1
|
Schoberer J, Vavra U, Shin Y, Grünwald‐Gruber C, Strasser R. Elucidation of the late steps in the glycan-dependent ERAD of soluble misfolded glycoproteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17185. [PMID: 39642157 PMCID: PMC11712024 DOI: 10.1111/tpj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The endoplasmic reticulum (ER) utilizes ER-associated degradation (ERAD), a highly conserved eukaryotic pathway, to eliminate misfolded or unassembled proteins and maintain protein homeostasis in cells. The clearance of misfolded glycoproteins involves several distinct steps, including the recognition of a specific glycan signal, retrotranslocation to the cytosol, and subsequent degradation of the misfolded protein by the ubiquitin proteasome system. Confocal microscopy was used to track the fate of a well-characterized ERAD substrate via a self-complementing split fluorescent protein assay. The results demonstrate that a misfolded variant of the STRUBBELIG (SUB) extracellular protein domain (SUBEX-C57Y) is retrotranslocated to the cytosol when transiently expressed in Nicotiana benthamiana leaf epidermal cells. Retrotranslocation requires a protein domain with a lesion that is exposed in the lumen of the ER, N-glycan trimming by α-mannosidases, HRD1-mediated ubiquitination, and the ATPase function of CDC48. The retrotranslocated SUBEX-C57Y ERAD substrate undergoes deglycosylation, and proteasomal degradation is blocked by a catalytically inactive cytosolic peptide N-glycanase. These findings define distinct aspects of ERAD that have been elusive until now and may represent the default pathway for degrading misfolded glycoproteins in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Yun‐Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Clemens Grünwald‐Gruber
- Core Facility Mass SpectrometryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
2
|
Zhang J, Wu J, Liu L, Li J. The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2020; 11:625033. [PMID: 33510762 PMCID: PMC7835635 DOI: 10.3389/fpls.2020.625033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Most membrane and secreted proteins are glycosylated on certain asparagine (N) residues in the endoplasmic reticulum (ER), which is crucial for their correct folding and function. Protein folding is a fundamentally inefficient and error-prone process that can be easily interfered by genetic mutations, stochastic cellular events, and environmental stresses. Because misfolded proteins not only lead to functional deficiency but also produce gain-of-function cellular toxicity, eukaryotic organisms have evolved highly conserved ER-mediated protein quality control (ERQC) mechanisms to monitor protein folding, retain and repair incompletely folded or misfolded proteins, or remove terminally misfolded proteins via a unique ER-associated degradation (ERAD) mechanism. A crucial event that terminates futile refolding attempts of a misfolded glycoprotein and diverts it into the ERAD pathway is executed by removal of certain terminal α1,2-mannose (Man) residues of their N-glycans. Earlier studies were centered around an ER-type α1,2-mannosidase that specifically cleaves the terminal α1,2Man residue from the B-branch of the three-branched N-linked Man9GlcNAc2 (GlcNAc for N-acetylglucosamine) glycan, but recent investigations revealed that the signal that marks a terminally misfolded glycoprotein for ERAD is an N-glycan with an exposed α1,6Man residue generated by members of a unique folding-sensitive α1,2-mannosidase family known as ER-degradation enhancing α-mannosidase-like proteins (EDEMs). This review provides a historical recount of major discoveries that led to our current understanding on the role of demannosylating N-glycans in sentencing irreparable misfolded glycoproteins into ERAD. It also discusses conserved and distinct features of the demannosylation processes of the ERAD systems of yeast, mammals, and plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
3
|
Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins (Basel) 2019; 11:toxins11060350. [PMID: 31216687 PMCID: PMC6628406 DOI: 10.3390/toxins11060350] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin.
Collapse
|
4
|
Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci 2019; 20:E1345. [PMID: 30884891 PMCID: PMC6471620 DOI: 10.3390/ijms20061345] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.
Collapse
Affiliation(s)
- Marina Clemente
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Mariana G Corigliano
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Sebastián A Pariani
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Edwin F Sánchez-López
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Valeria A Sander
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Víctor A Ramos-Duarte
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| |
Collapse
|
5
|
Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. Int J Mol Sci 2019; 20:E1307. [PMID: 30875878 PMCID: PMC6471375 DOI: 10.3390/ijms20061307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
Several bacterial and plant AB-toxins are delivered by retrograde vesicular transport to the endoplasmic reticulum (ER), where the enzymatically active A subunit is disassembled from the holotoxin and transported to the cytosol. In this process, toxins subvert the ER-associated degradation (ERAD) pathway. ERAD is an important part of cellular regulatory mechanism that targets misfolded proteins to the ER channels, prior to their retrotranslocation to the cytosol, ubiquitination and subsequent degradation by a protein-degrading complex, the proteasome. In this article, we present an overview of current understanding of the ERAD-dependent transport of AB-toxins to the cytosol. We describe important components of ERAD and discuss their significance for toxin transport. Toxin recognition and disassembly in the ER, transport through ER translocons and finally cytosolic events that instead of overall proteasomal degradation provide proper folding and cytotoxic activity of AB-toxins are discussed as well. We also comment on recent reports presenting medical applications for toxin transport through the ER channels.
