1
|
Chushkin Y, Zontone F. Prospects for coherent X-ray diffraction imaging at fourth-generation synchrotron sources. IUCRJ 2025; 12:280-287. [PMID: 40080160 DOI: 10.1107/s2052252525001526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Coherent X-ray diffraction imaging is a lens-less microscopy technique that emerged with the advent of third-generation synchrotrons, modern detectors and computers. It can image isolated micrometre-sized objects with a spatial resolution of a few nanometres. The method is based on the inversion of the speckle pattern in the far field produced by the scattering from the object under coherent illumination. The retrieval of the missing phase is performed using an iterative algorithm that numerically phases the amplitudes from the intensities of speckles measured with sufficient oversampling. Two- and three-dimensional imaging is obtained by simple inverse Fourier transform. This lens-less imaging technique has been applied to various specimens for their structural characterization on the nanoscale. Here, we review the theoretical and experimental elements of the technique, its achievements, and its limitations at third-generation synchrotrons. We also discuss the new opportunities offered by modern fourth-generation synchrotrons and outline the developments necessary to maximize the potential of the technique.
Collapse
Affiliation(s)
- Yuriy Chushkin
- ESRF - The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Federico Zontone
- ESRF - The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
2
|
Mills B, Zervas MN, Grant-Jacob JA. Diatom Lensless Imaging Using Laser Scattering and Deep Learning. ACS ES&T WATER 2025; 5:1814-1820. [PMID: 40242343 PMCID: PMC11997998 DOI: 10.1021/acsestwater.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
We present a novel approach for imaging diatoms using lensless imaging and deep learning. We used a laser beam to scatter off samples of diatomaceous earth (diatoms) and then recorded and transformed the scattered light into microscopy images of the diatoms. The predicted microscopy images gave an average SSIM of 0.98 and an average RMSE of 3.26 as compared to the experimental data. We also demonstrate the capability of determining the velocity and angle of movement of the diatoms from their scattering patterns as they were translated through the laser beam. This work shows the potential for imaging and identifying the movement of diatoms and other microsized organisms in situ within the marine environment. Implementing such a method for real-time image acquisition and analysis could enhance environmental management, including improving the early detection of harmful algal blooms.
Collapse
Affiliation(s)
- Ben Mills
- Optoelectronics Research
Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Michalis N. Zervas
- Optoelectronics Research
Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - James A. Grant-Jacob
- Optoelectronics Research
Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
3
|
Fardin L, Pulnova Y, Parkman T, Baranová I, Fourmaux S, Armstrong C, Fratini M, Chaulagain U, Nejdl J, Angelov B, Batey DJ, Olivo A, Cipiccia S. Sampling requirements in near-field ptychography. OPTICS EXPRESS 2025; 33:15614-15623. [PMID: 40219471 DOI: 10.1364/oe.544490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
Ptychography is a robust lensless form of microscopy routinely used for applications spanning life and physical sciences. The most common ptychography setup consists in using a detector to record diffraction patterns in the far-field. A near-field version has been more recently introduced, and its potential is yet to be fully exploited. In this work, the sampling requirements for near-field ptychography are analysed. Starting from the characterisation available in literature, the formalism of the fractional Fourier transform is used to generalise analytically the sampling conditions. The results harmonise the far- and near-field regimes and widen the applications of the technique with respect to the current knowledge. This study is supported by simulations and provides clear guidelines on how to optimise the setup and acquisition strategies for near-field ptychography experiments. The results are key to drive the translation of the technique towards low brilliance sources.
Collapse
|
4
|
Zhang S, Pan A, Sun H, Tan Y, Cao L. High-Fidelity Computational Microscopy via Feature-Domain Phase Retrieval. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413975. [PMID: 39985246 DOI: 10.1002/advs.202413975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/16/2025] [Indexed: 02/24/2025]
Abstract
Computational microscopy enhances the space-bandwidth product and corrects aberrations for high-fidelity imaging by reconstructing complex optical wavefronts. Phase retrieval, a core technique in computational microscopy, faces challenges maintaining consistency between physical and real-world imaging formation, as physical models idealize real phenomena. The discrepancy between ideal and actual imaging formation limits the application of computational microscopy especially in non-ideal situations. Here, the feature-domain consistency for achieving high-fidelity computational microscopy is introduced. Feature-domain consistency tells that certain features, such as edges, textures, or patterns of an image, remain invariant in different image transformations, degradations, or representations. Leveraging the feature-domain consistency, Feature-Domain Phase Retrieval (FD-PR) is proposed, a framework applicable to various computational microscopy. Instead of working directly with images' pixel values, FD-PR uses image features to guide the reconstruction of optical wavefronts and takes advantage of invariance components of images against mismatches of physical models. Experimental studies, across diverse phase retrieval microscopic tasks, including coded/Fourier ptychography, inline holography, and aberration correction, demonstrate that FD-PR improves resolution by a factor of 1.5 and reduces noise levels by a factor of 2. The proposed framework can immediately benefit a wide range of computational microscopies, such as X-ray ptychography, diffraction tomography, and wavefront shaping.
Collapse
Affiliation(s)
- Shuhe Zhang
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - An Pan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbo Sun
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Yidong Tan
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Miao J. Computational microscopy with coherent diffractive imaging and ptychography. Nature 2025; 637:281-295. [PMID: 39780004 DOI: 10.1038/s41586-024-08278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations. Here, I review the innovative developments in CDI and ptychography, which achieve exceptional imaging capabilities across nine orders of magnitude in length scales, from resolving atomic structures in materials at sub-ångstrom resolution to quantitative phase imaging of centimetre-sized tissues, using the same principle and similar computational algorithms. These methods have been applied to determine the 3D atomic structures of crystal defects and amorphous materials, visualize oxygen vacancies in high-temperature superconductors and capture ultrafast dynamics. They have also been used for nanoscale imaging of magnetic, quantum and energy materials, nanomaterials, integrated circuits and biological specimens. By harnessing fourth-generation synchrotron radiation, X-ray-free electron lasers, high-harmonic generation, electron microscopes, optical microscopes, cutting-edge detectors and deep learning, CDI and ptychography are poised to make even greater contributions to multidisciplinary sciences in the years to come.
Collapse
Affiliation(s)
- Jianwei Miao
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Okawa N, Ishiguro N, Takazawa S, Uematsu H, Sasaki Y, Abe M, Ozaki K, Honjo Y, Nishino H, Joti Y, Hatsui T, Takahashi Y. Three-Dimensional Nanoscale Imaging of SiO2 Nanofiller in Styrene-Butadiene Rubber with High-Resolution and High-Sensitivity Ptychographic X-ray Computed Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:836-843. [PMID: 39298155 DOI: 10.1093/mam/ozae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 11/05/2024]
Abstract
SiO2 aggregates in styrene-butadiene rubber (SBR) were observed using ptychographic X-ray computed tomography (PXCT). The rubber composites were illuminated with X-rays focused by total reflection focusing mirrors, and the ptychographic diffraction patterns were collected using a CITIUS detector in the range of -75° to +75° angle of incidence. The projection images of the rubber composites were reconstructed with a two-dimensional resolution of 76 nm, and no significant structural changes were observed during the PXCT measurements. A three-dimensional image of the rubber composite was reconstructed with an isotropic resolution of 98 nm. Segmentation of SiO2 from the SBR, based on a histogram analysis of the phase shift, revealed a fragmented network structure of interconnected SiO2 aggregates.
Collapse
Affiliation(s)
- Naru Okawa
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Nozomu Ishiguro
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shuntaro Takazawa
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideshi Uematsu
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuhei Sasaki
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Abe
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kyosuke Ozaki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiaki Honjo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Haruki Nishino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yukio Takahashi
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Lu X, Pham M, Negrini E, Davis D, Osher SJ, Miao J. Computational microscopy beyond perfect lenses. Phys Rev E 2024; 110:054407. [PMID: 39690578 DOI: 10.1103/physreve.110.054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/02/2024] [Indexed: 12/19/2024]
Abstract
We demonstrate that in situ coherent diffractive imaging (CDI), which leverages the coherent interference between strong and weak beams to illuminate static and dynamic structures, can serve as a highly dose-efficient imaging method. At low doses, in situ CDI can achieve higher resolution than perfect lenses with the point spread function as a delta function. Both our numerical simulations and experimental results demonstrate that combining in situ CDI with ptychography can reduce the required dose by up to two orders of magnitude compared with ptychography alone. We anticipate that computational microscopy based on in situ CDI can be applied across various imaging modalities using photons and electrons for low-dose imaging of radiation-sensitive materials and biological samples.
