1
|
Swain AA, Sharma P, Keswani C, Minkina T, Tukkaraja P, Gadhamshetty V, Kumar S, Bauddh K, Kumar N, Shukla SK, Kumar M, Dubey RS, Wong MH. The efficient applications of native flora for phytorestoration of mine tailings: a pan-global survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27653-27678. [PMID: 38598151 DOI: 10.1007/s11356-024-33054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mine tailings are the discarded materials resulting from mining processes after minerals have been extracted. They consist of leftover mineral fragments, excavated land masses, and disrupted ecosystems. The uncontrolled handling or discharge of tailings from abandoned mine lands (AMLs) poses a threat to the surrounding environment. Numerous untreated mine tailings have been abandoned globally, necessitating immediate reclamation and restoration efforts. The limited feasibility of conventional reclamation methods, such as cost and acceptability, presents challenges in reclaiming tailings around AMLs. This study focuses on phytorestoration as a sustainable method for treating mine tailings. Phytorestoration utilizes existing native plants on the mine sites while applying advanced principles of environmental biotechnology. These approaches can remediate toxic elements and simultaneously improve soil quality. The current study provides a global overview of phytorestoration methods, emphasizing the specifics of mine tailings and the research on native plant species to enhance restoration ecosystem services.
Collapse
Affiliation(s)
- Ankit Abhilash Swain
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Sector-30, Gandhinagar, 382030, Gujarat, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Purushotham Tukkaraja
- Department of Mining Engineering and Management, South Dakota Mines, Rapid City, SD, 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering Department, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- 2D-Materials for Biofilm Engineering, Science and Technology Center, 501 E. St. Joseph Street, Rapid City, SD, USA
| | - Sanjeev Kumar
- Department of Geology, BB Ambedkar University, Lucknow, 226025, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India.
- Institute of Environment and Sustainable Development, RGSC, Banaras Hindu University, Barkachha, Mirzapur, 231001, India.
| | - Narendra Kumar
- Department of Environmental Science, BB Ambedkar University, Lucknow, 226025, India
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar, 382030, Gujarat, India
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
2
|
Müller E, von Gunten U, Tolu J, Bouchet S, Winkel LHE. Reactions of hypobromous acid with dimethyl selenide, dimethyl diselenide and other organic selenium compounds: kinetics and product formation. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:620-630. [PMID: 38434173 PMCID: PMC10905664 DOI: 10.1039/d3ew00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024]
Abstract
Selenium (Se) is an essential micronutrient for many living organisms particularly due to its unique redox properties. We recently found that the sulfur (S) analog for dimethyl selenide (DMSe), i.e. dimethyl sulfide (DMS), reacts fast with the marine oxidant hypobromous acid (HOBr) which likely serves as a sink of marine DMS. Here we investigated the reactivity of HOBr with dimethyl selenide and dimethyl diselenide (DMDSe), which are the main volatile Se compounds biogenically produced in marine waters. In addition, the reactivity of HOBr with further organic Se compounds was tested, i.e., SeMet (as N-acetylated-SeMet), and selenocystine (SeCys2 as N-acetylated-SeCys2), as well as the phenyl-analogs of DMSe and DMDSe, respectively, diphenyl selenide (DPSe) and diphenyl diselenide (DPDSe). Apparent second-order rate constants at pH 8 for the reactions of HOBr with the studied Se compounds were (7.1 ± 0.7) × 107 M-1 s-1 for DMSe, (4.3 ± 0.4) × 107 M-1 s-1 for DMDSe, (2.8 ± 0.3) × 108 M-1 s-1 for SeMet, (3.8 ± 0.2) × 107 M-1 s-1 for SeCys2, (3.5 ± 0.1) × 107 M-1 s-1 for DPSe, and (8.0 ± 0.4) × 106 M-1 s-1 for DPDSe, indicating a very high reactivity of all selected Se compounds with HOBr. The reactivity between HOBr and DMSe is lower than for DMS and therefore this reaction is likely not relevant for marine DMSe abatement. However, the high reactivity of SeMet with HOBr suggests that SeMet may act as a relevant quencher of HOBr.