Collapse
Affiliation(s)
- Jowita Nowakowska-Gołacka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Hanna Sominka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Natalia Sowa-Rogozińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Monika Słomińska-Wojewódzka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
6
|
Hüttner S, Veit C, Vavra U, Schoberer J, Dicker M, Maresch D, Altmann F, Strasser R. A context-independent N-glycan signal targets the misfolded extracellular domain of Arabidopsis STRUBBELIG to endoplasmic-reticulum-associated degradation. Biochem J 2014; 464:401-11. [PMID: 25251695 PMCID: PMC4255730 DOI: 10.1042/bj20141057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/17/2022]
Abstract
N-glycosylation of proteins plays an important role in the determination of the fate of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Specific oligosaccharide structures recruit molecular chaperones that promote folding or mannose-binding lectins that assist in the clearance of improperly-folded glycoproteins by delivery to ER-associated degradation (ERAD). In plants, the mechanisms and factors that recognize non-native proteins and sort them to ERAD are poorly understood. In the present study, we provide evidence that a misfolded variant of the STRUBBELIG (SUB) extracellular domain (SUBEX-C57Y) is degraded in a glycan-dependent manner in plants. SUBEX-C57Y is an ER-retained glycoprotein with three N-glycans that is stabilized in the presence of kifunensine, a potent inhibitor of α-mannosidases. Stable expression in Arabidopsis thaliana knockout mutants revealed that SUBEX-C57Y degradation is dependent on the ER lectin OS9 and its associated ERAD factor SEL1L. SUBEX-C57Y was also stabilized in plants lacking the α-mannosidases MNS4 and MNS5 that generate a terminal α1,6-linked mannose on the C-branch of N-glycans. Notably, the glycan signal for degradation is not constrained to a specific position within SUBEX-C57Y. Structural analysis revealed that SUBEX-C57Y harbours considerable amounts of Glc1Man7GlcNAc2 N-glycans suggesting that the ER-quality control processes involving calnexin/calreticulin (CNX/CRT) and ERAD are tightly interconnected to promote protein folding or disposal by termination of futile folding attempts.
Collapse
Key Words
- cell biology
- endoplasmic reticulum
- endoplasmic-reticulum-associated degradation (erad)
- glycobiology
- glycoprotein
- glycosylation
- protein degradation
- protein misfolding
- bri1, brassinosteroid insensitive 1
- cnx/crt, calnexin/calreticulin
- cpy*, mutant variant of yeast carboxypeptidase y
- endo h, endoglycosidase h
- er, endoplasmic reticulum
- erad, er-associated degradation
- erqc, er quality control
- mrfp, monomeric rfp
- mrh, mannose 6-phosphate receptor homology
- ms, murashige and skoog
- pdi, protein disulfide isomerase
- pgc, porous graphitic carbon
- pngase, peptide-n-glycosidase
- ripa, radio immunoprecipitation assay
- sub, strubbelig
- subex, strubbelig extracellular domain
- δxtft, nicotiana benthamiana glycosylation mutant deficient in β1,2-xylosyltransferase and core α1,3-fucosyltransferase
Collapse
Affiliation(s)
- Silvia Hüttner
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christiane Veit
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ulrike Vavra
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Jennifer Schoberer
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Martina Dicker
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Maresch
- †Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- †Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
7
|
Liu Y, Li J. Endoplasmic reticulum-mediated protein quality control in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:162. [PMID: 24817869 PMCID: PMC4012192 DOI: 10.3389/fpls.2014.00162] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/07/2014] [Indexed: 05/19/2023]
Abstract
A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally misfolded ones via a unique multiple-step degradation process known as ER-associated degradation (ERAD). Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.
Collapse
Affiliation(s)
| | - Jianming Li
- *Correspondence: Jianming Li, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4085 Natural Science Building, 830 North University, Ann Arbor, MI 48109-1048, USA e-mail:
| |
Collapse
|
8
|
Cytoplasm: ER Stress. Mol Biol 2014. [DOI: 10.1007/978-1-4939-0263-7_9-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Howell S. ER Stress Signaling in Plants. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Teter K. Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol. Biomolecules 2013; 3:997-1029. [PMID: 24970201 PMCID: PMC4030972 DOI: 10.3390/biom3040997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
AB toxins enter a host cell by receptor-mediated endocytosis. The catalytic A chain then crosses the endosome or endoplasmic reticulum (ER) membrane to reach its cytosolic target. Dissociation of the A chain from the cell-binding B chain occurs before or during translocation to the cytosol, and only the A chain enters the cytosol. In some cases, AB subunit dissociation is facilitated by the unique physiology and function of the ER. The A chains of these ER-translocating toxins are stable within the architecture of the AB holotoxin, but toxin disassembly results in spontaneous or assisted unfolding of the isolated A chain. This unfolding event places the A chain in a translocation-competent conformation that promotes its export to the cytosol through the quality control mechanism of ER-associated degradation. A lack of lysine residues for ubiquitin conjugation protects the exported A chain from degradation by the ubiquitin-proteasome system, and an interaction with host factors allows the cytosolic toxin to regain a folded, active state. The intrinsic instability of the toxin A chain thus influences multiple steps of the intoxication process. This review will focus on the host-toxin interactions involved with A chain unfolding in the ER and A chain refolding in the cytosol.
Collapse
Affiliation(s)
- Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
11
|
Deng Y, Srivastava R, Howell SH. Endoplasmic reticulum (ER) stress response and its physiological roles in plants. Int J Mol Sci 2013; 14:8188-212. [PMID: 23591838 PMCID: PMC3645738 DOI: 10.3390/ijms14048188] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 01/29/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response is a highly conserved mechanism that results from the accumulation of unfolded or misfolded proteins in the ER. The response plays an important role in allowing plants to sense and respond to adverse environmental conditions, such as heat stress, salt stress and pathogen infection. Since the ER is a well-controlled microenvironment for proper protein synthesis and folding, it is highly susceptible to stress conditions. Accumulation of unfolded or misfolded proteins activates a signaling pathway, called the unfolded protein response (UPR), which acts to relieve ER stress and, if unsuccessful, leads to cell death. Plants have two arms of the UPR signaling pathway, an arm involving the proteolytic processing of membrane-associated basic leucine zipper domain (bZIP) transcription factors and an arm involving RNA splicing factor, IRE1, and its mRNA target. These signaling pathways play an important role in determining the cell's fate in response to stress conditions.