Collapse
|
8
|
Gilgenbach C, Chen X, LeBeau JM. A Methodology for Robust Multislice Ptychography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:703-711. [PMID: 38877858 DOI: 10.1093/mam/ozae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 08/22/2024]
Abstract
While multislice electron ptychography can provide thermal vibration limited resolution and structural information in 3D, it relies on properly selecting many intertwined acquisition and computational parameters. Here, we outline a methodology for selecting acquisition parameters to enable robust ptychographic reconstructions. We develop two physically informed metrics, areal oversampling and Ronchigram magnification, to describe the selection of these parameters in multislice ptychography. Through simulations, we comprehensively evaluate the validity of these two metrics over a broad range of conditions and show that they accurately guide reconstruction success. Further, we validate these conclusions with experimental ptychographic data and demonstrate close agreement between trends in simulated and experimental data. Using these metrics, we achieve experimental multislice reconstructions at a scan step of 2.1Å/px, enabling large field-of-view, data-efficient reconstructions. These experimental design principles enable the routine and robust use of multislice ptychography for 3D characterization of materials at the atomic scale.
Collapse
Affiliation(s)
- Colin Gilgenbach
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xi Chen
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James M LeBeau
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Shao Y, Weerdenburg S, Seifert J, Urbach HP, Mosk AP, Coene W. Wavelength-multiplexed multi-mode EUV reflection ptychography based on automatic differentiation. LIGHT, SCIENCE & APPLICATIONS 2024; 13:196. [PMID: 39160154 PMCID: PMC11333750 DOI: 10.1038/s41377-024-01558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/29/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Ptychographic extreme ultraviolet (EUV) diffractive imaging has emerged as a promising candidate for the next generationmetrology solutions in the semiconductor industry, as it can image wafer samples in reflection geometry at the nanoscale. This technique has surged attention recently, owing to the significant progress in high-harmonic generation (HHG) EUV sources and advancements in both hardware and software for computation. In this study, a novel algorithm is introduced and tested, which enables wavelength-multiplexed reconstruction that enhances the measurement throughput and introduces data diversity, allowing the accurate characterisation of sample structures. To tackle the inherent instabilities of the HHG source, a modal approach was adopted, which represents the cross-density function of the illumination by a series of mutually incoherent and independent spatial modes. The proposed algorithm was implemented on a mainstream machine learning platform, which leverages automatic differentiation to manage the drastic growth in model complexity and expedites the computation using GPU acceleration. By optimising over 200 million parameters, we demonstrate the algorithm's capacity to accommodate experimental uncertainties and achieve a resolution approaching the diffraction limit in reflection geometry. The reconstruction of wafer samples with 20-nm high patterned gold structures on a silicon substrate highlights our ability to handle complex physical interrelations involving a multitude of parameters. These results establish ptychography as an efficient and accurate metrology tool.
Collapse
Affiliation(s)
- Yifeng Shao
- Imaging Physics Department, Applied Science Faculty, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands.
- Nanophotonics, Debye Institute for Nanomaterials Science and Center for Extreme Matter and Emergent Phenomena, Utrecht University, P.O. Box 80000, Utrecht, 3508 TA, The Netherlands.
| | - Sven Weerdenburg
- Imaging Physics Department, Applied Science Faculty, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Jacob Seifert
- Nanophotonics, Debye Institute for Nanomaterials Science and Center for Extreme Matter and Emergent Phenomena, Utrecht University, P.O. Box 80000, Utrecht, 3508 TA, The Netherlands
| | - H Paul Urbach
- Imaging Physics Department, Applied Science Faculty, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Allard P Mosk
- Nanophotonics, Debye Institute for Nanomaterials Science and Center for Extreme Matter and Emergent Phenomena, Utrecht University, P.O. Box 80000, Utrecht, 3508 TA, The Netherlands
| | - Wim Coene
- Imaging Physics Department, Applied Science Faculty, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
- Research Department, ASML Netherlands B.V, De Run 6501, Veldhoven, 5504 DR, The Netherlands
| |
Collapse
|
10
|
Go GH, Lee DG, Oh J, Song G, Lee D, Jang M. Meta Shack-Hartmann wavefront sensor with large sampling density and large angular field of view: phase imaging of complex objects. LIGHT, SCIENCE & APPLICATIONS 2024; 13:187. [PMID: 39134518 PMCID: PMC11319597 DOI: 10.1038/s41377-024-01528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Shack-Hartmann wavefront sensors measure the local slopes of an incoming wavefront based on the displacement of focal spots created by a lenslet array, serving as key components for adaptive optics for astronomical and biomedical imaging. Traditionally, the challenges in increasing the density and the curvature of the lenslet have limited the use of such wavefront sensors in characterizing slowly varying wavefront structures. Here, we develop a metasurface-enhanced Shack-Hartmann wavefront sensor (meta SHWFS) to break this limit, considering the interplay between the lenslet parameters and the performance of SHWFS. We experimentally validate the meta SHWFS with a sampling density of 5963 per mm2 and a maximum acceptance angle of 8° which outperforms the traditional SFWFS by an order of magnitude. Furthermore, to the best of our knowledge, we demonstrate the first use of a wavefront sensing scheme in single-shot phase imaging of highly complex patterns, including biological tissue patterns. The proposed approach opens up new opportunities in incorporating exceptional light manipulation capabilities of the metasurface platform in complex wavefront characterization.
Collapse
Affiliation(s)
- Gi-Hyun Go
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dong-Gu Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jaeyeon Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gookho Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Doeon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mooseok Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Kulow A, Pérez J, Boudjehem R, Gautier E, Pairis S, Ould-Chikh S, Hazemann JL, da Silva JC. First X-ray spectral ptychography and resonant ptychographic computed tomography experiments at the SWING beamline from Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:867-876. [PMID: 38771779 PMCID: PMC11226156 DOI: 10.1107/s1600577524003229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and β, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup.
Collapse
Affiliation(s)
- Anico Kulow
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042Grenoble, France
| | - Javier Pérez
- Synchrotron SoleilL’Orme des Merisiers, Départementale 12891190Saint-AubinFrance
| | - Redhouane Boudjehem
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042Grenoble, France
| | - Eric Gautier
- SPINTEC, Univ. Grenoble Alpes, CEA, CNRS, 17 Rue des Martyrs, 38054Grenoble, France
| | - Sébastien Pairis
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042Grenoble, France
| | | | - Jean-Louis Hazemann
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042Grenoble, France
| | - Julio César da Silva
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042Grenoble, France
| |
Collapse
|
12
|
Kuppili VSC, Ball M, Batey D, Dodds K, Cipiccia S, Wanelik K, Fu R, Rau C, Harrison RJ. Nanoscale imaging of Fe-rich inclusions in single-crystal zircon using X-ray ptycho-tomography. Sci Rep 2024; 14:5139. [PMID: 38429500 PMCID: PMC10907758 DOI: 10.1038/s41598-024-55846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024] Open
Abstract
We apply X-ray ptycho-tomography to perform high-resolution, non-destructive, three-dimensional (3D) imaging of Fe-rich inclusions in paleomagnetically relevant materials (zircon single crystals from the Bishop Tuff ignimbrite). Correlative imaging using quantum diamond magnetic microscopy combined with X-ray fluorescence mapping was used to locate regions containing potential ferromagnetic remanence carriers. Ptycho-tomographic reconstructions with voxel sizes 85 nm and 21 nm were achievable across a field-of-view > 80 µm; voxel sizes as small as 5 nm were achievable over a limited field-of-view using local ptycho-tomography. Fe-rich inclusions 300 nm in size were clearly resolved. We estimate that particles as small as 100 nm-approaching single-domain threshold for magnetite-could be resolvable using this "dual-mode" methodology. Fe-rich inclusions (likely magnetite) are closely associated with apatite inclusions that have no visible connection to the exterior surface of the zircon (e.g., via intersecting cracks). There is no evidence of radiation damage, alteration, recrystallisation or deformation in the host zircon or apatite that could provide alternative pathways for Fe infiltration, indicating that magnetite and apatite grew separately as primary phases in the magma, that magnetite adhered to the surfaces of the apatite, and that the magnetite-coated apatite was then encapsulated as primary inclusions within the growing zircon. Rarer examples of Fe-rich inclusions entirely encapsulated by zircon are also observed. These observations support the presence of primary inclusions in relatively young and pristine zircon crystals. Combining magnetic and tomography results we deduce the presence of magnetic carriers that are in the optimal size range for carrying strong and stable paleomagnetic signals but that remain below the detection limits of even the highest-resolution X-ray tomography reconstructions. We recommend the use of focused ion beam nanotomography and/or correlative transmission electron microscopy to directly confirm the presence of primary magnetite in the sub 300 nm range as a necessary step in targeted paleomagnetic workflows.