Collapse
Affiliation(s)
- Emanuel Müller
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Julie Tolu
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Sylvain Bouchet
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Lenny H E Winkel
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| |
Collapse
|
3
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024; 10:e26023. [PMID: 38390045 PMCID: PMC10881343 DOI: 10.1016/j.heliyon.2024.e26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Zhang L, Chu C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:30. [PMID: 35701545 PMCID: PMC9198118 DOI: 10.1186/s12284-022-00572-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/29/2022] [Indexed: 05/13/2023]
Abstract
Selenium (Se) is an essential trace element for humans and other animals. The human body mainly acquires Se from plant foods, especially cereal grains. Rice is the staple food for more than half of the world's population. Increasing the Se concentration of rice grains can increase the average human dietary Se intake. This review summarizes recent advances in the molecular mechanisms of Se uptake, transport, subcellular distribution, retranslocation, volatilization, and Se-containing protein degradation in plants, especially rice. The strategies for improving Se concentration in rice grains by increasing Se accumulation, reducing Se volatilization, and optimizing Se form were proposed, which provide new insight into Se biofortification in rice by improving the utilization efficiency of Se.
Collapse
Affiliation(s)
- Lianhe Zhang
- Luoyang Key Laboratory of Plant Nutrition and Environmental Ecology, Agricultural College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chengcai Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture and Technology, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Hussaini M, Vohra M. LDH-TiO 2 Composite for Selenocyanate (SeCN -) Photocatalytic Degradation: Characterization, Treatment Efficiency, Reaction Intermediates and Modeling. NANOMATERIALS 2022; 12:nano12122035. [PMID: 35745375 PMCID: PMC9227849 DOI: 10.3390/nano12122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
Selenium as a nutrient has a narrow margin between safe and toxic limits. Hence, wastewater discharges from selenium-containing sources require appropriate treatment that considers health concerns and stringent selenium-related water treatment standards. This work examined the use of a photocatalysis-cum-adsorption system based on a layered double hydroxide coupled with TiO2 (LDH-TiO2) to remove aqueous phase selenocyanate (SeCN−), which is difficult to treat and requires specific treatment procedures. The synthesized LDH and LDH-TiO2 composite samples were characterized using the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetry analysis (TGA) methods. The XRD results for the uncalcined LDH indicated a hydrotalcite mass with a rhombohedral structure, whereas increasing the calcination temperature indicated transition to an amorphous state. FESEM results for the LDH-TiO2 matrix indicated round titanium dioxide particles and LDH hexagonal layers. The TGA findings for uncalcined LDH showed a gradual decrease in weight up to 250 °C, followed by a short plateau and then a sharp decrease in LDH weight from 320 °C, with a net weight loss around 47%. Based on the characterization and initial selenocyanate adsorption results, the 250 °C calcined LDH-TiO2 matrix was used for the selenocyanate photocatalysis. A ~100% selenium removal was observed using LDH:TiO2 at a 1.5:1 w/w ratio with a 2 g/L dose, whereas up to 80% selenium removal was noted for LDH:TiO2 at a 0.5:1 w/w ratio. The respective difference in the efficiency of selenium treatment was attributed to enhanced LDH-based adsorption sites in the enhanced LDH:TiO2 w/w ratio. Furthermore, the selenite and selenate that occurred during SeCN− photocatalytic degradation (PCD) were also nearly completely removed via adsorption. An optimization exercise using response surface methodology (RSM) for total selenium removal showed R2 values of more than 0.95, with a prediction accuracy of more than 90%. In summary, the present findings show that the use of a photocatalysis-cum-adsorption system based on LDH-TiO2 is a promising technique to treat industrial wastewater discharges for selenocyanate and also remove the resulting intermediates.