Collapse
Affiliation(s)
- Yan Deng
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| | - Renu Srivastava
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| | - Stephen H. Howell
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| |
Collapse
|
12
|
Masahara-Negishi Y, Hosomi A, Della Mea M, Serafini-Fracassini D, Suzuki T. A plant peptide: N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast. Biochim Biophys Acta Gen Subj 2012; 1820:1457-62. [PMID: 22659524 DOI: 10.1016/j.bbagen.2012.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND The cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme involved in the ER-associated degradation (ERAD) process, while ERAD-independent activities are also reported. Previous biochemical analyses indicated that the cytoplasmic PNGase orthologue in Arabidopsis thaliana (AtPNG1) can function as not only PNGase but also transglutaminase, while its in vivo function remained unclarified. METHODS AtPNG1 was expressed in Saccharomyces cerevisiae and its in vivo role on PNGase-dependent ERAD pathway was examined. RESULTS AtPNG1 could facilitate the ERAD through its deglycosylation activity. Moreover, a catalytic mutant of AtPNG1 (AtPNG1(C251A)) was found to significantly impair the ERAD process. This result was found to be N-glycan-dependent, as the AtPNG(C251A) did not affect the stability of the non-glycosylated RTA∆ (ricin A chain non-toxic mutant). Tight interaction between AtPNG1(C251A) and the RTA∆ was confirmed by co-immunoprecipitation analysis. CONCLUSION The plant PNGase facilitates ERAD through its deglycosylation activity, while the catalytic mutant of AtPNG1 impair glycoprotein ERAD by binding to N-glycans on the ERAD substrates. GENERAL SIGNIFICANCE Our studies underscore the functional importance of a plant PNGase orthologue as a deglycosylating enzyme involved in the ERAD.
Collapse
Affiliation(s)
- Yuki Masahara-Negishi
- Glycometabolome Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
13
|
Denecke J, Aniento F, Frigerio L, Hawes C, Hwang I, Mathur J, Neuhaus JM, Robinson DG. Secretory pathway research: the more experimental systems the better. THE PLANT CELL 2012; 24:1316-26. [PMID: 22523202 PMCID: PMC3398477 DOI: 10.1105/tpc.112.096362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 05/17/2023]
Abstract
Transient gene expression, in plant protoplasts or specific plant tissues, is a key technique in plant molecular cell biology, aimed at exploring gene products and their modifications to examine functional subdomains, their interactions with other biomolecules, and their subcellular localization. Here, we highlight some of the major advantages and potential pitfalls of the most commonly used transient gene expression models and illustrate how ectopic expression and the use of dominant mutants can provide insights into protein function.
Collapse
Affiliation(s)
- Jurgen Denecke
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, E-46100 Burjassot, Spain
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry CV4 7 AL, United Kingdom
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie, Université de Neuchatel, CH-2009 Neuchatel, Switzerland
| | - David G. Robinson
- Department Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Hüttner S, Strasser R. Endoplasmic reticulum-associated degradation of glycoproteins in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:67. [PMID: 22645596 PMCID: PMC3355801 DOI: 10.3389/fpls.2012.00067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/21/2012] [Indexed: 05/20/2023]
Abstract
In all eukaryotes the endoplasmic reticulum (ER) has a central role in protein folding and maturation of secretory and membrane proteins. Upon translocation into the ER polypeptides are immediately subjected to folding and modifications involving the formation of disulfide bridges, assembly of subunits to multi-protein complexes, and glycosylation. During these processes incompletely folded, terminally misfolded, and unassembled proteins can accumulate which endanger the cellular homeostasis and subsequently the survival of cells and tissues. Consequently, organisms have developed a quality control system to cope with this problem and remove the unwanted protein load from the ER by a process collectively referred to as ER-associated degradation (ERAD) pathway. Recent studies in Arabidopsis have identified plant ERAD components involved in the degradation of aberrant proteins and evidence was provided for a specific role in abiotic stress tolerance. In this short review we discuss our current knowledge about this important cellular pathway.
Collapse
Affiliation(s)
- Silvia Hüttner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Richard Strasser, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria. e-mail:
| |
Collapse
|
15
|
Ruiz-May E, Kim SJ, Brandizzi F, Rose JKC. The secreted plant N-glycoproteome and associated secretory pathways. FRONTIERS IN PLANT SCIENCE 2012; 3:117. [PMID: 22685447 PMCID: PMC3368311 DOI: 10.3389/fpls.2012.00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 05/14/2023]
Abstract
N-Glycosylation is a common form of eukaryotic protein post-translational modification, and one that is particularly prevalent in plant cell wall proteins. Large scale and detailed characterization of N-glycoproteins therefore has considerable potential in better understanding the composition and functions of the cell wall proteome, as well as those proteins that reside in other compartments of the secretory pathway. While there have been numerous studies of mammalian and yeast N-glycoproteins, less is known about the population complexity, biosynthesis, structural variation, and trafficking of their plant counterparts. However, technical developments in the analysis of glycoproteins and the structures the glycans that they bear, as well as valuable comparative analyses with non-plant systems, are providing new insights into features that are common among eukaryotes and those that are specific to plants, some of which may reflect the unique nature of the plant cell wall. In this review we present an overview of the current knowledge of plant N-glycoprotein synthesis and trafficking, with particular reference to those that are cell wall localized.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jocelyn K. C. Rose
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
- *Correspondence: Jocelyn K. C. Rose, Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853 USA. e-mail:
| |
Collapse
|
16
|
Hehle VK, Paul MJ, Drake PM, Ma JKC, van Dolleweerd CJ. Antibody degradation in tobacco plants: a predominantly apoplastic process. BMC Biotechnol 2011; 11:128. [PMID: 22208820 PMCID: PMC3260137 DOI: 10.1186/1472-6750-11-128] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 12/30/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Interest in using plants for production of recombinant proteins such as monoclonal antibodies is growing, but proteolytic degradation, leading to a loss of functionality and complications in downstream purification, is still a serious problem. RESULTS In this study, we investigated the dynamics of the assembly and breakdown of a human IgG(1)κ antibody expressed in plants. Initial studies in a human IgG transgenic plant line suggested that IgG fragments were present prior to extraction. Indeed, when the proteolytic activity of non-transgenic Nicotiana tabacum leaf extracts was tested against a human IgG1 substrate, little activity was detectable in extraction buffers with pH > 5. Significant degradation was only observed when the plant extract was buffered below pH 5, but this proteolysis could be abrogated by addition of protease inhibitors. Pulse-chase analysis of IgG MAb transgenic plants also demonstrated that IgG assembly intermediates are present intracellularly and are not secreted, and indicates that the majority of proteolytic degradation occurs following secretion into the apoplastic space. CONCLUSIONS The results provide evidence that proteolytic fragments derived from antibodies of the IgG subtype expressed in tobacco plants do not accumulate within the cell, and are instead likely to occur in the apoplastic space. Furthermore, any proteolytic activity due to the release of proteases from subcellular compartments during tissue disruption and extraction is not a major consideration under most commonly used extraction conditions.