Collapse
Affiliation(s)
- Venkata S C Kuppili
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada.
| | - Matthew Ball
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Darren Batey
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Kathryn Dodds
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Silvia Cipiccia
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower St, London, WC1E 6BT, UK
| | - Kaz Wanelik
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Roger Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Christoph Rau
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Richard J Harrison
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
13
|
Boudjehem R, Kulow A, Pérez J, Gautier E, Ould-chikh S, Pairis S, Hazemann JL, da Silva JC. ProSPyX: software for post-processing images of X-ray ptychography with spectral capabilities. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:399-408. [PMID: 38335147 PMCID: PMC10914158 DOI: 10.1107/s160057752400016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
X-ray ptychography is a coherent diffraction imaging technique based on acquiring multiple diffraction patterns obtained through the illumination of the sample at different partially overlapping probe positions. The diffraction patterns collected are used to retrieve the complex transmittivity function of the sample and the probe using a phase retrieval algorithm. Absorption or phase contrast images of the sample as well as the real and imaginary parts of the probe function can be obtained. Furthermore, X-ray ptychography can also provide spectral information of the sample from absorption or phase shift images by capturing multiple ptychographic projections at varying energies around the resonant energy of the element of interest. However, post-processing of the images is required to extract the spectra. To facilitate this, ProSPyX, a Python package that offers the analysis tools and a graphical user interface required to process spectral ptychography datasets, is presented. Using the PyQt5 Python open-source module for development and design, the software facilitates extraction of absorption and phase spectral information from spectral ptychographic datasets. It also saves the spectra in file formats compatible with other X-ray absorption spectroscopy data analysis software tools, streamlining integration into existing spectroscopic data analysis pipelines. To illustrate its capabilities, ProSPyX was applied to process the spectral ptychography dataset recently acquired on a nickel wire at the SWING beamline of the SOLEIL synchrotron.
Collapse
Affiliation(s)
- Redhouane Boudjehem
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042 Grenoble, France
| | - Anico Kulow
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042 Grenoble, France
| | | | - Eric Gautier
- SPINTEC, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, 38054 Grenoble, France
| | - Samy Ould-chikh
- King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Functional Materials, Thuwal 23955, Saudi Arabia
| | - Sébastien Pairis
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042 Grenoble, France
| | - Jean-Louis Hazemann
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042 Grenoble, France
| | - Julio César da Silva
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 Avenue des Martyrs, BP 166, 38042 Grenoble, France
| |
Collapse
|
14
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Hammarberg S, Dzhigaev D, Marçal LAB, Dagytė V, Björling A, Borgström MT, Wallentin J. Fast nanoscale imaging of strain in a multi-segment heterostructured nanowire with 2D Bragg ptychography. J Appl Crystallogr 2024; 57:60-70. [PMID: 38322717 PMCID: PMC10840305 DOI: 10.1107/s1600576723010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024] Open
Abstract
Developing semiconductor devices requires a fast and reliable source of strain information with high spatial resolution and strain sensitivity. This work investigates the strain in an axially heterostructured 180 nm-diameter GaInP nanowire with InP segments of varying lengths down to 9 nm, simultaneously probing both materials. Scanning X-ray diffraction (XRD) is compared with Bragg projection ptychography (BPP), a fast single-projection method. BPP offers a sufficient spatial resolution to reveal fine details within the largest segments, unlike scanning XRD. The spatial resolution affects the quantitative accuracy of the strain maps, where BPP shows much-improved agreement with an elastic 3D finite element model compared with scanning XRD. The sensitivity of BPP to small deviations from the Bragg condition is systematically investigated. The experimental confirmation of the model suggests that the large lattice mismatch of 1.52% is accommodated without defects.
Collapse
Affiliation(s)
- Susanna Hammarberg
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - Dmitry Dzhigaev
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - Lucas A. B. Marçal
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
- MAX IV Laboratory, Lund University, Lund 22100, Sweden
| | - Vilgailė Dagytė
- Solid State Physics and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | | | - Magnus T. Borgström
- Solid State Physics and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - Jesper Wallentin
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| |
Collapse
|
16
|
Lin A, Sheng P, Ning S, Zhang F. Rotational position error correction in ptychography. APPLIED OPTICS 2024; 63:804-809. [PMID: 38294394 DOI: 10.1364/ao.510143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Accurate determination of scan positions is essential for achieving high-quality reconstructions in ptychographic imaging. This study presents and demonstrates a method for determining the rotation angle of the scan pattern relative to the detector pixel array using diffraction data. The method is based on the Fourier-Mellin transform and cross-correlation calculation. It can correct rotation errors up to 60 deg. High-quality reconstructions were obtained for visible light and electron microscopy datasets, and intricate structures of samples can be revealed. We believe that this refinement method for rotary position errors can be valuable for improving the performance of ptychographic four-dimensional scanning transmission electron microscopy.
Collapse
|
17
|
Chen Y, Chou TC, Fang CH, Lu CY, Hsiao CN, Hsu WT, Chen CC. Direct observation of single-atom defects in monolayer two-dimensional materials by using electron ptychography at 200 kV acceleration voltage. Sci Rep 2024; 14:277. [PMID: 38167628 PMCID: PMC10761697 DOI: 10.1038/s41598-023-50784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Electron ptychography has emerged as a popular technology for high-resolution imaging by combining the high coherence of electron sources with the ultra-fast scanning electron coil. However, the limitations of conventional pixelated detectors, including poor dynamic range and slow data readout speeds, have posed restrictions in the past on conducting electron ptychography experiments. We used the Gatan STELA pixelated detector to capture sequential diffraction data of monolayer two-dimensional (2D) materials for ptychographic reconstruction. By using the pixelated detector and electron ptychography, we demonstrate the observation of the radiation damage at atomic resolution in Transition Metal Dichalcogenides (TMDs).
Collapse
Affiliation(s)
- Ying Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tzu-Chieh Chou
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ching-Hsing Fang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Cheng-Yi Lu
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Nan Hsiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Wei-Ting Hsu
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Chun Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
18
|
Lin D, Jiang Y, Deng J, Marin FS, Di ZW. Efficient boundary-guided scanning for high-resolution X-ray ptychography. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:129-135. [PMID: 38084593 PMCID: PMC10833418 DOI: 10.1107/s1600577523009657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 01/09/2024]
Abstract
In the realm of X-ray ptychography experiments, a considerable amount of ptychography scans are typically performed within a field of view encompassing the target sample. While it is crucial to obtain overlapping scans in small increments over the region of interest for achieving high-resolution sample reconstruction, a significant number of these scans often redundantly measure the empty background within the wide field of view. To address this inefficiency, an innovative algorithm is proposed that introduces automatic guidance for data acquisition. The algorithm first directs the scan point to actively search for the object of interest within the field of view. Subsequently, it intelligently scans along the perimeter of the sample, strategically acquiring measurements exclusively within the boundary of the region of interest. By employing this approach, a reduction in the number of measurements required to obtain high-resolution reconstruction images is demonstrated, as compared with conventional raster scanning methods. Furthermore, the automatic guidance provided by the algorithm offers the added advantage of saving valuable time during the reconstruction process. Through practical implementation on real experiments, these findings showcase the efficacy of the proposed algorithm in enhancing the efficiency and accuracy of X-ray ptychography experiments. This novel approach holds immense potential for advancing sample analysis and imaging techniques in various scientific disciplines.