Collapse
Affiliation(s)
- Minaam Hussaini
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Muhammad Vohra
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Construction and Building Materials (IRC-CBM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Correspondence: ; Tel.: +966-13-860-2854
| |
Collapse
|
6
|
Gulzar ABM, Mazumder PB. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40319-40341. [PMID: 35316490 DOI: 10.1007/s11356-022-19756-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals (HMs) are not destroyable or degradable and persist in the environment for a long duration. Thus, eliminating and counteracting the HMs pollution of the soil environment is an urgent task to develop a safe and sustainable environment. Plants are in close contact with the soil and can play an important role in soil clean-up, and the process is known as phytoremediation. However, under HM contaminated conditions, plants suffer from several complications, like nutrient and mineral deficiencies, alteration of various physiological and biological processes, which reduces the plant's growth rate. On the other hand, the bioavailability of HMs is another factor for reduced phytoremediation, as most of the HMs are not bioavailable to plants for efficient phytoremediation. The altered plant growth and reduced bioavailability of HMs could be overcome and enhance the phytoremediation efficiency by incorporating either nanotechnology, i.e., nanoparticles (NPs) or plant growth promoting rhizobacteria (PGPR) along with phytoremediation. Single incorporation of NPs and PGPR might improve the growth rate in plants by enhancing nutrient availability and uptake and also by regulating plant growth regulators under HM contaminated conditions. However, there are certain limitations, like a high dose of NPs that might have toxic effects on plants. Thus, the combination of two techniques such as PGPR and NPs-based remediation can conquer the limitations of individual techniques and consequently enhance phytoremediation efficiency. Considering the negative impacts of HMs on the environment and living organisms, this review is aimed at highlighting the concept of phytoremediation, the single or combined integration of NPs and PGPR to help plants deal with HMs and their basic mechanisms involved in the process of phytoremediation. Additionally, the complications of using NPs and PGPR in the phytoremediation process are discussed to determine future research questions and this will assist to stimulate further research in this field and increase its effectiveness in practical application.
Collapse
Affiliation(s)
- Abu Barkat Md Gulzar
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India.
| |
Collapse
|
7
|
Shaari NEM, Tajudin MTFM, Khandaker MM, Majrashi A, Alenazi MM, Abdullahi UA, Mohd KS. Cadmium toxicity symptoms and uptake mechanism in plants: a review. BRAZ J BIOL 2022; 84:e252143. [PMID: 35239785 DOI: 10.1590/1519-6984.252143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) is one of non-essential heavy metals which is released into environment naturally or anthropogenically. It is highly persistent toxic metals that are exceptionally distressing industrial and agriculture activities by contaminating soil, water and food. Its long-duration endurance in soil and water results in accumulation and uptake into plants, leading to the food chain. This becomes a serious global problem threatening humans and animals as food chain components. Living organisms, especially humans, are exposed to Cd through plants as one of the main vegetative food sources. This review paper is concentrated on the symptoms of the plants affected by Cd toxicity. The absorption of Cd triggers several seen and unseen symptoms by polluted plants such as stunted growth, chlorosis, necrosis and wilting. Apart from that, factors that affect the uptake and translocation of Cd in plants are elaborated to understand the mechanism that contributes to its accumulation. By insight of Cd accumulation, this review also discussed the phytoremediation techniques-phytoextraction, phytostimulation, phytostabilization, phytovolatization and rhizofiltration in bioremediating the Cd.
Collapse
Affiliation(s)
- N E M Shaari
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - M T F M Tajudin
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - M M Khandaker
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - A Majrashi
- Taif University, Faculty of Science, Department of Biology, Taif, Saudi Arabia
| | - M M Alenazi
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, Riyadh, Saudi Arabia
| | - U A Abdullahi
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - K S Mohd
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| |
Collapse
|
8
|
Phytoremediation—From Environment Cleaning to Energy Generation—Current Status and Future Perspectives. ENERGIES 2020. [DOI: 10.3390/en13112905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phytoremediation is a technology based on the use of green plants to remove, relocate, deactivate, or destroy harmful environmental pollutants such as heavy metals, radionuclides, hydrocarbons, and pharmaceuticals. Under the general term of phytoremediation, several processes with distinctively different mechanisms of action are hidden. In this paper, the most popular modes of phytoremediation are described and discussed. A broad but concise review of available literature research with respect to the dominant process mechanism is provided. Moreover, methods of plant biomass utilization after harvesting, with particular regard to possibilities of “bio-ore” processing for metal recovery, or using energy crops as a valuable source for bio-energy production (bio-gas, bio-ethanol, bio-oil) are analyzed. Additionally, obstacles hindering the commercialization of phytoremediation are presented and discussed together with an indication of future research trends.