Collapse
Affiliation(s)
- Verena K Hehle
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Matthew J Paul
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Pascal M Drake
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julian KC Ma
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Craig J van Dolleweerd
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
17
|
Ricin trafficking in plant and mammalian cells. Toxins (Basel) 2011; 3:787-801. [PMID: 22069740 PMCID: PMC3202855 DOI: 10.3390/toxins3070787] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/17/2022] Open
Abstract
Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans). The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin) and Ricinus communis agglutinin l (RCA). These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.
Collapse
|
18
|
Conley AJ, Joensuu JJ, Richman A, Menassa R. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:419-33. [PMID: 21338467 DOI: 10.1111/j.1467-7652.2011.00596.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.
Collapse
Affiliation(s)
- Andrew J Conley
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | | | | |
Collapse
|
19
|
Redmann V, Oresic K, Tortorella LL, Cook JP, Lord M, Tortorella D. Dislocation of ricin toxin A chains in human cells utilizes selective cellular factors. J Biol Chem 2011; 286:21231-8. [PMID: 21527639 DOI: 10.1074/jbc.m111.234708] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.
Collapse
Affiliation(s)
- Veronika Redmann
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
20
|
Marshall RS, D'Avila F, Di Cola A, Traini R, Spanò L, Fabbrini MS, Ceriotti A. Signal peptide-regulated toxicity of a plant ribosome-inactivating protein during cell stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:218-29. [PMID: 21223387 DOI: 10.1111/j.1365-313x.2010.04413.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fate of the type I ribosome-inactivating protein (RIP) saporin when initially targeted to the endoplasmic reticulum (ER) in tobacco protoplasts has been examined. We find that saporin expression causes a marked decrease in protein synthesis, indicating that a fraction of the toxin reaches the cytosol and inactivates tobacco ribosomes. We determined that saporin is largely secreted but some is retained intracellularly, most likely in a vacuolar compartment, thus behaving very differently from the prototype RIP ricin A chain. We also find that the signal peptide can interfere with the catalytic activity of saporin when the protein fails to be targeted to the ER membrane, and that saporin toxicity undergoes signal sequence-specific regulation when the host cell is subjected to ER stress. Replacement of the saporin signal peptide with that of the ER chaperone BiP reduces saporin toxicity and makes it independent of cell stress. We propose that this stress-induced toxicity may have a role in pathogen defence.
Collapse
Affiliation(s)
- Richard S Marshall
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. THE PLANT CELL 2010; 22:2930-42. [PMID: 20876830 PMCID: PMC2965551 DOI: 10.1105/tpc.110.078154] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/12/2010] [Accepted: 09/13/2010] [Indexed: 05/17/2023]
Abstract
The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433
- Address correspondence to or
| | - Stephen H. Howell
- Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to or
| |
Collapse
|
22
|
Li S, Spooner RA, Allen SCH, Guise CP, Ladds G, Schnöder T, Schmitt MJ, Lord JM, Roberts LM. Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum. Mol Biol Cell 2010; 21:2543-54. [PMID: 20519439 PMCID: PMC2912342 DOI: 10.1091/mbc.e09-08-0743] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study reveals that components of the yeast ERAD-L pathway can discriminate between two subtly different forms of the same toxin substrate. Although precytosolic requirements are similar for both toxin structures, there is a divergence in fate on the cytosolic face of the ER membrane. We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER) to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAΔ), follow ER-associated degradation (ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the classical ERAD-L pathway as well as an ongoing ER–Golgi transport. However, the dislocation pathways deviate strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAΔ, although the involvement of individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the proteasome RP, can discriminate between structural features of the same substrate.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Conley AJ, Joensuu JJ, Menassa R, Brandle JE. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol 2009; 7:48. [PMID: 19664215 PMCID: PMC3224952 DOI: 10.1186/1741-7007-7-48] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/07/2009] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Elastin-like polypeptides are synthetic biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the simple non-chromatographic purification of recombinant proteins. In addition, elastin-like polypeptide fusions have been shown to enhance the accumulation of a range of different recombinant proteins in plants, thus addressing the major limitation of plant-based expression systems, which is a low production yield. This study's main objectives were to determine the general utility of elastin-like polypeptide protein fusions in various intracellular compartments and to elucidate elastin-like polypeptide's mechanism of action for increasing recombinant protein accumulation in the endoplasmic reticulum of plants. RESULTS The effect of elastin-like polypeptide fusions on the accumulation of green fluorescent protein targeted to the cytoplasm, chloroplasts, apoplast, and endoplasmic reticulum was evaluated. The endoplasmic reticulum was the only intracellular compartment in which an elastin-like polypeptide tag was shown to significantly enhance recombinant protein accumulation. Interestingly, endoplasmic reticulum-targeted elastin-like polypeptide fusions induced the formation of a novel type of protein body, which may be responsible for elastin-like polypeptide's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover. Although expressed in the leaves of plants, these novel protein bodies appeared similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. The elastin-like polypeptide-induced protein bodies were highly mobile organelles, exhibiting various dynamic patterns of movement throughout the cells, which were dependent on intact actin microfilaments and a functional actomyosin motility system. CONCLUSION An endoplasmic reticulum-targeted elastin-like polypeptide fusion approach provides an effective strategy for depositing large amounts of concentrated heterologous protein within the limited space of the cell via storage in stable protein bodies. Furthermore, encapsulation of recombinant proteins into physiologically inert organelles can function to insulate the protein from normal cellular mechanisms, thus limiting unnecessary stress to the host cell. Since elastin-like polypeptide is a mammalian-derived protein, this study demonstrates that plant seed-specific factors are not required for the formation of protein bodies in vegetative plant tissues, suggesting that the endoplasmic reticulum possesses an intrinsic ability to form protein body-like accretions in eukaryotic cells when overexpressing particular proteins.