Collapse
Affiliation(s)
- Dergan Lin
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yi Jiang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Junjing Deng
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Fabricio S. Marin
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Zichao Wendy Di
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
19
|
Pelz PM, Griffin SM, Stonemeyer S, Popple D, DeVyldere H, Ercius P, Zettl A, Scott MC, Ophus C. Solving complex nanostructures with ptychographic atomic electron tomography. Nat Commun 2023; 14:7906. [PMID: 38036516 PMCID: PMC10689721 DOI: 10.1038/s41467-023-43634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission electron microscopy (TEM) is essential for determining atomic scale structures in structural biology and materials science. In structural biology, three-dimensional structures of proteins are routinely determined from thousands of identical particles using phase-contrast TEM. In materials science, three-dimensional atomic structures of complex nanomaterials have been determined using atomic electron tomography (AET). However, neither of these methods can determine the three-dimensional atomic structure of heterogeneous nanomaterials containing light elements. Here, we perform ptychographic electron tomography from 34.5 million diffraction patterns to reconstruct an atomic resolution tilt series of a double wall-carbon nanotube (DW-CNT) encapsulating a complex ZrTe sandwich structure. Class averaging the resulting tilt series images and subpixel localization of the atomic peaks reveals a Zr11Te50 structure containing a previously unobserved ZrTe2 phase in the core. The experimental realization of atomic resolution ptychographic electron tomography will allow for the structural determination of a wide range of beam-sensitive nanomaterials containing light elements.
Collapse
Affiliation(s)
- Philipp M Pelz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich Alexander-Universität Erlangen-Nürnberg, IZNF, 91058, Erlangen, Germany.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Sinéad M Griffin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Scott Stonemeyer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Derek Popple
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Hannah DeVyldere
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Zettl
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Mary C Scott
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Colin Ophus
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Takahashi Y, Abe M, Uematsu H, Takazawa S, Sasaki Y, Ishiguro N, Ozaki K, Honjo Y, Nishino H, Kobayashi K, Hiraki TN, Joti Y, Hatsui T. High-resolution and high-sensitivity X-ray ptychographic coherent diffraction imaging using the CITIUS detector. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:989-994. [PMID: 37526992 PMCID: PMC10481278 DOI: 10.1107/s1600577523004897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 08/03/2023]
Abstract
Ptychographic coherent diffraction imaging (PCDI) is a synchrotron X-ray microscopy technique that provides high spatial resolution and a wide field of view. To improve the performance of PCDI, the performance of the synchrotron radiation source and imaging detector should be improved. In this study, ptychographic diffraction pattern measurements using the CITIUS high-speed X-ray image detector and the corresponding image reconstruction are reported. X-rays with an energy of 6.5 keV were focused by total reflection focusing mirrors, and a flux of ∼2.6 × 1010 photons s-1 was obtained at the sample plane. Diffraction intensity data were collected at up to ∼250 Mcounts s-1 pixel-1 without saturation of the detector. Measurements of tantalum test charts and silica particles and the reconstruction of phase images were performed. A resolution of ∼10 nm and a phase sensitivity of ∼0.01 rad were obtained. The CITIUS detector can be applied to the PCDI observation of various samples using low-emittance synchrotron radiation sources and to the stability evaluation of light sources.
Collapse
Affiliation(s)
- Yukio Takahashi
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Abe
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Hideshi Uematsu
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Shuntaro Takazawa
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Yuhei Sasaki
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Nozomu Ishiguro
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kyosuke Ozaki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiaki Honjo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Haruki Nishino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kazuo Kobayashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
21
|
Penagos Molina DS, Loetgering L, Eschen W, Limpert J, Rothhardt J. Broadband ptychography using curved wavefront illumination. OPTICS EXPRESS 2023; 31:26958-26968. [PMID: 37710544 DOI: 10.1364/oe.495197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
We examine the interplay between spectral bandwidth and illumination curvature in ptychography. By tailoring the divergence of the illumination, broader spectral bandwidths can be tolerated without requiring algorithmic modifications to the forward model. In particular, a strong wavefront curvature transitions a far-field diffraction geometry to an effectively near-field one, which is less affected by temporal coherence effects. The relaxed temporal coherence requirements allow for leveraging wider spectral bandwidths and larger illumination spots. Our findings open up new avenues towards utilizing pink and broadband beams for increased flux and throughput at both synchrotron facilities and lab-scale beamlines.
Collapse
|
22
|
Abe M, Ishiguro N, Uematsu H, Takazawa S, Kaneko F, Takahashi Y. X-ray ptychographic and fluorescence microscopy using virtual single-pixel imaging based deconvolution with accurate probe images. OPTICS EXPRESS 2023; 31:26027-26039. [PMID: 37710473 DOI: 10.1364/oe.495733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/15/2023] [Indexed: 09/16/2023]
Abstract
Simultaneous measurement of X-ray ptychography and fluorescence microscopy allows high-resolution and high-sensitivity observations of the microstructure and trace-element distribution of a sample. In this paper, we propose a method for improving scanning fluorescence X-ray microscopy (SFXM) images, in which the SFXM image is deconvolved via virtual single-pixel imaging using different probe images for each scanning point obtained by X-ray ptychographic reconstruction. Numerical simulations confirmed that this method can increase the spatial resolution while suppressing artifacts caused by probe imprecision, e.g., probe position errors and wavefront changes. The method also worked well in synchrotron radiation experiments to increase the spatial resolution and was applied to the observation of S element maps of ZnS particles.
Collapse
|
23
|
Lu H, Odstrčil M, Pooley C, Biller J, Mebonia M, He G, Praeger M, Juschkin L, Frey J, Brocklesby W. Characterisation of engineered defects in extreme ultraviolet mirror substrates using lab-scale extreme ultraviolet reflection ptychography. Ultramicroscopy 2023; 249:113720. [PMID: 37004492 DOI: 10.1016/j.ultramic.2023.113720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
Ptychography is a lensless imaging technique that is aberration-free and capable of imaging both the amplitude and the phase of radiation reflected or transmitted from an object using iterative algorithms. Working with extreme ultraviolet (EUV) light, ptychography can provide better resolution than conventional optical microscopy and deeper penetration than scanning electron microscope. As a compact lab-scale EUV light sources, high harmonic generation meets the high coherence requirement of ptychography and gives more flexibilities in both budget and experimental time compared to synchrotrons. The ability to measure phase makes reflection-mode ptychography a good choice for characterising both the surface topography and the internal structural changes in EUV multilayer mirrors. This paper describes the use of reflection-mode ptychography with a lab-scale high harmonic generation based EUV light source to perform quantitative measurement of the amplitude and phase reflection from EUV multilayer mirrors with engineered substrate defects. Using EUV light at 29.6nm from a tabletop high harmonic generation light source, a lateral resolution down to ∼88nm and a phase resolution of 0.08rad (equivalent to topographic height variation of 0.27nm) are achieved. The effect of surface distortion and roughness on EUV reflectivity is compared to topographic properties of the mirror defects measured using both atomic force microscopy and scanning transmission electron microscopy. Modelling of reflection properties from multilayer mirrors is used to predict the potential of a combination of on-resonance, actinic ptychographic imaging at 13.5nm and atomic force microscopy for characterising the changes in multilayered structures.
Collapse
|
24
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
25
|
Pei X, Zhou L, Huang C, Boyce M, Kim JS, Liberti E, Hu Y, Sasaki T, Nellist PD, Zhang P, Stuart DI, Kirkland AI, Wang P. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer. Nat Commun 2023; 14:3027. [PMID: 37230988 PMCID: PMC10212999 DOI: 10.1038/s41467-023-38268-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in cryogenic transmission electron microscopy have revolutionised the determination of many macromolecular structures at atomic or near-atomic resolution. This method is based on conventional defocused phase contrast imaging. However, it has limitations of weaker contrast for small biological molecules embedded in vitreous ice, in comparison with cryo-ptychography, which shows increased contrast. Here we report a single-particle analysis based on the use of ptychographic reconstruction data, demonstrating that three dimensional reconstructions with a wide information transfer bandwidth can be recovered by Fourier domain synthesis. Our work suggests future applications in otherwise challenging single particle analyses, including small macromolecules and heterogeneous or flexible particles. In addition structure determination in situ within cells without the requirement for protein purification and expression may be possible.
