01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here we use simulations and theory to show that, close to the jamming point, an arbitrary initial distortion of a granular media induces the formation of forward and backward non-linear finite amplitude waves. There are two regimes in the evolution of these waves (near field and far field). Initially, non-linear interactions between forward and backward waves dominate the propagation, leading to complex early evolution (near field). At longer times, forward and backwards waves cease interacting in the far field, and the propagation enters a new regime. Here the waves acquire a triangular-like profile, and evolve in a self-similar fashion characterized by a power law attenuation, whose exponent is weakly dependent on the initial pressure of the system. The finite amplitude waves gradually become linear waves when the amplitude of the initial distortion decreases, or the confining pressure on the system increases.
Collapse
Affiliation(s)
- Leopoldo R Gómez
- Department of Physics, Universidad Nacional del Sur - IFISUR - CONICET, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
16
|
Lerner E, Bouchbinder E. Anomalous linear elasticity of disordered networks. SOFT MATTER 2023; 19:1076-1080. [PMID: 36661121 PMCID: PMC9906635 DOI: 10.1039/d2sm01253g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Continuum elasticity is a powerful tool applicable in a broad range of physical systems and phenomena. Yet, understanding how and on what scales material disorder may lead to the breakdown of continuum elasticity is not fully understood. We show, based on recent theoretical developments and extensive numerical computations, that disordered elastic networks near a critical rigidity transition, such as strain-stiffened fibrous biopolymer networks that are abundant in living systems, reveal an anomalous long-range linear elastic response below a correlation length. This emergent anomalous elasticity, which is non-affine in nature, is shown to feature a qualitatively different multipole expansion structure compared to ordinary continuum elasticity, and a slower spatial decay of perturbations. The potential degree of universality of these results, their implications (e.g. for cell-cell communication through biological extracellular matrices) and open questions are briefly discussed.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
17
|
Liarte DB, Thornton SJ, Schwen E, Cohen I, Chowdhury D, Sethna JP. Universal scaling for disordered viscoelastic matter near the onset of rigidity. Phys Rev E 2022; 106:L052601. [PMID: 36559468 DOI: 10.1103/physreve.106.l052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The onset of rigidity in interacting liquids, as they undergo a transition to a disordered solid, is associated with a rearrangement of the low-frequency vibrational spectrum. In this Letter, we derive scaling forms for the singular dynamical response of disordered viscoelastic networks near both jamming and rigidity percolation. Using effective-medium theory, we extract critical exponents, invariant scaling combinations, and analytical formulas for universal scaling functions near these transitions. Our scaling forms describe the behavior in space and time near the various onsets of rigidity, for rigid and floppy phases and the crossover region, including diverging length scales and timescales at the transitions.
Collapse
Affiliation(s)
- Danilo B Liarte
- ICTP South American Institute for Fundamental Research, São Paulo, SP 01140-070, Brazil
- Institute of Theoretical Physics, São Paulo State University, São Paulo, SP 01140-070, Brazil
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | | | - Eric Schwen
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | | | - James P Sethna
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
18
|
Nguyên TTT, Doanh T, Bot AL, Dalmas D. An acoustic signature of extreme failure on model granular materials. Sci Rep 2022; 12:18304. [PMID: 36316344 PMCID: PMC9622919 DOI: 10.1038/s41598-022-20231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023] Open
Abstract
Unexpectedly, granular materials can fail, the structure even destroyed, spontaneously in simple isotropic compression with stick-slip-like frictional behaviour. This extreme behaviour is conceptually impossible for saturated two-phase assembly in classical granular physics. Furthermore, the triggering mechanisms of these laboratory events remain mysterious, as in natural earthquakes. Here, we report a new interpretation of these failures in under-explored isotropic compression using the time-frequency analysis of Cauchy continuous wavelet transform of acoustic emissions and multiphysics numerical simulations. Wavelet transformation techniques can give insights into the temporal evolution of the state of granular materials en route to failure and offer a plausible explanation of the distinctive hearing sound of the stick-slip phenomenon. We also extend the traditional statistical seismic Gutenberg-Richter power-law behaviour for hypothetical biggest earthquakes based on the mechanisms of stick-slip frictional instability, using very large artificial isotropic labquakes and the ultimate unpredictable liquefaction failure.
Collapse
Affiliation(s)
- T T T Nguyên
- Ecole Nationale des Travaux Publics de l'Etat, LTDS (UMR 5513), Vaulx en Velin, France
| | - T Doanh
- Ecole Nationale des Travaux Publics de l'Etat, LTDS (UMR 5513), Vaulx en Velin, France.
| | - A Le Bot
- Ecole Centrale de Lyon, LTDS (UMR 5513), Ecully, France
| | - D Dalmas
- Ecole Centrale de Lyon, LTDS (UMR 5513), Ecully, France
| |
Collapse
|
19
|
Amereh M, Nadler B. Orientational-induced strain hardening of axisymmetric grains. Phys Rev E 2022; 106:L042901. [PMID: 36397499 DOI: 10.1103/physreve.106.l042901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The rheological response of oriented axisymmetric grains has additional degrees of complexity associated with their microstructure orientation. These additional kinematic degrees of freedom that give rise to complex transient macroscale rheological responses are not well understood. In this Letter, we study the rheology of axisymmetric grains subjected to transient flow. We identify strong coupling between the microstructure rearrangement and strain hardening which, under certain conditions, can yield jamming. We identify the critical conditions corresponding to jamming and the dependency on the shape of the grains. It is shown that this is a particular form of jamming that is directional in nature, since unjamming occurs if the shear direction is reversed.