Collapse
Affiliation(s)
- Andrew J Conley
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
| | - Jussi J Joensuu
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
| | - Jim E Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
- Vineland Research and Innovation Centre, Vineland Station, ON, Canada
| |
Collapse
|
24
|
Lee CB, Kim S, McClure B. A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. PLANT PHYSIOLOGY 2009; 149:791-802. [PMID: 19098095 PMCID: PMC2633847 DOI: 10.1104/pp.108.127936] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 12/18/2008] [Indexed: 05/21/2023]
Abstract
As pollen tubes grow toward the ovary, they are in constant contact with the pistil extracellular matrix (ECM). ECM components are taken up during growth, and some pistil molecules exert their effect inside the pollen tube. For instance, the Nicotiana alata 120-kD glycoprotein (120K) is an abundant arabinogalactan protein that is taken up from the ECM; it has been detected in association with pollen tube vacuoles, but the transport pathway between these compartments is unknown. We recently identified a pollen C2 domain-containing protein (NaPCCP) that binds to the carboxyl-terminal domain of 120K. As C2 domain proteins mediate protein-lipid interactions, NaPCCP could function in intracellular transport of 120K in pollen tubes. Here, we describe binding studies showing that the NaPCCP C2 domain is functional and that binding is specific for phosphatidylinositol 3-phosphate. Subcellular fractionation, immunolocalization, and live imaging results show that NaPCCP is associated with the plasma membrane and internal pollen tube vesicles. Colocalization between an NaPCCPgreen fluorescent protein fusion and internalized FM4-64 suggest an association with the endosomal system. NaPCCP localization is altered in pollen tubes rejected by the self-incompatibility mechanism, but our hypothesis is that it has a general function in the transport of endocytic cargo rather than a specific function in self-incompatibility. NaPCCP represents a bifunctional protein with both phosphatidylinositol 3-phosphate- and arabinogalactan protein-binding domains. Therefore, it could function in the transport of pistil ECM proteins in the pollen tube endomembrane system.
Collapse
Affiliation(s)
- Christopher B Lee
- Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
25
|
Hong Z, Jin H, Tzfira T, Li J. Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. THE PLANT CELL 2008; 20:3418-29. [PMID: 19060110 PMCID: PMC2630446 DOI: 10.1105/tpc.108.061879] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/24/2008] [Accepted: 11/17/2008] [Indexed: 05/18/2023]
Abstract
Endoplasmic reticulum-mediated quality control (ERQC) is a well-studied process in yeast and mammals that retains and disposes misfolded/unassembled polypeptides. By contrast, how plants exert quality control over their secretory proteins is less clear. Here, we report that a mutated brassinosteroid receptor, bri1-5, that carries a Cys69Tyr mutation, is retained in the ER by an overvigilant ERQC system involving three different retention mechanisms. We demonstrate that bri1-5 interacts with two ER chaperones, calnexin and binding protein (BiP), and is degraded by a proteasome-independent endoplasmic reticulum-associated degradation (ERAD). Mutations in components of the calnexin/calreticulin cycle had little effect on the fidelity of the Arabidopsis thaliana ERQC for bri1-5 retention. By contrast, overexpression of bri1-5, treatment with an ERAD inhibitor, RNA interference-mediated BiP silencing, or simultaneous mutations of Cys-69 and its partner Cys-62 can mitigate this quality control, resulting in significant suppression of the bri1-5 phenotype. Thus, bri1-5 is an excellent model protein to investigate plant ERQC/ERAD in a model organism.
Collapse
Affiliation(s)
- Zhi Hong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, An Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
26
|
Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, Roberts LM. Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem 2008; 283:33276-86. [PMID: 18832379 PMCID: PMC2586253 DOI: 10.1074/jbc.m805222200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/19/2008] [Indexed: 12/04/2022] Open
Abstract
The B chain of ricin was expressed and delivered to the endoplasmic reticulum of tobacco protoplasts where it disappeared with time in a manner consistent with degradation. This turnover did not occur in the vacuoles or upon secretion. Indeed, several lines of evidence indicate that, in contrast to the turnover of endoplasmic reticulum-targeted ricin A chain in the cytosol, the bulk of expressed ricin B chain was degraded in the secretory pathway.
Collapse
Affiliation(s)
- Kerry L Chamberlain
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Irons SL, Nuttall J, Floss DM, Frigerio L, Kotzer AM, Hawes C. Fluorescent protein fusions to a human immunodeficiency virus monoclonal antibody reveal its intracellular transport through the plant endomembrane system. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:649-62. [PMID: 18489536 DOI: 10.1111/j.1467-7652.2008.00348.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
SUMMARY In order to further understand the production and intracellular trafficking of pharmaceutical proteins in plants, the light and heavy chains (LC and HC) of the human immunodeficiency virus neutralizing monoclonal antibody 2G12 were fused to fluorescent proteins [Venus and monomeric red fluorescent protein (mRFP)] to enable the visualization of their passage through the plant cell. Co-expression of LC and HC with various markers of the endomembrane system demonstrated that LC fusions were found in mobile punctate structures, which are likely to be pre-vacuolar compartments (PVCs) as a proportion of the LC fusions were found to be located in the vacuole. In addition, apoplast labelling was also observed with a 2G12LC-RFP fusion. The HC fusion expressed alone was found only in the endoplasmic reticulum (ER). When the LC and HC fusions were expressed together, they were found to co-locate to larger punctate structures, which were morphologically distinct from any observed on expression of LC or HC alone. These structures appeared to be in close association with the ER and their labelling partially overlapped with PVC marker fluorescence, but no increase in apoplast labelling was observed. Co-immunoprecipitation data demonstrated that the presence of the fluorescent proteins did not affect the assembly of the antibody, and also showed the association of BiP with the antibody chains. The antigen-binding activity of the Venus-fused 2G12 antibody was confirmed by enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sarah L Irons
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | | | | | | | | | | |
Collapse
|
28
|
Hua ZH, Fields A, Kao TH. Biochemical models for S-RNase-based self-incompatibility. MOLECULAR PLANT 2008; 1:575-85. [PMID: 19825563 DOI: 10.1093/mp/ssn032] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
S-RNase-based self-incompatibility (SI) is a genetically determined self/non-self-recognition process employed by many flowering plant species to prevent inbreeding and promote outcrosses. For the Plantaginaceae, Rosaceae and Solanaceae, it is now known that S-RNase and S-locus F-box (two multiple allelic genes at the S-locus) determine the female and male specificity, respectively, during SI interactions. However, how allelic products of these two genes interact inside pollen tubes to result in specific growth inhibition of self-pollen tubes remains to be investigated. Here, we review all the previously proposed biochemical models and discuss whether their predictions are consistent with all SI phenomena, including competitive interaction where SI breaks down in pollen that carries two different pollen S-alleles. We also discuss these models in light of the recent findings of compartmentalization of S-RNases in both incompatible and compatible pollen tubes. Lastly, we summarize the results from our recent biochemical studies of PiSLF (Petunia inflata SLF) and S-RNase, and present a new model for the biochemical mechanism of SI in the Solanaceae. The tenet of this model is that a PiSLF preferentially interacts with its non-self S-RNases in the cytoplasm of a pollen tube to result in the assembly of an E3-like complex, which then mediates ubiquitination and degradation of non-self S-RNases through the ubiquitin-26S proteasome pathway. This model can explain all SI phenomena and, at the same time, has raised new questions for further study.
