1
|
Hwang SK, Singh S, Maharana J, Kalita S, Tuncel A, Rath T, Panda D, Modi MK, Okita TW. Mechanism Underlying Heat Stability of the Rice Endosperm Cytosolic ADP-Glucose Pyrophosphorylase. FRONTIERS IN PLANT SCIENCE 2019; 10:70. [PMID: 30804963 PMCID: PMC6378277 DOI: 10.3389/fpls.2019.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/17/2019] [Indexed: 05/22/2023]
Abstract
Rice grains accumulate starch as their major storage reserve whose biosynthesis is sensitive to heat. ADP-glucose pyrophosphorylase (AGPase) is among the starch biosynthetic enzymes severely affected by heat stress during seed maturation. To increase the heat tolerance of the rice enzyme, we engineered two dominant AGPase subunits expressed in developing endosperm, the large (L2) and small (S2b) subunits of the cytosol-specific AGPase. Bacterial expression of the rice S2b with the rice L2, potato tuber LS (pLS), or with the mosaic rice-potato large subunits, L2-pLS and pLS-L2, produced heat-sensitive recombinant enzymes, which retained less than 10% of their enzyme activities after 5 min incubation at 55°C. However, assembly of the rice L2 with the potato tuber SS (pSS) showed significantly increased heat stability comparable to the heat-stable potato pLS/pSS. The S2b assembled with the mosaic L2-pLS subunit showed 3-fold higher sensitivity to 3-PGA than L2/S2b, whereas the counterpart mosaic pLS-L2/S2b showed 225-fold lower sensitivity. Introduction of a QTC motif into S2b created an N-terminal disulfide linkage that was cleaved by dithiothreitol reduction. The QTC enzyme showed moderate heat stability but was not as stable as the potato AGPase. While the QTC AGPase exhibited approximately fourfold increase in 3-PGA sensitivity, its substrate affinities were largely unchanged. Random mutagenesis of S2bQTC produced six mutant lines with elevated production of glycogen in bacteria. All six lines contained a L379F substitution, which conferred enhanced glycogen production in bacteria and increased heat stability. Modeled structure of this mutant enzyme revealed that this highly conserved leucine residue is located in the enzyme's regulatory pocket that provides interaction sites for activators and inhibitors. Our molecular dynamic simulation analysis suggests that introduction of the QTC motif and the L379F mutation improves enzyme heat stability by stabilizing their backbone structures possibly due to the increased number of H-bonds between the small subunits and increased intermolecular interactions between the two SSs and two LSs at elevated temperature.
Collapse
Affiliation(s)
- Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Salvinder Singh
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Samhita Kalita
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Aytug Tuncel
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Tanmayee Rath
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Debashish Panda
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| |
Collapse
|
2
|
Boehlein SK, Shaw JR, Hannah LC. Enhancement of Heat Stability and Kinetic Parameters of the Maize Endosperm ADP-Glucose Pyrophosphorylase by Mutagenesis of Amino Acids in the Small Subunit With High B Factors. FRONTIERS IN PLANT SCIENCE 2018; 9:1849. [PMID: 30619417 PMCID: PMC6300691 DOI: 10.3389/fpls.2018.01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is an important enzyme in starch synthesis and previous studies showed that the heat lability of this enzyme is a determinant to starch synthesis in the maize endosperm and, in turn, seed yield. Here, amino acids in the AGPase endosperm small subunit with high B-factors were mutagenized and individual changes enhancing heat stability and/or kinetic parameters in an Escherichia coli expression system were chosen. Individual mutations were combined and analyzed. One triple mutant, here termed Bt2-BF, was chosen for further study. Combinations of this heat stable, 3-PGA-independent small subunit variant with large subunits also heat stable yielded complex patterns of heat stability and kinetic and allosteric properties. Interestingly, two of the three changes reside in a protein motif found only in AGPases that exhibit high sensitivity to 3-PGA. While not the 3-PGA binding site, amino acid substitutions in this region significantly alter 3-PGA activation kinetics.