Collapse
Affiliation(s)
- M Amereh
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - B Nadler
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
20
|
Hong G, Zhou Y, Li J. Relaxation dynamics of vibrated dense granular media: Hysteresis and nonlocal effects. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
Mizuno H, Hachiya M, Ikeda A. Phonon transport properties of particulate physical gels. J Chem Phys 2022; 156:204505. [DOI: 10.1063/5.0090233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Particulate physical gels are sparse, low-density amorphous materials in which clusters of glasses are connected to form a heterogeneous network structure. This structure is characterized by two length scales, ξ s and ξ G: ξ s measures the length of heterogeneities in the network structure and ξ G is the size of glassy clusters. Accordingly, the vibrational states (eigenmodes) of such a material also exhibit a multiscale nature with two characteristic frequencies, [Formula: see text] and ω G, which are associated with ξ s and ξ G, respectively: (i) phonon-like vibrations in the homogeneous medium at [Formula: see text], (ii) phonon-like vibrations in the heterogeneous medium at [Formula: see text], and (iii) disordered vibrations in the glassy clusters at ω > ω G. Here, we demonstrate that the multiscale characteristics seen in the static structures and vibrational states also extend to the phonon transport properties. Phonon transport exhibits two distinct crossovers at frequencies ω* and ω G (or at wavenumbers of [Formula: see text] and [Formula: see text]). In particular, both transverse and longitudinal phonons cross over between Rayleigh scattering at [Formula: see text] and diffusive damping at [Formula: see text]. Remarkably, the Ioffe–Regel limit is located at the very low frequency of ω*. Thus, phonon transport is localized above ω*, even where phonon-like vibrational states persist. This markedly strong scattering behavior is caused by the sparse, porous structure of the gel.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Makoto Hachiya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
22
|
Hagh VF, Nagel SR, Liu AJ, Manning ML, Corwin EI. Transient learning degrees of freedom for introducing function in materials. Proc Natl Acad Sci U S A 2022; 119:e2117622119. [PMID: 35512090 PMCID: PMC9171605 DOI: 10.1073/pnas.2117622119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
SignificanceMany protocols used in material design and training have a common theme: they introduce new degrees of freedom, often by relaxing away existing constraints, and then evolve these degrees of freedom based on a rule that leads the material to a desired state at which point these new degrees of freedom are frozen out. By creating a unifying framework for these protocols, we can now understand that some protocols work better than others because the choice of new degrees of freedom matters. For instance, introducing particle sizes as degrees of freedom to the minimization of a jammed particle packing can lead to a highly stable state, whereas particle stiffnesses do not have nearly the same impact.
Collapse
Affiliation(s)
- Varda F. Hagh
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - Sidney R. Nagel
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Andrea J. Liu
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104
| | - M. Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Eric I. Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
23
|
Mizuno H, Hachiya M, Ikeda A. Structural, mechanical, and vibrational properties of particulate physical gels. J Chem Phys 2021; 155:234502. [PMID: 34937359 DOI: 10.1063/5.0072863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our lives are surrounded by a rich assortment of disordered materials. In particular, glasses are well known as dense, amorphous materials, whereas gels exist in low-density, disordered states. Recent progress has provided a significant step forward in understanding the material properties of glasses, such as mechanical, vibrational, and transport properties. In contrast, our understanding of particulate physical gels is still highly limited. Here, using molecular dynamics simulations, we study a simple model of particulate physical gels, the Lennard-Jones (LJ) gels, and provide a comprehensive understanding of their structural, mechanical, and vibrational properties, all of which are markedly different from those of LJ glasses. First, the LJ gels show sparse, heterogeneous structures, and the length scale ξs of the structures grows as the density is lowered. Second, the LJ gels are extremely soft, with both shear G and bulk K moduli being orders of magnitude smaller than those of LJ glasses. Third, many low-frequency vibrational modes are excited, which form a characteristic plateau with the onset frequency ω* in the vibrational density of states. Structural, mechanical, and vibrational properties, characterized by ξs, G, K, and ω*, respectively, show power-law scaling behaviors with the density, which establishes a close relationship between them. Throughout this work, we also reveal that LJ gels are multiscale, solid-state materials: (i) homogeneous elastic bodies at long lengths, (ii) heterogeneous elastic bodies with fractal structures at intermediate lengths, and (iii) amorphous structural bodies at short lengths.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Makoto Hachiya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
24
|
Shen X, Fang C, Jin Z, Tong H, Tang S, Shen H, Xu N, Lo JHY, Xu X, Xu L. Achieving adjustable elasticity with non-affine to affine transition. NATURE MATERIALS 2021; 20:1635-1642. [PMID: 34211155 DOI: 10.1038/s41563-021-01046-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
For various engineering and industrial applications it is desirable to realize mechanical systems with broadly adjustable elasticity to respond flexibly to the external environment. Here we discover a topology-correlated transition between affine and non-affine regimes in elasticity in both two- and three-dimensional packing-derived networks. Based on this transition, we numerically design and experimentally realize multifunctional systems with adjustable elasticity. Within one system, we achieve solid-like affine response, liquid-like non-affine response and a continuous tunability in between. Moreover, the system also exhibits a broadly tunable Poisson's ratio from positive to negative values, which is of practical interest for energy absorption and for fracture-resistant materials. Our study reveals a fundamental connection between elasticity and network topology, and demonstrates its practical potential for designing mechanical systems and metamaterials.