Collapse
Affiliation(s)
- Zhi-Hua Hua
- The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
29
|
Vitale A, Boston RS. Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 2008; 9:1581-8. [PMID: 18557840 DOI: 10.1111/j.1600-0854.2008.00780.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein quality control (QC) within the endoplasmic reticulum and the related unfolded protein response (UPR) pathway of signal transduction are major regulators of the secretory pathway, which is involved in virtually any aspect of development and reproduction. The study of plant-specific processes such as pathogen response, seed development and the synthesis of seed storage proteins and of particular toxins is providing novel insights, with potential implications for the general recognition events and mechanisms of action of QC and UPR.
Collapse
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy.
| | | |
Collapse
|
30
|
Marshall RS, Jolliffe NA, Ceriotti A, Snowden CJ, Lord JM, Frigerio L, Roberts LM. The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells. J Biol Chem 2008; 283:15869-77. [PMID: 18420588 PMCID: PMC3259637 DOI: 10.1074/jbc.m709316200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/19/2008] [Indexed: 11/06/2022] Open
Abstract
When the catalytic A subunits of the castor bean toxins ricin and Ricinus communis agglutinin (denoted as RTA and RCA A, respectively) are delivered into the endoplasmic reticulum (ER) of tobacco protoplasts, they become substrates for ER-associated protein degradation (ERAD). As such, these orphan polypeptides are retro-translocated to the cytosol, where a significant proportion of each protein is degraded by proteasomes. Here we begin to characterize the ERAD pathway in plant cells, showing that retro-translocation of these lysine-deficient glycoproteins requires the ATPase activity of cytosolic CDC48. Lysine polyubiquitination is not obligatory for this step. We also show that although RCA A is found in a mannose-untrimmed form prior to its retro-translocation, a significant proportion of newly synthesized RTA cycles via the Golgi and becomes modified by downstream glycosylation enzymes. Despite these differences, both proteins are similarly retro-translocated.
Collapse
Affiliation(s)
- Richard S. Marshall
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Nicholas A. Jolliffe
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Aldo Ceriotti
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Christopher J. Snowden
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - J. Michael Lord
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Lorenzo Frigerio
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Lynne M. Roberts
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| |
Collapse
|
31
|
Pande AH, Scaglione P, Taylor M, Nemec KN, Tuthill S, Moe D, Holmes RK, Tatulian SA, Teter K. Conformational instability of the cholera toxin A1 polypeptide. J Mol Biol 2007; 374:1114-28. [PMID: 17976649 DOI: 10.1016/j.jmb.2007.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 12/22/2022]
Abstract
Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by vesicular transport. In the ER, the catalytic CTA1 subunit dissociates from the holotoxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). It is hypothesized that CTA1 triggers its ERAD-mediated translocation into the cytosol by masquerading as a misfolded protein, but the process by which CTA1 activates the ERAD system remains unknown. Here, we directly assess the thermal stability of the isolated CTA1 polypeptide by biophysical and biochemical methods and correlate its temperature-dependent conformational state with susceptibility to degradation by the 20S proteasome. Measurements with circular dichroism and fluorescence spectroscopy demonstrated that CTA1 is a thermally unstable protein with a disordered tertiary structure and a disturbed secondary structure at 37 degrees C. A protease sensitivity assay likewise detected the temperature-induced loss of native CTA1 structure. This protease-sensitive conformation was not apparent when CTA1 remained covalently associated with the CTA2 subunit. Thermal instability in the dissociated CTA1 polypeptide could thus allow it to appear as a misfolded protein for ERAD-mediated export to the cytosol. In vitro, the disturbed conformation of CTA1 at 37 degrees C rendered it susceptible to ubiquitin-independent degradation by the core 20S proteasome. In vivo, CTA1 was also susceptible to degradation by a ubiquitin-independent proteasomal mechanism. ADP-ribosylation factor 6, a cytosolic eukaryotic protein that enhances the enzymatic activity of CTA1, stabilized the heat-labile conformation of CTA1 and protected it from in vitro degradation by the 20S proteasome. Thermal instability in the reduced CTA1 polypeptide has not been reported before, yet both the translocation and degradation of CTA1 may depend upon this physical property.
