1
|
Suyolcu YE, Wang Y, Baiutti F, Al-Temimy A, Gregori G, Cristiani G, Sigle W, Maier J, van Aken PA, Logvenov G. Dopant size effects on novel functionalities: High-temperature interfacial superconductivity. Sci Rep 2017; 7:453. [PMID: 28352070 PMCID: PMC5428683 DOI: 10.1038/s41598-017-00539-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 12/03/2022] Open
Abstract
Among the range of complex interactions, especially at the interfaces of epitaxial oxide systems, contributing to the occurrence of intriguing effects, a predominant role is played by the local structural parameters. In this study, oxide molecular beam epitaxy grown lanthanum cuprate-based bilayers (consisting of a metallic (M) and an insulating phase (I)), in which high-temperature superconductivity arises as a consequence of interface effects, are considered. With the aim of assessing the role of the dopant size on local crystal structure and chemistry, and on the interface functionalities, different dopants (Ca2+, Sr2+ and, Ba2+) are employed in the M-phase, and the M–I bilayers are investigated by complementary techniques, including spherical-aberration-corrected scanning transmission electron microscopy. A series of exciting outcomes are found: (i) the average out-of-plane lattice parameter of the bilayers is linearly dependent on the dopant ion size, (ii) each dopant redistributes at the interface with a characteristic diffusion length, and (iii) the superconductivity properties are highly dependent on the dopant of choice. Hence, this study highlights the profound impact of the dopant size and related interface chemistry on the functionalities of superconducting oxide systems.
Collapse
Affiliation(s)
- Y Eren Suyolcu
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany.
| | - Yi Wang
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Federico Baiutti
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Ameer Al-Temimy
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany.,Al-Nahrain Nanorenewable Energy Research Center, Al-Nahrain University, Baghdad, Iraq
| | - Giuliano Gregori
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Georg Cristiani
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Wilfried Sigle
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Joachim Maier
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Gennady Logvenov
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Sonier JE. High-field μSR studies of superconducting and magnetic correlations in cuprates above T(c). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:203202. [PMID: 21393701 DOI: 10.1088/0953-8984/22/20/203202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The advent of high transverse field muon spin rotation (TF-μSR) has led to recent μSR investigations of the magnetic field response of cuprates above the superconducting transition temperature T(c). Here the results of such experiments on hole-doped cuprates are reviewed. Although these investigations are currently ongoing, it is clear that the effects of high field on the internal magnetic field distribution of these materials is dependent upon competition between superconductivity and magnetism. In La(2 - x)Sr(x)CuO(4) the response to the external field above T(c) is dominated by heterogeneous spin magnetism. However, the magnetism that dominates the observed inhomogeneous line broadening below x ∼ 0.19 is overwhelmed by the emergence of a completely different kind of magnetism in the heavily overdoped regime. The origin of the magnetism above x ∼ 0.19 is probably related to intrinsic disorder, but the systematic evolution of the magnetism with doping changes in the doping range beyond the superconducting 'dome'. In contrast, the width of the internal field distribution of underdoped Y Ba(2)Cu(3)O(y) above T(c) is observed to track T(c) and the density of superconducting carriers. This observation suggests that the magnetic response above T(c) is not dominated by electronic moments, but rather inhomogeneous fluctuating superconductivity. The spatially inhomogeneous response of Y Ba(2)Cu(3)O(y) to the applied field may be a means of minimizing energy, rather than being caused by intrinsic disorder.
Collapse
Affiliation(s)
- J E Sonier
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
3
|
Caplan DS, Orlyanchik V, Weissman MB, Van Harlingen DJ, Fradkin EH, Hinton MJ, Lemberger TR. Anomalous noise in the pseudogap regime of YBa2Cu3O(7-delta). PHYSICAL REVIEW LETTERS 2010; 104:177001. [PMID: 20482127 DOI: 10.1103/physrevlett.104.177001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/10/2010] [Indexed: 05/29/2023]
Abstract
An unusual noise component is found near and below about 250 K in the normal state of underdoped YBCO and Ca-YBCO films. This noise regime, unlike the more typical noise above 250 K, has features expected for a symmetry-breaking collective electronic state. These include large individual fluctuators, a magnetic sensitivity, and aging effects. A possible interpretation in terms of fluctuating charge nematic order is presented.
Collapse
Affiliation(s)
- D S Caplan
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Sonier JE, Ilton M, Pacradouni V, Kaiser CV, Sabok-Sayr SA, Ando Y, Komiya S, Hardy WN, Bonn DA, Liang R, Atkinson WA. Inhomogeneous magnetic-field response of YBa2Cu3Oy and La2-xSrxCuO4 persisting above the bulk superconducting transition temperature. PHYSICAL REVIEW LETTERS 2008; 101:117001. [PMID: 18851316 DOI: 10.1103/physrevlett.101.117001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Indexed: 05/26/2023]
Abstract
We report that in YBa2Cu3Oy and La2-xSrxCuO4 there is a spatially inhomogeneous response to the magnetic field for temperatures T extending well above the bulk-superconducting transition temperature Tc. An inhomogeneous magnetic response is observed above Tc even in ortho-II YBa2Cu3O6.50, which has highly ordered doping. The degree of the field inhomogeneity above Tc tracks the hole-doping dependences of both Tc and the density of the superconducting carriers below Tc, and therefore is apparently coupled to superconductivity.
Collapse
Affiliation(s)
- J E Sonier
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|