Collapse
Affiliation(s)
- Xiangying Shen
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
- The Beijing Computational Science Research Center, Beijing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chenchao Fang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhipeng Jin
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hua Tong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Shixiang Tang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongchuan Shen
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, China
| | - Jack Hau Yung Lo
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xinliang Xu
- The Beijing Computational Science Research Center, Beijing, China.
- Department of Physics, Beijing Normal University, Beijing, China.
| | - Lei Xu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
25
|
Lerner E, Bouchbinder E. Low-energy quasilocalized excitations in structural glasses. J Chem Phys 2021; 155:200901. [PMID: 34852497 DOI: 10.1063/5.0069477] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glassy solids exhibit a wide variety of generic thermomechanical properties, ranging from universal anomalous specific heat at cryogenic temperatures to nonlinear plastic yielding and failure under external driving forces, which qualitatively differ from their crystalline counterparts. For a long time, it has been believed that many of these properties are intimately related to nonphononic, low-energy quasilocalized excitations (QLEs) in glasses. Indeed, recent computer simulations have conclusively revealed that the self-organization of glasses during vitrification upon cooling from a melt leads to the emergence of such QLEs. In this Perspective, we review developments over the past three decades toward understanding the emergence of QLEs in structural glasses and the degree of universality in their statistical and structural properties. We discuss the challenges and difficulties that hindered progress in achieving these goals and review the frameworks put forward to overcome them. We conclude with an outlook on future research directions and open questions.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
26
|
Kapteijns G, Bouchbinder E, Lerner E. Unified quantifier of mechanical disorder in solids. Phys Rev E 2021; 104:035001. [PMID: 34654186 DOI: 10.1103/physreve.104.035001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 11/07/2022]
Abstract
Mechanical disorder in solids, which is generated by a broad range of physical processes and controls various material properties, appears in a wide variety of forms. Defining unified and measurable dimensionless quantifiers, allowing quantitative comparison of mechanical disorder across widely different physical systems, is therefore an important goal. Two such coarse-grained dimensionless quantifiers (among others) appear in the literature: one is related to the spectral broadening of discrete phononic bands in finite-size systems (accessible through computer simulations) and the other is related to the spatial fluctuations of the shear modulus in macroscopically large systems. The latter has been recently shown to determine the amplitude of wave attenuation rates in the low-frequency limit (accessible through laboratory experiments). Here, using two alternative and complementary theoretical approaches linked to the vibrational spectra of solids, we derive a basic scaling relation between the two dimensionless quantifiers. This scaling relation, which is supported by simulational data, shows that the two apparently distinct quantifiers are in fact intrinsically related, giving rise to a unified quantifier of mechanical disorder in solids. We further discuss the obtained results in the context of the unjamming transition taking place in soft sphere packings at low confining pressures, in addition to their implications for our understanding of the low-frequency vibrational spectra of disordered solids in general, and in particular those of glassy systems.
Collapse
Affiliation(s)
- Geert Kapteijns
- Institute of Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute of Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
27
|
Ma X, Mishra CK, Habdas P, Yodh AG. Structural and short-time vibrational properties of colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition. J Chem Phys 2021; 155:074902. [PMID: 34418931 DOI: 10.1063/5.0059084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigate the short-time vibrational properties and structure of two-dimensional, bidisperse, colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition, as a function of interparticle depletion attraction strength. The long-time spatiotemporal dynamics of the samples are measured to be non-monotonic, confirming that the suspensions evolve from repulsive glass to supercooled liquid to attractive glass with increasing depletion attraction. Here, we search for vibrational signatures of the re-entrant behavior in the short-time spatiotemporal dynamics, i.e., dynamics associated with particle motion inside its nearest-neighbor cage. Interestingly, we observe that the anharmonicity of these in-cage vibrations varies non-monotonically with increasing attraction strength, consistent with the non-monotonic long-time structural relaxation dynamics of the re-entrant glass. We also extract effective spring constants between neighboring particles; we find that spring stiffness involving small particles also varies non-monotonically with increasing attraction strength, while stiffness between large particles increases monotonically. Last, from study of depletion-dependent local structure and vibration participation fractions, we gain microscopic insight into the particle-size-dependent contributions to short-time vibrational modes in the glass and supercooled liquid states.
Collapse
Affiliation(s)
- Xiaoguang Ma
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chandan K Mishra
- Discipline of Physics, Indian Institute of Technology (IIT) Gandhinagar Palaj, Gandhinagar, Gujarat 382355, India
| | - P Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Perrin H, Wyart M, Metzger B, Forterre Y. Nonlocal Effects Reflect the Jamming Criticality in Frictionless Granular Flows Down Inclines. PHYSICAL REVIEW LETTERS 2021; 126:228002. [PMID: 34152158 DOI: 10.1103/physrevlett.126.228002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The jamming transition is accompanied by a rich phenomenology such as hysteresis or nonlocal effects that is still not well understood. Here, we experimentally investigate a model frictionless granular layer flowing down an inclined plane as a way to disentangle generic collective effects from those arising from frictional interactions. We find that thin frictionless granular layers are devoid of hysteresis of the avalanche angle, yet the layer stability increases as it gets thinner. Steady rheological laws obtained for different layer thicknesses can be collapsed into a unique master curve, supporting the idea that nonlocal effects are the consequence of the usual finite-size effects associated with the presence of a critical point. This collapse indicates that the so-called isostatic length l^{*}, the scale on which pinning a boundary freezes all remaining floppy modes, governs the effect of boundaries on flow and rules out other propositions made in the past.