Collapse
Affiliation(s)
- Xudong Pei
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Liqi Zhou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
- Department of Physics, University of Warwick, Coventry, UK
| | - Chen Huang
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Mark Boyce
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Judy S Kim
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Materials, University of Oxford, Oxford, UK
| | - Emanuela Liberti
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Yiming Hu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | | | | | - Peijun Zhang
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - David I Stuart
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Angus I Kirkland
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK.
- Department of Materials, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Department of Physics, University of Warwick, Coventry, UK.
| |
Collapse
|
26
|
Loetgering L, Du M, Boonzajer Flaes D, Aidukas T, Wechsler F, Penagos Molina DS, Rose M, Pelekanidis A, Eschen W, Hess J, Wilhein T, Heintzmann R, Rothhardt J, Witte S. PtyLab.m/py/jl: a cross-platform, open-source inverse modeling toolbox for conventional and Fourier ptychography. OPTICS EXPRESS 2023; 31:13763-13797. [PMID: 37157257 DOI: 10.1364/oe.485370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Conventional (CP) and Fourier (FP) ptychography have emerged as versatile quantitative phase imaging techniques. While the main application cases for each technique are different, namely lens-less short wavelength imaging for CP and lens-based visible light imaging for FP, both methods share a common algorithmic ground. CP and FP have in part independently evolved to include experimentally robust forward models and inversion techniques. This separation has resulted in a plethora of algorithmic extensions, some of which have not crossed the boundary from one modality to the other. Here, we present an open source, cross-platform software, called PtyLab, enabling both CP and FP data analysis in a unified framework. With this framework, we aim to facilitate and accelerate cross-pollination between the two techniques. Moreover, the availability in Matlab, Python, and Julia will set a low barrier to enter each field.
Collapse
|
27
|
Pham M, Yuan Y, Rana A, Osher S, Miao J. Accurate real space iterative reconstruction (RESIRE) algorithm for tomography. Sci Rep 2023; 13:5624. [PMID: 37024554 PMCID: PMC10079852 DOI: 10.1038/s41598-023-31124-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Tomography has made a revolutionary impact on the physical, biological and medical sciences. The mathematical foundation of tomography is to reconstruct a three-dimensional (3D) object from a set of two-dimensional (2D) projections. As the number of projections that can be measured from a sample is usually limited by the tolerable radiation dose and/or the geometric constraint on the tilt range, a main challenge in tomography is to achieve the best possible 3D reconstruction from a limited number of projections with noise. Over the years, a number of tomographic reconstruction methods have been developed including direct inversion, real-space, and Fourier-based iterative algorithms. Here, we report the development of a real-space iterative reconstruction (RESIRE) algorithm for accurate tomographic reconstruction. RESIRE iterates between the update of a reconstructed 3D object and the measured projections using a forward and back projection step. The forward projection step is implemented by the Fourier slice theorem or the Radon transform, and the back projection step by a linear transformation. Our numerical and experimental results demonstrate that RESIRE performs more accurate 3D reconstructions than other existing tomographic algorithms, when there are a limited number of projections with noise. Furthermore, RESIRE can be used to reconstruct the 3D structure of extended objects as demonstrated by the determination of the 3D atomic structure of an amorphous Ta thin film. We expect that RESIRE can be widely employed in the tomography applications in different fields. Finally, to make the method accessible to the general user community, the MATLAB source code of RESIRE and all the simulated and experimental data are available at https://zenodo.org/record/7273314 .
Collapse
Affiliation(s)
- Minh Pham
- Department of Mathematics, University of California, Los Angeles, CA, 90095, USA.
| | - Yakun Yuan
- Department of Physics and Astronomy, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arjun Rana
- Department of Physics and Astronomy, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Stanley Osher
- Department of Mathematics, University of California, Los Angeles, CA, 90095, USA
| | - Jianwei Miao
- Department of Physics and Astronomy, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Sha H, Cui J, Li J, Zhang Y, Yang W, Li Y, Yu R. Ptychographic measurements of varying size and shape along zeolite channels. SCIENCE ADVANCES 2023; 9:eadf1151. [PMID: 36921047 PMCID: PMC10017048 DOI: 10.1126/sciadv.adf1151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/15/2023] [Indexed: 06/12/2023]
Abstract
Sub-angstrom resolution imaging of porous materials like zeolites is important to reveal their structure-property relationships involved in ion exchange, molecule adsorption and separation, and catalysis. Using multislice electron ptychography, we successfully measured the atomic structure of zeolite at sub-angstrom lateral resolution for 100-nanometer-thick samples. Both lateral and depth deformations of the straight channels are mapped, showing the three-dimensional structural inhomogeneity and flexibility. Since most zeolites in industrial applications are usually tens to hundreds of nanometers thick, the sub-angstrom resolution imaging and accurate measurements of depth-dependent local structures with electron ptychography at low-dose condition will find wide applications in porous materials close to their industrially relevant conditions.
Collapse
Affiliation(s)
- Haozhi Sha
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Jizhe Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Jialu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxuan Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Wenfeng Yang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Rana A, Liao CT, Iacocca E, Zou J, Pham M, Lu X, Subramanian EEC, Lo YH, Ryan SA, Bevis CS, Karl RM, Glaid AJ, Rable J, Mahale P, Hirst J, Ostler T, Liu W, O'Leary CM, Yu YS, Bustillo K, Ohldag H, Shapiro DA, Yazdi S, Mallouk TE, Osher SJ, Kapteyn HC, Crespi VH, Badding JV, Tserkovnyak Y, Murnane MM, Miao J. Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice. NATURE NANOTECHNOLOGY 2023; 18:227-232. [PMID: 36690739 DOI: 10.1038/s41565-022-01311-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/13/2022] [Indexed: 05/21/2023]
Abstract
Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.
Collapse
Affiliation(s)
- Arjun Rana
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Chen-Ting Liao
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Ezio Iacocca
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
- Center for Magnetism and Magnetic Nanostructures, University of Colorado, Colorado Springs, CO, USA
| | - Ji Zou
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Minh Pham
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xingyuan Lu
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Emma-Elizabeth Cating Subramanian
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Yuan Hung Lo
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Sinéad A Ryan
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Charles S Bevis
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Robert M Karl
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Andrew J Glaid
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Jeffrey Rable
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Pratibha Mahale
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Hirst
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Thomas Ostler
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
- Department of Physics and Mathematics, University of Hull, Hull, UK
| | - William Liu
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Colum M O'Leary
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Young-Sang Yu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Karen Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hendrik Ohldag
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Shapiro
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, USA
| | - Thomas E Mallouk
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley J Osher
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Henry C Kapteyn
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Vincent H Crespi
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - John V Badding
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Yaroslav Tserkovnyak
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret M Murnane
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Jianwei Miao
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA.
| |
Collapse
|
30
|
Wang T, Jiang S, Song P, Wang R, Yang L, Zhang T, Zheng G. Optical ptychography for biomedical imaging: recent progress and future directions [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:489-532. [PMID: 36874495 PMCID: PMC9979669 DOI: 10.1364/boe.480685] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 05/25/2023]
Abstract
Ptychography is an enabling microscopy technique for both fundamental and applied sciences. In the past decade, it has become an indispensable imaging tool in most X-ray synchrotrons and national laboratories worldwide. However, ptychography's limited resolution and throughput in the visible light regime have prevented its wide adoption in biomedical research. Recent developments in this technique have resolved these issues and offer turnkey solutions for high-throughput optical imaging with minimum hardware modifications. The demonstrated imaging throughput is now greater than that of a high-end whole slide scanner. In this review, we discuss the basic principle of ptychography and summarize the main milestones of its development. Different ptychographic implementations are categorized into four groups based on their lensless/lens-based configurations and coded-illumination/coded-detection operations. We also highlight the related biomedical applications, including digital pathology, drug screening, urinalysis, blood analysis, cytometric analysis, rare cell screening, cell culture monitoring, cell and tissue imaging in 2D and 3D, polarimetric analysis, among others. Ptychography for high-throughput optical imaging, currently in its early stages, will continue to improve in performance and expand in its applications. We conclude this review article by pointing out several directions for its future development.