Collapse
Affiliation(s)
- Abhay H Pande
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Allen SCH, Moore KAH, Marsden CJ, Fülöp V, Moffat KG, Lord JM, Ladds G, Roberts LM. The isolation and characterization of temperature-dependent ricin A chain molecules inSaccharomyces cerevisiae. FEBS J 2007; 274:5586-99. [DOI: 10.1111/j.1742-4658.2007.06080.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Diepold A, Li G, Lennarz WJ, Nürnberger T, Brunner F. The Arabidopsis AtPNG1 gene encodes a peptide: N-glycanase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:94-104. [PMID: 17666024 DOI: 10.1111/j.1365-313x.2007.03215.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Deglycosylation of misfolded proteins by the endoplasmic reticulum-associated degradation (ERAD) pathway is catalyzed by peptide:N-glycanases (PNGases) that are highly conserved among mammals and yeast. The catalytic mechanism of PNGases employs a catalytic triad consisting of Cys, His and Asp residues, which is shared by other enzyme families such as cysteine proteases and protein cross-linking transglutaminases (TGases). In contrast to the yeast and mammalian systems, very little is known about ERAD in plants and the enzymes responsible for proper clearance of misfolded plant proteins. We have used a computer-based modeling approach to identify an Arabidopsis thaliana PNGase (AtPNG1). AtPNG1 is encoded by a single-copy gene and displays high structural homology with known PNGases. Importantly, heterologous expression of AtPNG1 restored N-glycanase activity in a PNGase-deficient Saccharomyces cerevisiae mutant. The AtPNG1 gene is uniformly and constitutively expressed at low levels throughout all developmental stages of the plant, and its expression does not appear to be subject to substantial regulation by external stimuli. Recently, recombinant AtPNG1 produced in Escherichia coli was reported to display TGase activity (Della Mea et al., Plant Physiol. 135, 2046-54, 2004). However, inactivation of the AtPNG1 gene did not result in decreased TGase activity in the mutant plant, and recombinant AtPNG1 produced in S. cerevisiae exhibited only residual TGase activity. We propose that the AtPNG1 gene encodes a bona fide peptide:N-glycanase that contributes to ERAD-related protein quality control in plants.
Collapse
Affiliation(s)
- Andreas Diepold
- Center for Plant Molecular Biology-Plant Biochemistry, Eberhard Karls University, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
34
|
Endocytosis of pulchellin and its recombinant B-chain into K-562 cells: binding and uptake studies. Biochim Biophys Acta Gen Subj 2007; 1770:1660-6. [PMID: 17920772 DOI: 10.1016/j.bbagen.2007.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/10/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
Most of the type 2 ribosome-inactivating proteins (RIPs) are toxins formed by an RNA-N-glycosidase A-chain polypeptide linked to a lectin B-chain by a single disulfide bond. Members of this protein class vary greatly in cytotoxity, correlating more with B-chain diversity rather than to A-chain differences. Pulchellin is a type 2 ribosome-inactivating protein toxin found in the seeds of Abrus pulchellus tenuiflorus. Recombinant pulchellin B-Chain (rPBC) has been previously produced as inclusion bodies in Escherichia coli and successfully refolded recovering biological activity. New approaches for using this kind of protein as a biotechnological tool require a better understanding of cell targeting, binding, uptake, intracellular routing and delivery. In this work, cell adhesion experiments were used to determine the interaction of rPBC with mammalian cells. Fluorescence and confocal microscopy revealed the intracellular localization and trafficking. Subcellular sorting of the native pulchellin could also be determined. The results support that the endosomal internalization pathway and the retrograde transport through the Golgi apparatus might be used by both native protein and rPBC.
Collapse
|
35
|
Worthington ZEV, Carbonetti NH. Evading the proteasome: absence of lysine residues contributes to pertussis toxin activity by evasion of proteasome degradation. Infect Immun 2007; 75:2946-53. [PMID: 17420233 PMCID: PMC1932868 DOI: 10.1128/iai.02011-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pertussis toxin (PT) is an important virulence factor produced by Bordetella pertussis. PT holotoxin comprises one enzymatically active A subunit (S1), associated with a pentamer of B subunits. PT is an ADP-ribosyltransferase that modifies several mammalian heterotrimeric G proteins. Some bacterial toxins are believed to undergo retrograde intracellular transport through the Golgi apparatus to the endoplasmic reticulum (ER). The ER-associated degradation (ERAD) pathway involves the removal of misfolded proteins from the ER and degradation upon their return to the cytosol; this pathway may be exploited by PT and other toxins. In the cytosol, ERAD substrates are ubiquitinated at lysine residues, targeting them to the proteasome for degradation. We hypothesize that S1 avoids ubiquitination and proteasome degradation due to its lack of lysine residues. We predicted that the addition of lysine residues would reduce PT toxicity by allowing ubiquitination and degradation to occur. Variant forms of PT were engineered, replacing one, two, or three arginines with lysines in a variety of locations on S1. Several variants were identified with wild-type in vitro enzymatic activity but reduced cellular activity, consistent with our hypothesis. Significant recovery of the cellular activity of these variants was observed when CHO cells were pretreated with a proteasome inhibitor. We concluded that the replacement of arginine residues with lysine in the S1 subunit of PT renders the toxin subject to proteasomal degradation, suggesting that wild-type PT avoids proteasome degradation due to an absence of lysine residues.
Collapse
Affiliation(s)
- Zoë E V Worthington
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
36
|
Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells. BMC Biotechnol 2007; 7:12. [PMID: 17324250 PMCID: PMC1808453 DOI: 10.1186/1472-6750-7-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 02/26/2007] [Indexed: 11/10/2022] Open
Abstract
Background Plants may represent excellent alternatives to classical heterologous protein expression systems, especially for the production of biopharmaceuticals and vaccine components. Modern vaccines are becoming increasingly complex, with the incorporation of multiple antigens. Approaches towards developing an HIV vaccine appear to confirm this, with a combination of candidate antigens. Among these, HIV-Nef is considered a promising target for vaccine development because immune responses directed against this viral protein could help to control the initial steps of viral infection and to reduce viral loads and spreading. Two isoforms of Nef protein can be found in cells: a full-length N-terminal myristoylated form (p27, 27 kDa) and a truncated form (p25, 25 kDa). Here we report the expression and purification of HIV Nef from transgenic tobacco. Results We designed constructs to direct the expression of p25 and p27 Nef to either the cytosol or the secretory pathway. We tested these constructs by transient expression in tobacco protoplasts. Cytosolic Nef polypeptides are correctly synthesised and are stable. The same is not true for Nef polypeptides targeted to the secretory pathway by virtue of a signal peptide. We therefore generated transgenic plants expressing cytosolic, full length or truncated Nef. Expression levels were variable, but in some lines they averaged 0.7% of total soluble proteins. Hexahistidine-tagged Nef was easily purified from transgenic tissue in a one-step procedure. Conclusion We have shown that transient expression can help to rapidly determine the best cellular compartment for accumulation of a recombinant protein. We have successfully expressed HIV Nef polypeptides in the cytosol of transgenic tobacco plants. The proteins can easily be purified from transgenic tissue.