Collapse
Affiliation(s)
- Hugo Perrin
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matthieu Wyart
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Bloen Metzger
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| | - Yoël Forterre
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| |
Collapse
|
29
|
Saitoh K, Mizuno H. Sound damping in soft particle packings: the interplay between configurational disorder and inelasticity. SOFT MATTER 2021; 17:4204-4212. [PMID: 33881038 DOI: 10.1039/d0sm02018d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We numerically investigate sound damping in disordered two-dimensional soft particle packings. We simulate evolution of standing waves of particle displacements and analyze time correlation functions of particle velocities and power spectra. We control the strength of inelastic interactions between the particles in contact to show how the inelasticity affects anomalous sound characteristics of disordered systems: Increasing the strength of inelastic interactions, we find that (i) sound softening vanishes and (ii) attenuation coefficients exhibit a transition from the Rayleigh law to quadratic growth. We also report (iii) how the Ioffe-Regel limit frequencies depend on the strength of inelasticity as useful information for experiments and applications of the sound in disordered media. Our findings suggest that sound damping in soft particle packings is determined by the interplay between elastic heterogeneities and inelasticity.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
30
|
Liu K, Kollmer JE, Daniels KE, Schwarz JM, Henkes S. Spongelike Rigid Structures in Frictional Granular Packings. PHYSICAL REVIEW LETTERS 2021; 126:088002. [PMID: 33709747 DOI: 10.1103/physrevlett.126.088002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
We show how rigidity emerges in experiments on sheared two-dimensional frictional granular materials by using generalizations of two methods for identifying rigid structures. Both approaches, the force-based dynamical matrix and the topology-based rigidity percolation, agree with each other and identify similar rigid structures. As the system becomes jammed, at a critical contact number z_{c}=2.4±0.1, a rigid backbone interspersed with floppy, particle-filled holes of a broad range of sizes emerges, creating a spongelike morphology. While the pressure within rigid structures always exceeds the pressure outside the rigid structures, they are not identified with the force chains of shear jamming. These findings highlight the need to focus on mechanical stability arising through arch structures and hinges at the mesoscale.
Collapse
Affiliation(s)
- Kuang Liu
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
| | - Jonathan E Kollmer
- Experimental Astrophysics, Department of Physics, Universität Duisburg-Essen, Lotharst. 1, 47057 Duisburg, Dortmund, Germany
- Department of Physics, North Carolina State University, 27695 Raleigh, North Carolina, USA
| | - Karen E Daniels
- Department of Physics, North Carolina State University, 27695 Raleigh, North Carolina, USA
| | - J M Schwarz
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
- Indian Creek Farm, Ithaca, New York 14850, USA
| | - Silke Henkes
- School of Mathematics, University of Bristol, BS8 1UG Bristol, England, United Kingdom
| |
Collapse
|
31
|
Tan X, Guo Y, Huang D, Zhang L. A structural approach to vibrational properties ranging from crystals to disordered systems. SOFT MATTER 2021; 17:1330-1336. [PMID: 33315036 DOI: 10.1039/d0sm01989e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many scientists generally attribute the vibrational anomalies of disordered solids to the structural disorder, which, however, is still under intense debate. Here we conduct simulations on two-dimensional packings with a finite temperature, whose structure is tuned from a crystalline configuration to an amorphous one, then the amorphous from very dense state to a relatively loose state. By measuring the vibrational density of states and the reduced density of states, we clearly observe the evolution of the boson peak with the change of the disorder and volume fractions. Meanwhile, to understand the structural origin of this anomaly, we identify the soft regimes of all systems with a novel machine-learning method, where the "softness", a local structural quantity, is defined. Interestingly, we find a strong monotonic relationship between the shape of the boson peak and the softness as well as its spatial heterogeneity, suggesting that the softness of a system may be a new structural approach to the anomalous vibrational properties of amorphous solids.
Collapse
Affiliation(s)
- Xin Tan
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ying Guo
- School of Automation, Central South University, Changsha 410083, China.
| | - Duan Huang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ling Zhang
- School of Automation, Central South University, Changsha 410083, China.
| |
Collapse
|
32
|
González-López K, Shivam M, Zheng Y, Ciamarra MP, Lerner E. Mechanical disorder of sticky-sphere glasses. I. Effect of attractive interactions. Phys Rev E 2021; 103:022605. [PMID: 33736046 DOI: 10.1103/physreve.103.022605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 11/07/2022]
Abstract
Recent literature indicates that attractive interactions between particles of a dense liquid play a secondary role in determining its bulk mechanical properties. Here we show that, in contrast with their apparent unimportance to the bulk mechanics of dense liquids, attractive interactions can have a major effect on macro- and microscopic elastic properties of glassy solids. We study several broadly applicable dimensionless measures of stability and mechanical disorder in simple computer glasses, in which the relative strength of attractive interactions-referred to as "glass stickiness"-can be readily tuned. We show that increasing glass stickiness can result in the decrease of various quantifiers of mechanical disorder, on both macro- and microscopic scales, with a pair of intriguing exceptions to this rule. Interestingly, in some cases strong attractions can lead to a reduction of the number density of soft, quasilocalized modes, by up to an order of magnitude, and to a substantial decrease in their core size, similar to the effects of thermal annealing on elasticity observed in recent works. Contrary to the behavior of canonical glass models, we provide compelling evidence indicating that the stabilization mechanism in our sticky-sphere glasses stems predominantly from the self-organized depletion of interactions featuring large, negative stiffnesses. Finally, we establish a fundamental link between macroscopic and microscopic quantifiers of mechanical disorder, which we motivate via scaling arguments. Future research directions are discussed.