Collapse
|
9
|
Selenium Interactions with Algae: Chemical Processes at Biological Uptake Sites, Bioaccumulation, and Intracellular Metabolism. PLANTS 2020; 9:plants9040528. [PMID: 32325841 PMCID: PMC7238072 DOI: 10.3390/plants9040528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 01/11/2023]
Abstract
Selenium (Se) uptake by primary producers is the most variable and important step in determining Se concentrations at higher trophic levels in aquatic food webs. We gathered data available about the Se bioaccumulation at the base of aquatic food webs and analyzed its relationship with Se concentrations in water. This important dataset was separated into lotic and lentic systems to provide a reliable model to estimate Se in primary producers from aqueous exposure. We observed that lentic systems had higher organic selenium and selenite concentrations than in lotic systems and selenate concentrations were higher in lotic environments. Selenium uptake by algae is mostly driven by Se concentrations, speciation and competition with other anions, and is as well influenced by pH. Based on Se species uptake by algae in the laboratory, we proposed an accurate mechanistic model of competition between sulfate and inorganic Se species at algal uptake sites. Intracellular Se transformations and incorporation into selenoproteins as well as the mechanisms through which Se can induce toxicity in algae has also been reviewed. We provided a new tool for risk assessment strategies to better predict accumulation in primary consumers and consequently to higher trophic levels, and we identified some research needs that could fill knowledge gaps.
Collapse
|
10
|
Muthusaravanan S, Sivarajasekar N, Vivek JS, Vasudha Priyadharshini S, Paramasivan T, Dhakal N, Naushad M. Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities. GREEN MATERIALS FOR WASTEWATER TREATMENT 2020. [DOI: 10.1007/978-3-030-17724-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Schiavon M, Ertani A, Parrasia S, Vecchia FD. Selenium accumulation and metabolism in algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:1-8. [PMID: 28554051 DOI: 10.1016/j.aquatox.2017.05.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects.
Collapse
Affiliation(s)
- Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | - Andrea Ertani
- DAFNAE, University of Padova, Agripolis, 35020 Legnaro PD, Italy
| | - Sofia Parrasia
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, Padova, 35131, Italy
| | | |
Collapse
|
12
|
Sharma S, Kaur N, Kaur S, Nayyar H. Selenium as a nutrient in biostimulation and biofortification of cereals. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Jaiswal SK, Prakash R, Acharya R, Reddy AV, Tejo Prakash N. Selenium content in seed, oil and oil cake of Se hyperaccumulated Brassica juncea (Indian mustard) cultivated in a seleniferous region of India. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Simmons DBD, Wallschläger D. Release of reduced inorganic selenium species into waters by the green fresh water algae Chlorella vulgaris. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2165-2171. [PMID: 21341693 DOI: 10.1021/es103337p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The common green fresh water algae Chlorella vulgaris was exposed to starting concentrations of 10 μg/L selenium in the form of selenate, selenite, or selenocyanate (SeCN(-)) for nine days in 10% Bold's basal medium. Uptake of selenate was more pronounced than that of selenite, and there was very little uptake of selenocyanate. Upon uptake of selenate, significant quantities of selenite and selenocyanate were produced by the algae and released back into the growth medium; no selenocyanate was released after selenite uptake. Release of the reduced metabolites after selenate exposure appeared to coincide with increasing esterase activity in solution, indicating that cell death (lysis) was the primary emission pathway. This is the first observation of biotic formation of selenocyanate and its release into waters from a nonindustrial source. The potential environmental implications of this laboratory observation are discussed with respect to the fate of selenium in impacted aquatic systems, the ecotoxicology of selenium bioaccumulation, and the interpretation of environmental selenium speciation data generated, using methods incapable of positively identifying reduced inorganic selenium species, such as selenocyanate.
Collapse
|
15
|
Matich AJ, McKenzie MJ, Brummell DA, Rowan DD. Organoselenides from Nicotiana tabacum genetically modified to accumulate selenium. PHYTOCHEMISTRY 2009; 70:1098-1106. [PMID: 19570557 DOI: 10.1016/j.phytochem.2009.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 05/08/2023]
Abstract
Nicotiana tabacum L. (tobacco) plants were transformed to overexpress a selenocysteine methyltransferase gene from the selenium hyperaccumulator Astragalus bisulcatus (Hook.) A. Gray (two-grooved milkvetch), and an ATP-sulfurylase gene from Brassica oleracea L. var. italica (broccoli). Solvent extraction of leaves harvested from plants treated with selenate revealed five selenium-containing compounds, of which four were identified by chemical synthesis as 2-(methylseleno)acetaldehyde, 2,2-bis(methylseleno)acetaldehyde, 4-(methylseleno)-(2E)-nonenal, and 4-(methylseleno)-(2E,6Z)-nonadienal. These four compounds have not previously been reported in nature.