Collapse
Affiliation(s)
- Tianbo Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Liming Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Terrance Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
31
|
Multimodal imaging of cubic Cu 2O@Au nanocage formation via galvanic replacement using X-ray ptychography and nano diffraction. Sci Rep 2023; 13:318. [PMID: 36609430 PMCID: PMC9823101 DOI: 10.1038/s41598-022-26877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Being able to observe the formation of multi-material nanostructures in situ, simultaneously from a morphological and crystallographic perspective, is a challenging task. Yet, this is essential for the fabrication of nanomaterials with well-controlled composition exposing the most active crystallographic surfaces, as required for highly active catalysts in energy applications. To demonstrate how X-ray ptychography can be combined with scanning nanoprobe diffraction to realize multimodal imaging, we study growing Cu2O nanocubes and their transformation into Au nanocages. During the growth of nanocubes at a temperature of 138 °C, we measure the crystal structure of an individual nanoparticle and determine the presence of (100) crystallographic facets at its surface. We subsequently visualize the transformation of Cu2O into Au nanocages by galvanic replacement. The nanocubes interior homogeneously dissolves while smaller Au particles grow on their surface and later coalesce to form porous nanocages. We finally determine the amount of radiation damage making use of the quantitative phase images. We find that both the total surface dose as well as the dose rate imparted by the X-ray beam trigger additional deposition of Au onto the nanocages. Our multimodal approach can benefit in-solution imaging of multi-material nanostructures in many related fields.
Collapse
|
32
|
Chang DJ, O'Leary CM, Su C, Jacobs DA, Kahn S, Zettl A, Ciston J, Ercius P, Miao J. Deep-Learning Electron Diffractive Imaging. PHYSICAL REVIEW LETTERS 2023; 130:016101. [PMID: 36669218 DOI: 10.1103/physrevlett.130.016101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We report the development of deep-learning coherent electron diffractive imaging at subangstrom resolution using convolutional neural networks (CNNs) trained with only simulated data. We experimentally demonstrate this method by applying the trained CNNs to recover the phase images from electron diffraction patterns of twisted hexagonal boron nitride, monolayer graphene, and a gold nanoparticle with comparable quality to those reconstructed by a conventional ptychographic algorithm. Fourier ring correlation between the CNN and ptychographic images indicates the achievement of a resolution in the range of 0.70 and 0.55 Å. We further develop CNNs to recover the probe function from the experimental data. The ability to replace iterative algorithms with CNNs and perform real-time atomic imaging from coherent diffraction patterns is expected to find applications in the physical and biological sciences.
Collapse
Affiliation(s)
- Dillan J Chang
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Colum M O'Leary
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Cong Su
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720, USA
| | - Daniel A Jacobs
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Salman Kahn
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720, USA
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720, USA
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
33
|
Yokomae S, Takeo Y, Shimamura T, Senba Y, Kishimoto H, Ohashi H, Mimura H. Abrasive slurry jet machining system using polyurethane@silica core-shell particles for internal surfaces of axisymmetric x-ray mirrors. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:015106. [PMID: 36725599 DOI: 10.1063/5.0125242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/11/2022] [Indexed: 06/18/2023]
Abstract
Abrasive machining has been used for inner surface processing of various hollow components. In this study, we applied an in-air fluid jet as a precision machining method for the inner surface of an axisymmetric x-ray mirror whose inner diameter was less than 10 mm. We employed an abrasive with a polyurethane@silica core-shell structure, which has a low density of about 1.2 g/cm3 and a relatively large particle size of about 15 µm. By using this abrasive, a practical removal rate and a smooth machined surface were simultaneously obtained. We performed figure corrections for an axisymmetric mirror and improved the circumferential figure accuracy to a sub-10 nm root mean square level. To evaluate the machining performance in the longitudinal direction of the ellipsoidal surface, we also performed periodic figure fabrication on the inner surface of a 114 mm-long nickel ellipsoidal mirror. X-ray ptychography, an optical phase retrieval method, was also employed as a three-dimensional figure measurement technique of the mirror. The wavefield of the x-ray beam focused by the processed ellipsoidal mirror was observed with the ptychographic system at SPring-8, a synchrotron radiation facility. The retrieval calculations for the wavefront error confirmed that a sinusoidal waveform with a period of 12 mm was fabricated on the mirror surface. These experimental results suggest that a nanoscale figure fabrication cycle for the inner surface consisting of jet machining and wavefront measurement has been successfully constructed. We expect this technique to be utilized in the fabrication of error-free optical mirrors and various parts having hollow shapes.
Collapse
Affiliation(s)
- Shunya Yokomae
- Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yoko Takeo
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takenori Shimamura
- Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yasunori Senba
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hikaru Kishimoto
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hidekazu Mimura
- Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
34
|
Quinn PD, Cacho-Nerin F, Gomez-Gonzalez MA, Parker JE, Poon T, Walker JM. Differential phase contrast for quantitative imaging and spectro-microscopy at a nanoprobe beamline. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:200-207. [PMID: 36601938 PMCID: PMC9814065 DOI: 10.1107/s1600577522010633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/04/2022] [Indexed: 06/13/2023]
Abstract
The interaction of a focused X-ray beam with a sample in a scanning probe experiment can provide a variety of information about the interaction volume. In many scanning probe experiments X-ray fluorescence (XRF) is supplemented with measurements of the transmitted or scattered intensity using a pixelated detector. The automated extraction of different signals from an area pixelated detector is described, in particular the methodology for extracting differential phase contrast (DPC) is demonstrated and different processing methods are compared across a range of samples. The phase shift of the transmitted X-ray beam by the sample, extracted from DPC, is also compared with ptychography measurements to provide a qualitative and quantitative comparison. While ptychography produces a superior image, DPC can offer a simple, flexible method for phase contrast imaging which can provide fast results and feedback during an experiment; furthermore, for many science problems, such as registration of XRF in a lighter matrix, DPC can provide sufficient information to meet the experimental aims. As the DPC technique is a quantitative measurement, it can be expanded to spectroscopic studies and a demonstration of DPC for spectro-microscopy measurements is presented. Where ptychography can separate the absorption and phase shifts by the sample, quantitative interpretation of a DPC image or spectro-microscopy signal can only be performed directly when absorption is negligible or where the absorption contribution is known and the contributions can be fitted.
Collapse
Affiliation(s)
- Paul D. Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Fernando Cacho-Nerin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Miguel A. Gomez-Gonzalez
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Julia E. Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Timothy Poon
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Jessica M. Walker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
35
|
Miao J, Murnane MM. A closer look at spin textures. NATURE NANOTECHNOLOGY 2023; 18:1-2. [PMID: 36418490 DOI: 10.1038/s41565-022-01262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA.
- STROBE National Science Foundation Science & Technology Center, University of Colorado, Boulder, CO, USA.
| | - Margaret M Murnane
- STROBE National Science Foundation Science & Technology Center, University of Colorado, Boulder, CO, USA
- Department of Physics and JILA, University of Colorado and NIST, Boulder, CO, USA
| |
Collapse
|
36
|
Li G, Zhang H, Han Y. 4D-STEM Ptychography for Electron-Beam-Sensitive Materials. ACS CENTRAL SCIENCE 2022; 8:1579-1588. [PMID: 36589892 PMCID: PMC9801507 DOI: 10.1021/acscentsci.2c01137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 05/26/2023]
Abstract
Recent advances in high-speed pixelated electron detectors have substantially facilitated the implementation of four-dimensional scanning transmission electron microscopy (4D-STEM). A critical application of 4D-STEM is electron ptychography, which reveals the atomic structure of a specimen by reconstructing its transmission function from redundant convergent-beam electron diffraction patterns. Although 4D-STEM ptychography offers many advantages over conventional imaging modes, this emerging technique has not been fully applied to materials highly sensitive to electron beams. In this Outlook, we introduce the fundamentals of 4D-STEM ptychography, focusing on data collection and processing methods, and present the current applications of 4D-STEM ptychography in various materials. Next, we discuss the potential advantages of imaging electron-beam-sensitive materials using 4D-STEM ptychography and explore its feasibility by performing simulations and experiments on a zeolite material. The preliminary results demonstrate that, at the low electron dose required to preserve the zeolite structure, 4D-STEM ptychography can reliably provide higher resolution and greater tolerance to the specimen thickness and probe defocus as compared to existing imaging techniques. In the final section, we discuss the challenges and possible strategies to further reduce the electron dose for 4D-STEM ptychography. If successful, it will be a game-changer for imaging extremely sensitive materials, such as metal-organic frameworks, hybrid halide perovskites, and supramolecular crystals.