Collapse
Affiliation(s)
- Karina González-López
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Mahajan Shivam
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuanjian Zheng
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Massimo Pica Ciamarra
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Naples, Italy
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Yanagisawa N, Kurita R. Size distribution dependence of collective relaxation dynamics in a two-dimensional wet foam. Sci Rep 2021; 11:2786. [PMID: 33531566 PMCID: PMC7854744 DOI: 10.1038/s41598-021-82267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022] Open
Abstract
Foams can be ubiquitously observed in nature and in industrial products. Despite the relevance of their properties to deformation, fluidity, and collapse, all of which are essential for applications, there are few experimental studies of collective relaxation dynamics in a wet foam. Here, we directly observe how the relaxation dynamics changes with increasing liquid fraction in both monodisperse and polydisperse two-dimensional foams. As we increase the liquid fraction, we quantitatively characterize the slowing-down of the relaxation, and the increase of the correlation length. We also find two different relaxation modes which depend on the size distribution of the bubbles. It suggests that the bubbles which are simply near to each other play an important role in large rearrangements, not just those in direct contact. Finally, we confirm the generality of our experimental findings by a numerical simulation for the relaxation process of wet foams.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
34
|
Role of Anharmonic Interactions for Vibration Density of States in α-Cristobalite. MATERIALS 2021; 14:ma14030617. [PMID: 33572842 PMCID: PMC7866241 DOI: 10.3390/ma14030617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
The vibrational density of states (VDOS) of solids in the low-energy regime controls the thermal and transport properties of materials, such as heat capacity, heat conduction, free energy and entropy. In α-Cristobalite, the low-frequency part of vibration density of states (VDOS) has many common features with the Boson peak in silica glass of matched densities. Recent theoretical work reported that anharmonic phonon–phonon interactions were critical for the low-frequency part of VDOS in α-Cristobalite. Therefore, it is urgent to identify the role of different anharmonic interactions from first principles. In this paper, we focus on the main peak of the low-frequency part of VDOS in α-Cristobalite. Calculated by our own developed codes and first principles, we find that the quartic anharmonic interaction can increase the frequency of the peak, while the cubic anharmonic can reduce the frequency and change the shape of the peak. Meanwhile, the anharmonic interactions are critical for the temperature effect. Therefore, we calculated the temperature-dependent property of the peak. We find that the frequency of the peak is directly proportional to the temperature. The atomic displacement patterns of different temperatures also confirm the above conclusion. All our calculations converged well. Moreover, our basic results agree well with other published results. Finally, we highlight that our codes offer a general and reliable way to calculate the VDOS with temperature.
Collapse
|
35
|
Shimada M, Mizuno H, Ikeda A. Novel elastic instability of amorphous solids in finite spatial dimensions. SOFT MATTER 2021; 17:346-364. [PMID: 33164008 DOI: 10.1039/d0sm01583k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, progress has been made in the understanding of anomalous vibrational excitations in amorphous solids. In the lowest-frequency region, the vibrational spectrum follows a non-Debye quartic law, which persists up to zero frequency without any frequency gap. This gapless vibrational density of states (vDOS) suggests that glasses are on the verge of instability. This feature of marginal stability is now highlighted as a key concept in the theories of glasses. In particular, the elasticity theory based on marginal stability predicts the gapless vDOS. However, this theory yields a quadratic law and not the quartic law. To address this inconsistency, we presented a new type of instability, which is different from the conventional one, and proposed that amorphous solids are marginally stable considering the new instability in the preceding study [M. Shimada, H. Mizuno and A. Ikeda, Soft Matter, 2020, 16, 7279]. In this study, we further extend and detail the results for these instabilities. By analyzing various examples of disorder, we demonstrate that real glasses in finite spatial dimensions can be marginally stable by the proposed novel instability.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan. and Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
36
|
Deng L, Zhao C, Xu Z, Zheng W. Critical point of jamming transition in two-dimensional monodisperse systems. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:75. [PMID: 33306156 DOI: 10.1140/epje/i2020-11998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The existence of amorphous packings in two-dimensional monodisperse system is a classical unsolved problem. We get the energy minimum state by the energy minimization method of enthalpy under constant pressure conditions. Firstly, we find that there are two peaks in the experiment, which demonstrate the interesting features of the coexistence of crystals and amorphous crystals. And then, we confirm the critical point of jamming transition of the two-dimensional monodisperse is [Formula: see text]. Finally, we prove that the jamming scaling is still satisfied in two-dimensional monodispersed system: [Formula: see text] and vanishes as [Formula: see text], and the boson peak shifts to lower frequencies for less compressed systems.
Collapse
Affiliation(s)
- Liping Deng
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China
- Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, 315211, Ningbo, China
| | - Cai Zhao
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China
| | - Zhenhuan Xu
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China
| | - Wen Zheng
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China.
- Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, 315211, Ningbo, China.