Collapse
Affiliation(s)
- Adam J Matich
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Marian J McKenzie
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand
| | - Daryl D Rowan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
16
|
Pathem BK, Pradenas GA, Castro ME, Vásquez CC, Chasteen TG. Capillary electrophoretic determination of selenocyanate and selenium and tellurium oxyanions in bacterial cultures. Anal Biochem 2007; 364:138-44. [PMID: 17407759 DOI: 10.1016/j.ab.2007.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/20/2007] [Accepted: 03/06/2007] [Indexed: 11/16/2022]
Abstract
A simple capillary zone electrophoretic method for the determination of biospherically important oxyanions of selenium (Se) and tellurium and another Se-containing anion, selenocyanate, has been developed. The method uses direct UV absorption detection. Time course experiments with time slices as short as 6 min are possible. This method's detection limits and linear range compare well with other methods involving samples containing complex biological matrices. The metalloid-containing anions examined were selenocyanate, selenite, selenate, tellurite, and tellurate. We applied this method to live cultures of two different bacteria in two different growth media in time course experiments following the changes in metalloid-containing anion concentrations. The results show that this method is a useful means of following the biological processing of these analytes in bacterial cultures.
Collapse
Affiliation(s)
- Bala Krishna Pathem
- Department of Chemistry, Sam Houston State University, Huntsville, TX 77340, USA
| | | | | | | | | |
Collapse
|
17
|
Bulska E, Wysocka IA, Wierzbicka MLGH, Proost K, Janssens K, Falkenberg G. In Vivo Investigation of the Distribution and the Local Speciation of Selenium inAlliumcepa L. by Means of Microscopic X-ray Absorption Near-Edge Structure Spectroscopy and Confocal Microscopic X-ray Fluorescence Analysis. Anal Chem 2006; 78:7616-24. [PMID: 17105151 DOI: 10.1021/ac060380s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, microscopic X-ray absorption near-edge structure spectroscopy (mu-XANES) and confocal microscopic X-ray fluorescence analysis (mu-XRF) were used for the in vivo determination of the distribution of total selenium and for the local speciation of selenium in roots and leaves of onion. Selected Allium cepa L. plants were grown hydroponically in a standard medium containing inorganic selenium compounds (selenite or selenate). The measurements were performed in vivo, that is, on living plants without the need for any form of sampling or sample pretreatment and without the necessity for cutting plant tissues into pieces. Distinct energy differences of the XANES spectra of various selenium reference compounds having different oxidation states allow adjusting the excitation energies used for mu-XRF mapping in such a manner that the distribution of selenium in various oxidation states is obtained with a spatial resolution of a few tens of micrometers within the virtual cross section of the onion tissues. We find that the ratio of inorganic to amino acid selenium compounds differs in various subparts of the plant. Detailed in vivo investigation of the distribution of various selenium species in virtual cross sections of root tips and green leaf shows that the selenium transport takes place via different mechanisms, depending on the nature of the selenium compounds originally taken up.
Collapse
Affiliation(s)
- Ewa Bulska
- Faculty of Chemistry, Warsaw University, Warsaw, Poland. ebulska@ chem.uw.edu.pl
| | | | | | | | | | | |
Collapse
|
18
|
Cherian S, Oliveira MM. Transgenic plants in phytoremediation: recent advances and new possibilities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:9377-90. [PMID: 16475312 DOI: 10.1021/es051134l] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phytoremediation, the use of plants and their associated microbes to remedy contaminated soils, sediments, and groundwater, is emerging as a cost-effective and environmentally friendly technology. Due in large part to its aesthetic appeal, this technology has gained increasing attention over the past 10 years. Phytoremediation uses different plant processes and mechanisms normally involved in the accumulation, complexation, volatilization, and degradation of organic and inorganic pollutants. Certain plants, called hyperaccumulators, are good candidates in phytoremediation, particularly for the removal of heavy metals. Phytoremediation efficiency of plants can be substantially improved using genetic engineering technologies. Recent research results, including overexpression of genes whose protein products are involved in metal uptake, transport, and sequestration, or act as enzymes involved in the degradation of hazardous organics, have opened up new possibilities in phytoremediation. This paper provides a critical review of the recent progress made toward the development of transgenic plants with improved phytoremediation capabilities and their potential use in environmental cleanup.