Collapse
Affiliation(s)
| | | | - Yu Han
- Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
He X, Pan X, Tao H, Liu C, Zhu J. Single-shot measurement of the near-field and focal spot profiles of a 351 nm laser beam for SGII-upgraded facility with multiple-focal-plane constraint coherent modulation imaging. OPTICS EXPRESS 2022; 30:42861-42874. [PMID: 36522997 DOI: 10.1364/oe.474050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Inertial confinement fusion (ICF) places an urgent demand for precise measurement of 351 nm (3ω) laser beam parameters when performing physical experiments on high-power laser facilities. The near-field and focal spot distributions are the utmost important parameters to characterize the quality of the laser beam. Coherent modulation imaging (CMI) is a promising technique for online laser beam measurement, however, it fails to reconstruct the near-field and focal spot profiles when it is used to measure the beam quality of a 351 nm laser beam for SGII-upgrade facility. To solve this problem, a novel CMI reconstruction algorithm is proposed in this work, and the performance of the algorithm in 3ω laser beam measurement can be obviously improved. By adopting multiple-virtual-focal-plane constraint in the proposed algorithm, the near-field and focal spot profiles of the 3ω laser beam can be successfully reconstructed. Experiments have been conducted on SGII-upgrade facility to verify the feasibility of the proposed method.
Collapse
|
38
|
Wu Q, Soppa K, Müller E, Müller J, Odstrcil M, Tsai EHR, Späth A, Holler M, Guizar-Sicairos M, Butz B, Fink RH, Watts B. A modern look at a medieval bilayer metal leaf: nanotomography of Zwischgold. NANOSCALE 2022; 14:15165-15180. [PMID: 36214128 PMCID: PMC9585527 DOI: 10.1039/d2nr03367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Many European sculptures and altarpieces from the Middle Ages were decorated with Zwischgold, a bilayer metal leaf with an ultra-thin gold face backed by silver. Zwischgold corrodes quickly when exposed to air, causing the surface of the artefact to darken and lose gloss. The conservation of such Zwischgold applied artefacts has been an obstinate problem. We have acquired quantitative, 3D nanoscale images of Zwischgold samples from 15th century artefacts and modern materials using ptychographic X-ray computed tomography (PXCT), a recently developed coherent diffractive imaging technique, to investigate the leaf structure and chemical state of Zwischgold. The measurements clearly demonstrate decreasing density (increasing porosity) of the leaf materials and their corrosion products, as well as delamination of the leaves from their substrate. Each of these effects speak to typically observed issues in the conservation of such Zwischgold applied artefacts. Further, a rare variant of Zwischgold that contains extremely thin multiple gold layers and an overlapping phenomenon of Zwischgold with other metal leaves are observed through PXCT. As supportive data, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray analysis (EDX) were performed on the medieval samples.
Collapse
Affiliation(s)
- Qing Wu
- University of Zurich (UZH), Rämistrasse 73, 8006 Zurich, Switzerland
- TH Köln - University of Applied Sciences, Ubierring 40, 50678 Köln, Germany.
| | - Karolina Soppa
- Bern University of Applied Sciences (BUAS), Fellerstrasse 11, 3027 Bern, Switzerland.
| | - Elisabeth Müller
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
| | - Julian Müller
- Micro- and Nanoanalytics Group, Universität Siegen, Paul-Bonatz-Strasse 9-11, 57076 Siegen, Germany.
| | - Michal Odstrcil
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
- Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447 Oberkochen, Germany
| | - Esther Hsiao Rho Tsai
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
- Brookhaven National Laboratory, Upton, New York 11973, U.S.A.
| | - Andreas Späth
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany.
- Institut für Nanotechnologie und korrelative Mikroskopie (INAM), Äußere Nürnberger Strasse 62, 91301 Forchheim, Germany
| | - Mirko Holler
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
| | | | - Benjamin Butz
- Micro- and Nanoanalytics Group, Universität Siegen, Paul-Bonatz-Strasse 9-11, 57076 Siegen, Germany.
| | - Rainer H Fink
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Benjamin Watts
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
| |
Collapse
|
39
|
Grote L, Seyrich M, Döhrmann R, Harouna-Mayer SY, Mancini F, Kaziukenas E, Fernandez-Cuesta I, A Zito C, Vasylieva O, Wittwer F, Odstrčzil M, Mogos N, Landmann M, Schroer CG, Koziej D. Imaging Cu 2O nanocube hollowing in solution by quantitative in situ X-ray ptychography. Nat Commun 2022; 13:4971. [PMID: 36038564 PMCID: PMC9424245 DOI: 10.1038/s41467-022-32373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding morphological changes of nanoparticles in solution is essential to tailor the functionality of devices used in energy generation and storage. However, we lack experimental methods that can visualize these processes in solution, or in electrolyte, and provide three-dimensional information. Here, we show how X-ray ptychography enables in situ nano-imaging of the formation and hollowing of nanoparticles in solution at 155 °C. We simultaneously image the growth of about 100 nanocubes with a spatial resolution of 66 nm. The quantitative phase images give access to the third dimension, allowing to additionally study particle thickness. We reveal that the substrate hinders their out-of-plane growth, thus the nanocubes are in fact nanocuboids. Moreover, we observe that the reduction of Cu2O to Cu triggers the hollowing of the nanocuboids. We critically assess the interaction of X-rays with the liquid sample. Our method enables detailed in-solution imaging for a wide range of reaction conditions.
Collapse
Affiliation(s)
- Lukas Grote
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Martin Seyrich
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Ralph Döhrmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Sani Y Harouna-Mayer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Federica Mancini
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Emilis Kaziukenas
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Irene Fernandez-Cuesta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Cecilia A Zito
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- São Paulo State University UNESP, Rua Cristóvão Colombo, 2265, 15054000, São José do Rio Preto, Brazil
| | - Olga Vasylieva
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Felix Wittwer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Michal Odstrčzil
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
- Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447, Oberkochen, Germany
| | - Natnael Mogos
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Mirko Landmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Christian G Schroer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
40
|
Brooks NJ, Wang B, Binnie I, Tanksalvala M, Esashi Y, Knobloch JL, Nguyen QLD, McBennett B, Jenkins NW, Gui G, Zhang Z, Kapteyn HC, Murnane MM, Bevis CS. Temporal and spectral multiplexing for EUV multibeam ptychography with a high harmonic light source. OPTICS EXPRESS 2022; 30:30331-30346. [PMID: 36242139 DOI: 10.1364/oe.458955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources. This technique enables increased data throughput using a simple experimental implementation and with high photon efficiency.
Collapse
|
41
|
Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures. Nat Commun 2022; 13:4787. [PMID: 35970924 PMCID: PMC9378626 DOI: 10.1038/s41467-022-32548-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Three dimensional scaffolded DNA origami with inorganic nanoparticles has been used to create tailored multidimensional nanostructures. However, the image contrast of DNA is poorer than those of the heavy nanoparticles in conventional transmission electron microscopy at high defocus so that the biological and non-biological components in 3D scaffolds cannot be simultaneously resolved using tomography of samples in a native state. We demonstrate the use of electron ptychography to recover high contrast phase information from all components in a DNA origami scaffold without staining. We further quantitatively evaluate the enhancement of contrast in comparison with conventional transmission electron microscopy. In addition, We show that for ptychography post-reconstruction focusing simplifies the workflow and reduces electron dose and beam damage. The authors demonstrate electron ptychographic computed tomography by simultaneously recording high contrast data from both the organic- and inorganic components in a 3D DNA-origami framework hybrid nanostructure.
Collapse
|
42
|
Vacek E, Preissner C, Deng J, Jacobsen C. Fast scanning in x-ray microscopy: the effects of offset in the central stop position. APPLIED OPTICS 2022; 61:6811-6818. [PMID: 36255769 DOI: 10.1364/ao.469319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
Scanning of lightweight circular diffractive optics, separate from central stops and apertures, is emerging as an approach to exploit advances in synchrotron x-ray sources. We consider the effects in a scanning microscope of offsets between the optic and its central stop and find that scan ranges of up to about half the diameter of the optic are possible with only about a 10% increase in the focal spot width. For large scanning ranges, we present criteria for the working distance between the last aperture and the specimen to be imaged.