- Center for Healthy Big Data, Changzhi Medical College, 046000, Changzhi, Shanxi, China.
| |
Collapse
|
37
|
Cui B, Zaccone A. Vibrational density of states of amorphous solids with long-ranged power-law-correlated disorder in elasticity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:72. [PMID: 33242169 DOI: 10.1140/epje/i2020-11995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
A theory of vibrational excitations based on power-law spatial correlations in the elastic constants (or equivalently in the internal stress) is derived, in order to determine the vibrational density of states D([Formula: see text]) of disordered solids. The results provide the first prediction of a boson peak in amorphous materials where spatial correlations in the internal stresses (or elastic constants) are of power-law form, as is often the case in experimental systems, leading to a logarithmic enhancement of (Rayleigh) phonon attenuation. A logarithmic correction of the form [Formula: see text] is predicted to occur in the plot of the reduced excess DOS for frequencies around the boson peak in 3D. Moreover, the theory provides scaling laws of the density of states in the low-frequency region, including a [Formula: see text] regime in 3D, and provides information about how the boson peak intensity depends on the strength of power-law decay of fluctuations in elastic constants or internal stress. Analytical expressions are also derived for the dynamic structure factor for longitudinal excitations, which include a logarithmic correction factor, and numerical calculations are presented supporting the assumptions used in the theory.
Collapse
Affiliation(s)
- Bingyu Cui
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Alessio Zaccone
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK.
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133, Milano, Italy.
- Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, UK.
| |
Collapse
|
38
|
Olsson P, Teitel S. Dynamic length scales in athermal, shear-driven jamming of frictionless disks in two dimensions. Phys Rev E 2020; 102:042906. [PMID: 33212573 DOI: 10.1103/physreve.102.042906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/07/2022]
Abstract
We carry out numerical simulations of athermally sheared, bidisperse, frictionless disks in two dimensions. From an appropriately defined velocity correlation function, we determine that there are two diverging length scales, ξ and ℓ, as the jamming transition is approached. We analyze our results using a critical scaling ansatz for the correlation function and argue that the more divergent length ℓ is a consequence of a dangerous irrelevant scaling variable and that it is ξ, which is the correlation length that determines the divergence of the system viscosity as jamming is approached from below in the liquid phase. We find that ξ∼(ϕ_{J}-ϕ)^{-ν} diverges with the critical exponent ν=1. We provide evidence that ξ measures the length scale of fluctuations in the rotation of the particle velocity field, while ℓ measures the length scale of fluctuations in the divergence of the velocity field.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
39
|
van Doorn JM, Higler R, Wegh R, Fokkink R, Zaccone A, Sprakel J, van der Gucht J. Propagation and attenuation of mechanical signals in ultrasoft 2D solids. SCIENCE ADVANCES 2020; 6:eaba6601. [PMID: 32917701 PMCID: PMC7486091 DOI: 10.1126/sciadv.aba6601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The propagation of elastic waves in soft materials plays a crucial role in the spatiotemporal transmission of mechanical signals, e.g., in biological mechanotransduction or in the failure of marginal solids. At high Reynolds numbers Re ≫ 1, inertia dominates and wave propagation is readily observed. However, mechanical cues in soft and biological materials often occur at low Re, where waves are overdamped. Overdamped waves are not only difficult to observe experimentally, also theoretically their description remains incomplete. Here, we present direct measurements of the propagation and attenuation of mechanical signals in colloidal soft solids, induced by an optical trap. We derive an analytical theory for low Re wave propagation and damping, which is in excellent agreement with the experiments. Our results present both a previously unexplored method to characterize damped waves in soft solids and a theoretical framework showing how localized mechanical signals can provoke a remote and delayed response.
Collapse
Affiliation(s)
- Jan Maarten van Doorn
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Ruben Higler
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Ronald Wegh
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Remco Fokkink
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Alessio Zaccone
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
40
|
Kim S, Kamrin K. Power-Law Scaling in Granular Rheology across Flow Geometries. PHYSICAL REVIEW LETTERS 2020; 125:088002. [PMID: 32909790 DOI: 10.1103/physrevlett.125.088002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Based on discrete element method simulations, we propose a new form of the constitutive equation for granular flows independent of packing fraction. Rescaling the stress ratio μ by a power of dimensionless temperature Θ makes the data from a wide set of flow geometries collapse to a master curve depending only on the inertial number I. The basic power-law structure appears robust to varying particle properties (e.g., surface friction) in both 2D and 3D systems. We show how this rheology fits and extends frameworks such as kinetic theory and the nonlocal granular fluidity model.
Collapse
Affiliation(s)
- Seongmin Kim
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ken Kamrin
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
41
|
Wang Y, Fang S, Xu N, Deng Y. Two-Scale Scenario of Rigidity Percolation of Sticky Particles. PHYSICAL REVIEW LETTERS 2020; 124:255501. [PMID: 32639758 DOI: 10.1103/physrevlett.124.255501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In the presence of attraction, the jamming transition of packings of frictionless particles corresponds to the rigidity percolation. When the range of attraction is long, the distribution of the size of rigid clusters, P(s), is continuous and shows a power-law decay. For systems with short-range attractions, however, P(s) appears discontinuous. There is a power-law decay for small cluster sizes, followed by a low probability gap and a peak near the system size. We find that this appearing "discontinuity" does not mean that the transition is discontinuous. In fact, it signifies the coexistence of two distinct length scales, associated with the largest cluster and smaller ones, respectively. The comparison between the largest and second largest clusters indicates that their growth rates with system size are rather different. However, both cluster sizes tend to diverge in the large system size limit, suggesting that the jamming transition of systems with short-range attractions is still continuous. In the framework of the two-scale scenario, we also derive a generalized hyperscaling relation. With robust evidence, our work challenges the former single-scale view of the rigidity percolation.