Collapse
Affiliation(s)
- Sam Cherian
- Departamento de Bioquimica Vegetal, Instituto de Tecnologia Química e Biológica, Oeiras, Portugal.
| | | |
Collapse
|
19
|
Abstract
Cyanide compounds are produced as waste products of a number of industrial processes and several routes for their removal from the environment are under investigation, including the use of biodegradation. The most recent developments in this area have come from studies of the hydrolytic and oxidative pathways for biodegradation and the conditions that affect their activity. The biodegradation of cyanide under anaerobic conditions has also recently demonstrated the feasibility for concomitant biogas generation, a possible economic benefit of the process. Significant advances have been reported in the use of plants for the phytoremediation of cyanide compounds and evidence for the biodegradation of thiocyanate and metal-cyanide complexes has become available. Despite these advances, however, physical and economic factors still limit the application of cyanide biodegradation, as do competing technologies.
Collapse
Affiliation(s)
- Stephen Ebbs
- Department of Plant Biology, Southern Illinois University Carbondale, 420 Life Science II, Mailcode 6509, 1125 Lincoln Drive, Carbondale, Illinois 62901, USA.
| |
Collapse
|
20
|
Srivastava M, Ma LQ, Cotruvo JA. Uptake and distribution of selenium in different fern species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2005; 7:33-42. [PMID: 15943242 DOI: 10.1080/16226510590915792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There has been an interest in using hyperaccumulating plants for the removal of heavy metals and metalloids. High selenium (Se) concentrations in the environment are detrimental to animals, humans, and sustainable agriculture, yet selenium is also an essential nutrient for humans. This experiment was conducted to screen fern plants for their potential to accumulate selenium. Eleven fern species, Pteris vittata, P. quadriaurita, P. dentata, P. ensiformis, P. cretica, Dryopteris erythrosora, Didymochlaena truncatula, Adiantum hispidulum, Actiniopteris radiata, Davallia griffithiana, and Cyrtomium fulcatum, were grown under hydroponic conditions for one week at 20 mg L(-1) selenate or selenite. Root Se concentrations reached 245-731 and 516-1082 mg kg(-1) when treated with selenate and selenite, respectively. The corresponding numbers in the fronds were 153-745 and 74-1,028 mg kg(-1) with no visible toxicity symptoms. Only three fern species were able to accumulate more Se in the fronds than the roots, which were D. griffithiana when treated with selenate, P. vittata when treated with selenite, and A. radiata regardless of the forms of Se. A. radiata was the best species overall for Se accumulation. More research is needed to further determine the potential of the fern species identified in this study for phytoremediation of the Se contaminated soils and water.
Collapse
Affiliation(s)
- Mrittunjai Srivastava
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290, USA
| | | | | |
Collapse
|
21
|
Keck AS, Finley JW. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Ther 2004; 3:5-12. [PMID: 15035868 DOI: 10.1177/1534735403261831] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dietetic professionals urge Americans to increase fruit and vegetable intakes. The American Institute of Cancer Research estimates that if the only dietary change made was to increase the daily intake of fruits and vegetables to 5 servings per day, cancer rates could decline by as much as 20%. Among the reasons cited for this health benefit are that fruits and vegetables are excellent sources of fiber, vitamins, and minerals. They also contain nonnutritive components that may provide substantial health benefits beyond basic nutrition. Examples of the latter are the glucosinolate hydrolysis products, sulforaphane, and indole-3-carbinol. Epidemiological studies provide evidence that the consumption of cruciferous vegetables protects against cancer more effectively than the total intake of fruits and vegetables. This review describes the anticarcinogenic bioactivities of glucosinolate hydrolysis products, the mineral selenium derived from crucifers, and the mechanisms by which they protect against cancer. These mechanisms include altered estrogen metabolism, protection against reactive oxygen species, altered detoxification by induction of phase II enzymes, decreased carcinogen activation by inhibition of phase I enzymes, and slowed tumor growth and induction of apoptosis.