Collapse
|
37
|
Abstract
Secretory and transmembrane proteins are synthesized in the endoplasmic reticulum (ER) in eukaryotic cells. Nascent polypeptide chains, which are translated on the rough ER, are translocated to the ER lumen and folded into their native conformation. When protein folding is inhibited because of mutations or unbalanced ratios of subunits of hetero-oligomeric proteins, unfolded or misfolded proteins accumulate in the ER in an event called ER stress. As ER stress often disturbs normal cellular functions, signal-transduction pathways are activated in an attempt to maintain the homeostasis of the ER. These pathways are collectively referred to as the unfolded protein response (UPR). There have been great advances in our understanding of the molecular mechanisms underlying the UPR in yeast and mammals over the past two decades. In plants, a UPR analogous to those in yeast and mammals has been recognized and has recently attracted considerable attention. This review will summarize recent advances in the plant UPR and highlight the remaining questions that have yet to be addressed.
Collapse
Affiliation(s)
- Reiko Urade
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
38
|
McClure B. New views of S-RNase-based self-incompatibility. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:639-46. [PMID: 17027324 DOI: 10.1016/j.pbi.2006.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
S-RNase-based self-incompatibility (SI) is the most widespread form of genetically controlled mate selection in plants. S-RNase controls pollination specificity in the pistil, while the newly discovered SLF/SFB controls pollination specificity in the pollen. A widely discussed model suggests that compatibility is explained by ubiquitylation and degradation of nonself-S-RNase and that, conversely, incompatibility is caused by failure to degrade self-S-RNase. This model is consistent with the long-standing view that S-RNase inhibition is central to SI. Recent results show, however, that S-RNase is compartmentalized in pollen tubes and, significantly, that compatibility might not require SLF/SFB. S-RNase compartmentalization and dislocation into the pollen tube cytoplasm might be similar to the trafficking of other cytotoxins such as ricin.
Collapse
Affiliation(s)
- Bruce McClure
- Division of Biochemistry, 240a Christopher S Bond Life Sciences Center, 1201 East Rollins Street, Columbia, Missouri 65211-7310, USA.
| |
Collapse
|
39
|
Jolliffe NA, Di Cola A, Marsden CJ, Lord JM, Ceriotti A, Frigerio L, Roberts LM. The N-terminal ricin propeptide influences the fate of ricin A-chain in tobacco protoplasts. J Biol Chem 2006; 281:23377-85. [PMID: 16774920 DOI: 10.1074/jbc.m602678200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant toxin ricin is synthesized in castor bean seeds as an endoplasmic reticulum (ER)-targeted precursor. Removal of the signal peptide generates proricin in which the mature A- and B-chains are joined by an intervening propeptide and a 9-residue propeptide persists at the N terminus. The two propeptides are ultimately removed in protein storage vacuoles, where ricin accumulates. Here we have demonstrated that the N-terminal propeptide of proricin acts as a nonspecific spacer to ensure efficient ER import and glycosylation. Indeed, when absent from the N terminus of ricin A-chain, the non-imported material remained tethered to the cytosolic face of the ER membrane, presumably by the signal peptide. This species appeared toxic to ribosomes. The propeptide does not, however, influence catalytic activity per se or the vacuolar targeting of proricin or the rate of retrotranslocation/degradation of A-chain in the cytosol. The likely implications of these findings to the survival of the toxin-producing tissue are discussed.
Collapse
Affiliation(s)
- Nicholas A Jolliffe
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Endoplasmic Reticulum-associated Protein Degradation in Plant Cells. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Pimpl P, Taylor JP, Snowden C, Hillmer S, Robinson DG, Denecke J. Golgi-mediated vacuolar sorting of the endoplasmic reticulum chaperone BiP may play an active role in quality control within the secretory pathway. THE PLANT CELL 2006; 18:198-211. [PMID: 16339854 PMCID: PMC1323493 DOI: 10.1105/tpc.105.036665] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/05/2005] [Accepted: 11/08/2005] [Indexed: 05/05/2023]
Abstract
Quality control in the endoplasmic reticulum (ER) prevents the arrival of incorrectly or incompletely folded proteins at their final destinations and targets permanently misfolded proteins for degradation. Such proteins have a high affinity for the ER chaperone BiP and are finally degraded via retrograde translocation from the ER lumen back to the cytosol. This ER-associated protein degradation (ERAD) is currently thought to constitute the main disposal route, but there is growing evidence for a vacuolar role in quality control. We show that BiP is transported to the vacuole in a wortmannin-sensitive manner in tobacco (Nicotiana tabacum) and that it could play an active role in this second disposal route. ER export of BiP occurs via COPII-dependent transport to the Golgi apparatus, where it competes with other HDEL receptor ligands. When HDEL-mediated retrieval from the Golgi fails, BiP is transported to the lytic vacuole via multivesicular bodies, which represent the plant prevacuolar compartment. We also demonstrate that a subset of BiP-ligand complexes is destined to the vacuole and differs from those likely to be disposed of via the ERAD pathway. Vacuolar disposal could act in addition to ERAD to maximize the efficiency of quality control in the secretory pathway.
Collapse
Affiliation(s)
- Peter Pimpl
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | | | | | | | | | | |
Collapse
|