Collapse
Affiliation(s)
- Yuchuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Sheng Fang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ning Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
42
|
Arceri F, Corwin EI. Vibrational Properties of Hard and Soft Spheres Are Unified at Jamming. PHYSICAL REVIEW LETTERS 2020; 124:238002. [PMID: 32603144 DOI: 10.1103/physrevlett.124.238002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The unconventional thermal properties of jammed amorphous solids are directly related to their density of vibrational states. While the vibrational spectrum of jammed soft sphere solids has been fully described, the vibrational spectrum of hard spheres, a model glass former often related to physical colloidal glasses, is still unknown due to the difficulty of treating the nonanalytic interaction potential. We bypass this difficulty using the recently described effective interaction potential for the free energy of thermal hard spheres. By minimizing this effective free energy, we mimic the rapid compression of hard spheres and produce typical configurations of the thermal system. We measure the resulting vibrational spectrum and characterize its evolution toward the jamming point where configurations of hard and soft spheres are trivially unified. For densities approaching jamming from below, we observe low-frequency modes which agree with those found in numerical simulations of jammed soft spheres. Our measurements of the vibrational structure demonstrate that the jamming universality extends away from jamming: hard sphere thermal systems below jamming exhibit the same vibrational spectra as thermal and athermal soft sphere systems above the transition.
Collapse
Affiliation(s)
- Francesco Arceri
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Eric I Corwin
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
43
|
Wentworth-Nice P, Ridout SA, Jenike B, Liloia A, Graves AL. Structured randomness: jamming of soft discs and pins. SOFT MATTER 2020; 16:5305-5313. [PMID: 32467960 DOI: 10.1039/d0sm00577k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Simulations are used to find the zero temperature jamming threshold, φj, for soft, bidisperse disks in the presence of small fixed particles, or "pins", arranged in a lattice. The presence of pins leads, as one expects, to a decrease in φj. Structural properties of the system near the jamming threshold are calculated as a function of the pin density. While the correlation length exponent remains ν = 1/2 at low pin densities, the system is mechanically stable with more bonds, yet fewer contacts than the Maxwell criterion implies in the absence of pins. In addition, as pin density increases, novel bond orientational order and long-range spatial order appear, which are correlated with the square symmetry of the pin lattice.
Collapse
Affiliation(s)
| | - Sean A Ridout
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Jenike
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Ari Liloia
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Amy L Graves
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| |
Collapse
|
44
|
Shimada M, Mizuno H, Berthier L, Ikeda A. Low-frequency vibrations of jammed packings in large spatial dimensions. Phys Rev E 2020; 101:052906. [PMID: 32575185 DOI: 10.1103/physreve.101.052906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Amorphous packings prepared in the vicinity of the jamming transition play a central role in theoretical studies of the vibrational spectrum of glasses. Two mean-field theories predict that the vibrational density of states g(ω) obeys a characteristic power law, g(ω)∼ω^{2}, called the non-Debye scaling in the low-frequency region. Numerical studies have, however, reported that this scaling breaks down at low frequencies, due to finite-dimensional effects. In this study, we prepare amorphous packings of up to 128000 particles in spatial dimensions from d=3 to d=9 to characterize the range of validity of the non-Debye scaling. Our numerical results suggest that the non-Debye scaling is obeyed down to a frequency that gradually decreases as d increases, and possibly vanishes for large d, in agreement with mean-field predictions. We also show that the prestress is an efficient control parameter to quantitatively compare packings across different spatial dimensions.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
45
|
Saitoh K, Hatano T, Ikeda A, Tighe BP. Stress Relaxation above and below the Jamming Transition. PHYSICAL REVIEW LETTERS 2020; 124:118001. [PMID: 32242697 DOI: 10.1103/physrevlett.124.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
We numerically investigate stress relaxation in soft athermal disks to reveal critical slowing down when the system approaches the jamming point. The exponents describing the divergence of the relaxation time differ dramatically depending on whether the transition is approached from the jammed or unjammed phase. This contrasts sharply with conventional dynamic critical scaling scenarios, where a single exponent characterizes both sides. We explain this surprising difference in terms of the vibrational density of states, which is a key ingredient of linear viscoelastic theory. The vibrational density of states exhibits an extra slow mode that emerges below jamming, which we utilize to demonstrate the anomalous exponent below jamming.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takahiro Hatano
- Department of Earth and Space Science, Osaka University, 560-0043 Osaka, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 3-8-1, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| |
Collapse
|
46
|
Ikeda A, Kawasaki T, Berthier L, Saitoh K, Hatano T. Universal Relaxation Dynamics of Sphere Packings below Jamming. PHYSICAL REVIEW LETTERS 2020; 124:058001. [PMID: 32083930 DOI: 10.1103/physrevlett.124.058001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic timescale that diverges at jamming. This slow timescale is fully encoded in the structure of the unjammed packing and can be readily measured via the vibrational density of states. We show that the corresponding dynamic critical exponent is the same for randomly generated and sheared packings. Our results show that a wide variety of physical situations, from suspension rheology to algorithmic studies of the jamming transition are controlled by a unique diverging timescale, with a universal critical exponent.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences & WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takahiro Hatano
- Department of Earth and Space Science, Osaka University, 560-0043 Osaka, Japan
| |
Collapse
|
47
|
Boson peak, elasticity, and glass transition temperature in polymer glasses: Effects of the rigidity of chain bending. Sci Rep 2019; 9:19514. [PMID: 31862997 PMCID: PMC6925306 DOI: 10.1038/s41598-019-55564-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
The excess low-frequency vibrational spectrum, called boson peak, and non-affine elastic response are the most important particularities of glasses. Herein, the vibrational and mechanical properties of polymeric glasses are examined by using coarse-grained molecular dynamics simulations, with particular attention to the effects of the bending rigidity of the polymer chains. As the rigidity increases, the system undergoes a glass transition at a higher temperature (under a constant pressure), which decreases the density of the glass phase. The elastic moduli, which are controlled by the decrease of the density and the increase of the rigidity, show a non-monotonic dependence on the rigidity of the polymer chain that arises from the non-affine component. Moreover, a clear boson peak is observed in the vibrational density of states, which depends on the macroscopic shear modulus G. In particular, the boson peak frequency ωBP is proportional to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt{G}$$\end{document}G. These results provide a positive correlation between the boson peak, shear elasticity, and the glass transition temperature.