Collapse
Affiliation(s)
- Anna-Sigrid Keck
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58202-9034, USA
| | | |
Collapse
|
22
|
Ye ZH, Lin ZQ, Whiting SN, de Souza MP, Terry N. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater. CHEMOSPHERE 2003; 52:1571-1579. [PMID: 12867190 DOI: 10.1016/s0045-6535(03)00497-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wetland microcosms were used to evaluate the ability of constructed wetlands to remove extremely high concentrations of selenocyanate (SeCN-), arsenic (As), and boron (B) from wastewater generated by a coal gasification plant in Indiana. The wetland microcosms significantly reduced the concentrations of selenium (Se), As, B, and cyanide (CN) in the wastewater by 64%, 47%, 31%, and 30%, respectively. In terms of the mass of each contaminant, 79%, 67%, 57%, and 54% of the Se, As, B, and CN, respectively, loaded into the microcosms were removed from the wastewater. The primary sink for the retention of contaminants within the microcosms was the sediment, which accounted for 63%, 51%, and 36% of the Se, As, and B, respectively. Accumulation in plant tissues accounted for only 2-4%, while 3% of the Se was removed by biological volatilization to the atmosphere. Of the 14 plant species tested, cattail, Thalia, and rabbitfoot grass were highly tolerant of the contaminants and exhibited no growth retardation. Environmental toxicity testing with fathead minnow (Pimephales promelas) larvae confirmed that the water treated by the wetland microcosms was less toxic than untreated water. The data from the wetland microcosms support the view that constructed wetlands could be used to successfully reduce the toxicity of aqueous effluent contaminated with extremely high concentrations of SeCN-, As, and B, and that a pilot-scale wetland should therefore be constructed to test this in the field. Cattail, Thalia, and rabbitfoot grass would be suitable plant species to establish in such wetlands.
Collapse
Affiliation(s)
- Z H Ye
- Department of Plant and Microbial Biology, University of California at Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | | | | | |
Collapse
|
23
|
Roberge MT, Borgerding AJ, Finley JW. Speciation of selenium compounds from high selenium broccoli is affected by the extracting solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:4191-4197. [PMID: 12848483 DOI: 10.1021/jf021247d] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The speciation of selenium compounds from high selenium broccoli (876 microg/g) depends on the extraction conditions. Twenty-seven extraction conditions were explored involving nine different buffering systems between pH 1 and pH 9. In nonbuffered extractions of broccoli, more than 40% of the spiked Se-methylselenocysteine was not recovered in the filtered solution. However, in buffered extractions, losses for Se-methylselenocysteine ranged from 10 to 20%. Mass balance indicated that approximately 30% of naturally occurring selenium in broccoli samples was volatilized and lost to the atmosphere when buffered extractions were made. Solid phase extractions indicated that the polarity of selenium compounds in solution was also dependent on the extracting solution. High-pressure liquid chromatography coupled to an inductively coupled plasma mass spectrometer was used to show that selenium compounds extracted from broccoli reacted with the extracting solution. Compound identities were assigned by matching retention times to standards of selenite, selenate, methylseleninic acid, Se-methylselenocysteine, selenomethionine, and the selenonic acids of Se-methylselenocysteine and selenomethionine. Changes in speciation were analyte-, pH-, and buffer-dependent, but generally, a higher pH resulted in more highly oxidized selenium compounds. For valid conclusions to be drawn from the analytical data, the extraction conditions should match the conditions present in the matrix or be specified for a particular application such as a simulated gastrointestinal digestion.
Collapse
Affiliation(s)
- Mark T Roberge
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | | | | |
Collapse
|
24
|
Meija J, Montes-Bayón M, Le Duc DL, Terry N, Caruso JA. Simultaneous monitoring of volatile selenium and sulfur species from se accumulating plants (wild type and genetically modified) by GC/MS and GC/ICPMS using solid-phase microextraction for sample introduction. Anal Chem 2002; 74:5837-44. [PMID: 12463370 DOI: 10.1021/ac020285t] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A sensitive method for determining ultratrace volatile Se species produced from Brassica juncea seedlings is described. The use of a new commercially available GC/ ICPMS interface in conjunction with solid-phase micro-extraction is a promising way to perform these studies. The addition of optional gases (O2 and N2) to the argon discharge proved to increase the sensitivity for Se and S as well as for Xe, which as a trace contaminant gas, was used for ICPMS optimization studies. However, the optimization parameters differ when an optional gas is added. In the best conditions, limits of detection ranging from 1 to 10 ppt can be obtained depending on the Se compound and 30 to 300 ppt for the volatile S species. The use of GC/MS with similar sample introduction permits the characterization of several unknown species produced as artifacts from the standards. The method allows the virtually simultaneous monitoring of S and Se species from the headspace of several plants (e.g., onions, garlic, etc.) although the present work is focused on the B. juncea seedlings grown in closed vials and treated with Se. Dimethyl selenide and dimethyl diselenide were detected as the primary volatile Se components in the headspace. Sulfur species also were present as allyl (2-propenyl) isothiocyanate and 3-butenyl isothiocyanate as characterized by GC/MS.
Collapse
Affiliation(s)
- Juris Meija
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | | | | | | | | |
Collapse
|