Collapse
|
43
|
Ishiguro N, Takahashi Y. Method for restoration of X-ray absorption fine structure in sparse spectroscopic ptychography. J Appl Crystallogr 2022. [DOI: 10.1107/s1600576722006380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The spectroscopic ptychography method, a technique combining X-ray ptychography imaging and X-ray absorption spectroscopy, is one of the most promising and powerful tools for studying the chemical states and morphological structures of bulk materials at high resolutions. However, this technique still requires long measurement periods because of insufficient coherent X-ray intensity. Although the improvements in hardware represent a critical solution, breakthroughs in software for experiments and analyses are also required. This paper proposes a novel method for restoring the spectrum structures from spectroscopic ptychography measurements with reduced energy points, by utilizing the Kramers–Kronig relationship. First, a numerical simulation is performed of the spectrum restoration for the extended X-ray absorption fine structure (EXAFS) oscillation from the thinned theoretical absorption and phase spectra. Then, this algorithm is extended by binning the noise removal to handle actual experimental spectral data. Spectrum restoration for the experimental EXAFS data obtained from spectroscopic ptychography measurements is also successfully demonstrated. The proposed restoration will help shorten the time required for spectroscopic ptychography single measurements and increase the throughput of the entire experiment under limited time resources.
Collapse
|
44
|
Salinas F, Solís-Prosser MA. Morphological variations to a ptychographic algorithm. APPLIED OPTICS 2022; 61:6561-6570. [PMID: 36255881 DOI: 10.1364/ao.462173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/10/2022] [Indexed: 06/16/2023]
Abstract
Ptychography is a technique widely used in microscopy for achieving high-resolution imaging. This method relies on computational processing of images gathered from diffraction patterns produced by several partial illuminations of a sample. We numerically studied the effect of using different shapes for illuminating the aforementioned sample: convex shapes, such as circles and regular polygons, and unconnected shapes that resemble a QR code. Our results suggest that the use of unconnected shapes seems to outperform convex shapes in terms of convergence and, in some cases, accuracy.
Collapse
|
45
|
Bluschke M, Basak R, Barbour A, Warner AN, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A. Imaging mesoscopic antiferromagnetic spin textures in the dilute limit from single-geometry resonant coherent x-ray diffraction. SCIENCE ADVANCES 2022; 8:eabn6882. [PMID: 35857841 PMCID: PMC9299548 DOI: 10.1126/sciadv.abn6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection and manipulation of antiferromagnetic domains and topological antiferromagnetic textures are of central interest to solid-state physics. A fundamental step is identifying tools to probe the mesoscopic texture of an antiferromagnetic order parameter. In this work, we demonstrate that Bragg coherent diffractive imaging can be extended to study the mesoscopic texture of an antiferromagnetic order parameter using resonant magnetic x-ray scattering. We study the onset of the antiferromagnet transition in PrNiO3, focusing on a temperature regime in which the antiferromagnetic domains are dilute in the beam spot and the coherent diffraction pattern modulating the antiferromagnetic peak is greatly simplified. We demonstrate that it is possible to extract the arrangements and sizes of these domains from single diffraction patterns and show that the approach could be extended to a time-structured light source to study the motion of dilute domains or the motion of topological defects in an antiferromagnetic spin texture.
Collapse
Affiliation(s)
- Martin Bluschke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Rourav Basak
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Andi Barbour
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ashley N Warner
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrin Fürsich
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Stuart Wilkins
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, Concordia College, Moorhead, MN 56562, USA
| | - Georg Christiani
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Gennady Logvenov
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Matteo Minola
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Claudio Mazzoli
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eva Benckiser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Alex Frano
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Deng J, Yao Y, Jiang Y, Chen S, Mooney TM, Klug JA, Marin FS, Roehrig C, Yue K, Preissner C, Cai Z, Lai B, Vogt S. High-resolution ptychographic imaging enabled by high-speed multi-pass scanning. OPTICS EXPRESS 2022; 30:26027-26042. [PMID: 36236801 DOI: 10.1364/oe.460232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
As a coherent diffraction imaging technique, ptychography provides high-spatial resolution beyond Rayleigh's criterion of the focusing optics, but it is also sensitively affected by the decoherence coming from the spatial and temporal variations in the experiment. Here we show that high-speed ptychographic data acquisition with short exposure can effectively reduce the impact from experimental variations. To reach a cumulative dose required for a given resolution, we further demonstrate that a continuous multi-pass scan via high-speed ptychography can achieve high-resolution imaging. This low-dose scan strategy is shown to be more dose-efficient, and has potential for radiation-sensitive sample studies and time-resolved imaging.
Collapse
|
47
|
Zhang Y, Ackels T, Pacureanu A, Zdora MC, Bonnin A, Schaefer AT, Bosch C. Sample Preparation and Warping Accuracy for Correlative Multimodal Imaging in the Mouse Olfactory Bulb Using 2-Photon, Synchrotron X-Ray and Volume Electron Microscopy. Front Cell Dev Biol 2022; 10:880696. [PMID: 35756997 PMCID: PMC9213878 DOI: 10.3389/fcell.2022.880696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.
Collapse
Affiliation(s)
- Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- ESRF, The European Synchrotron, Grenoble, France
| | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Paul Scherrer Institut, Villigen, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Carles Bosch
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
48
|
Soltau J, Osterhoff M, Salditt T. Coherent Diffractive Imaging with Diffractive Optics. PHYSICAL REVIEW LETTERS 2022; 128:223901. [PMID: 35714250 DOI: 10.1103/physrevlett.128.223901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
We present a novel approach to x-ray microscopy based on a multilayer zone plate which is positioned behind a sample similar to an objective lens. However, unlike transmission x-ray microscopy, we do not content ourselves with a sharp intensity image; instead, we incorporate the multilayer zone plate transfer function directly in an iterative phase retrieval scheme to exploit the large diffraction angles of the small layers. The presence of multiple diffraction orders, which is conventionally a nuisance, now comes as an advantage for the reconstruction and photon efficiency. In a first experiment, we achieve sub-10-nm resolution and a quantitative phase contrast.
Collapse
Affiliation(s)
- Jakob Soltau
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Markus Osterhoff
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
- Campus-Institut Data Science, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
- Campus-Institut Data Science, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| |
Collapse
|
49
|
Bosch C, Ackels T, Pacureanu A, Zhang Y, Peddie CJ, Berning M, Rzepka N, Zdora MC, Whiteley I, Storm M, Bonnin A, Rau C, Margrie T, Collinson L, Schaefer AT. Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nat Commun 2022; 13:2923. [PMID: 35614048 PMCID: PMC9132960 DOI: 10.1038/s41467-022-30199-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.
Collapse
Affiliation(s)
- Carles Bosch
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
- ESRF, The European Synchrotron, Grenoble, France
| | - Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | | | - Manuel Berning
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Scalable minds GmbH, Potsdam, Germany
| | | | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, UK
| | - Isabell Whiteley
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Malte Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Troy Margrie
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lucy Collinson
- Electron Microscopy STP, The Francis Crick Institute, London, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK.
| |
Collapse
|
50
|
Moxham TEJ, Dhamgaye V, Laundy D, Fox OJL, Khosroabadi H, Sawhney K, Korsunsky AM. Two-dimensional wavefront characterization of adaptable corrective optics and Kirkpatrick-Baez mirror system using ptychography. OPTICS EXPRESS 2022; 30:19185-19198. [PMID: 36221703 DOI: 10.1364/oe.453239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/27/2022] [Indexed: 06/16/2023]
Abstract
Aberrations introduced during fabrication degrade the performance of X-ray optics and their ability to achieve diffraction limited focusing. Corrective optics can counteract these errors by introducing wavefront perturbations prior to the optic which cancel out the distortions. Here we demonstrate two-dimensional wavefront correction of an aberrated Kirkpatrick-Baez mirror pair using adaptable refractive structures. The resulting two-dimensional wavefront is measured using hard X-ray ptychography to recover the complex probe wavefield with high spatial resolution and model the optical performance under coherent conditions. The optical performance including the beam caustic, focal profile and wavefront error is examined before and after correction with both mirrors found to be diffraction limited after correcting. The results will be applicable to a wide variety of high numerical aperture X-ray optics aiming to achieve diffraction limited focussing using low emittance sources.
Collapse
|