Collapse
|
48
|
Yuan Y, VanderWerf K, Shattuck MD, O'Hern CS. Jammed packings of 3D superellipsoids with tunable packing fraction, coordination number, and ordering. SOFT MATTER 2019; 15:9751-9761. [PMID: 31742301 PMCID: PMC6902436 DOI: 10.1039/c9sm01932d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We carry out numerical studies of static packings of frictionless superellipsoidal particles in three spatial dimensions. We consider more than 200 different particle shapes by varying the three shape parameters that define superellipsoids. We characterize the structural and mechanical properties of both disordered and ordered packings using two packing-generation protocols. We perform athermal quasi-static compression simulations starting from either random, dilute configurations (Protocol 1) or thermalized, dense configurations (Protocol 2), which allows us to tune the orientational order of the packings. In general, we find that superellipsoid packings are hypostatic, with coordination number zJ < ziso, where ziso = 2df and df = 5 or 6 depending on whether the particles are axi-symmetric or not. Over the full range of orientational order, we find that the number of quartic modes of the dynamical matrix for the packings always matches the number of missing contacts relative to the isostatic value. This result suggests that there are no mechanically redundant contacts for ordered, yet hypostatic packings of superellipsoidal particles. Additionally, we find that the packing fraction at jamming onset for disordered packings of superellipsoidal depends on at least two particle shape parameters, e.g. the asphericity A and reduced aspect ratio β of the particles.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA and Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
49
|
Baggioli M, Milkus R, Zaccone A. Vibrational density of states and specific heat in glasses from random matrix theory. Phys Rev E 2019; 100:062131. [PMID: 31962439 DOI: 10.1103/physreve.100.062131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 06/10/2023]
Abstract
The low-temperature properties of glasses present important differences with respect to crystalline matter. In particular, models such as the Debye model of solids, which assume the existence of an underlying regular lattice, predict that the specific heat of solids varies with the cube of temperature at low temperatures. Since the 1970s at least, it is a well-established experimental fact that the specific heat of glasses is instead just linear in T at T∼1 K and presents a pronounced peak when normalized by T^{3}, known as the boson peak. Here we present an approach which suggests that the vibrational and thermal properties of amorphous solids are affected by the random-matrix part of the vibrational spectrum. The model is also able to reproduce, for the first time, the experimentally observed inverse proportionality between the boson peak in the specific heat and the shear modulus.
Collapse
Affiliation(s)
- M Baggioli
- Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - R Milkus
- Physik-Department, Technical University Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - A Zaccone
- Department of Physics, University of Milan, 20133 Milan, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB30AS Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, CB30HE Cambridge, United Kingdom
| |
Collapse
|
50
|
Shiraishi K, Mizuno H, Ikeda A. Vibrational properties of two-dimensional dimer packings near the jamming transition. Phys Rev E 2019; 100:012606. [PMID: 31499851 DOI: 10.1103/physreve.100.012606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/07/2022]
Abstract
Jammed particulate systems composed of various shapes of particles undergo the jamming transition as they are compressed or decompressed. To date, sphere packings have been extensively studied in many previous works, where isostaticity at the transition and scaling laws with the pressure of various quantities, including the contact number and the vibrational density of states, have been established. Additionally, much attention has been paid to nonspherical packings, and particularly recent work has made progress in understanding ellipsoidal packings. In this work, we study the dimer packings in two dimensions, which have been much less understood than systems of spheres and ellipsoids. We first study the contact number of dimers near the jamming transition. It turns out that packings of dimers have "rotational rattlers," each of which still has a free rotational motion. After correcting this effect, we show that dimers become isostatic at the jamming, and the excess contact number obeys the same critical law and finite-size scaling law as those of spheres. We next study the vibrational properties of dimers near the transition. We find that the vibrational density of states of dimers exhibits two characteristic plateaus that are separated by a peak. The high-frequency plateau is dominated by the translational degree of freedom, while the low-frequency plateau is dominated by the rotational degree of freedom. We establish the critical scaling laws of the characteristic frequencies of the plateaus and the peak near the transition. In addition, we present detailed characterizations of the real space displacement fields of vibrational modes in the translational and rotational plateaus.
Collapse
Affiliation(s)
- Kumpei Shiraishi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|