Collapse
Affiliation(s)
- Susan K. Boehlein
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Janine R. Shaw
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - L. Curtis Hannah
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Boehlein SK, Shaw JR, Boehlein TJ, Boehlein EC, Hannah LC. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:595-606. [PMID: 30062763 DOI: 10.1111/tpj.14053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/23/2018] [Indexed: 05/25/2023]
Abstract
Enzymological and starch analyses of various ADP-glucose pyrophosphorylase (AGPase) null mutants point to fundamental differences in the pathways for starch synthesis in the maize leaf, embryo, ovary and endosperm. Leaf starch is synthesized via the AGPase encoded by the small and large subunits shown previously to be expressed at abundant levels in the leaf, whereas more than one AGPase isoform functions in the embryo and in the ovary. Embryo starch content is also dependent on genes functioning in the leaf and in the endosperm. AGPase encoded by shrunken-2 and brittle-2 synthesizes ~75% of endosperm starch. The gene, agpsemzm, previously shown to encode the small subunit expressed in the embryo, and agpllzm, the leaf large subunit gene, are here shown to encode the endosperm, plastid-localized AGPase. Loss of this enzyme does not reduce endosperm starch. Rather, the data suggest that AGPase-independent starch synthesis accounts for ~25% of endosperm starch. Three maize genes encode the small subunit of the AGPase. Data here show that the triple mutant lacking all three small subunits is lethal in early seed development but can be viable in both male and female gametes. Seed and plant viability is restored by any one of the three small subunit genes, including one previously thought to function only in the cytosol of the endosperm. Data herein also show the functionality of a fourth gene encoding the large subunit of this enzyme. Although adenosine diphosphate glucose pyrophosphorylase is shown here to be essential for maize viability, strong evidence for starch synthesis in the endosperm that is independent of this enzyme is also presented. Starch synthesis is distinct in the maize embryo, ovary, leaf and endosperm, and is coordinated among the various tissues.
Collapse
Affiliation(s)
- Susan K Boehlein
- Program in Plant Molecular and Cellular Biology, Genetics Institute and the Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Janine R Shaw
- Program in Plant Molecular and Cellular Biology, Genetics Institute and the Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy J Boehlein
- Program in Plant Molecular and Cellular Biology, Genetics Institute and the Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Emily C Boehlein
- Program in Plant Molecular and Cellular Biology, Genetics Institute and the Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - L Curtis Hannah
- Program in Plant Molecular and Cellular Biology, Genetics Institute and the Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Hannah LC, Shaw JR, Clancy MA, Georgelis N, Boehlein SK. A brittle-2 transgene increases maize yield by acting in maternal tissues to increase seed number. PLANT DIRECT 2017; 1:e00029. [PMID: 31245677 PMCID: PMC6508519 DOI: 10.1002/pld3.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 05/24/2023]
Abstract
The enzyme ADP-glucose pyrophosphorylase is essential for starch biosynthesis and is highly regulated. Here, mutations that increased heat stability and interactions with allosteric effectors were incorporated into the small subunit of the isoform known to be expressed at high levels in the maize endosperm. The resulting variants were transformed into maize with expression targeted to the endosperm. Transgenes harboring the changes increased yield some 35%; however, yield enhancement occurred via an increase in seed number rather than by increased seed weight. Interestingly, seed number increase is controlled by the genotype of the plant rather than the genotype of the seed as seeds increase in number whether or not they contain the transgene as long as the maternal parent has the transgene. The transgene is however expressed in the endosperm, and the altered allosteric and stability properties initially seen in Escherichia coli expression experiments are also seen with the endosperm-expressed gene. The extent of seed number increase is positively correlated with the average daily high temperature during the first 4 days postpollination. While these results were unexpected, they echo the phenotypic changes caused by the insertion of an altered large subunit of this enzyme reported previously (Plant Cell, 24, 2012, 2352). These results call into question some of the reported fundamental differences separating starch synthesis in the endosperm vis-à-vis other plant tissues.
Collapse
Affiliation(s)
- L. Curtis Hannah
- Program in Plant Molecular and Cellular BiologyDepartment of Horticultural SciencesUniversity of FloridaGainesvilleFLUSA
| | - Janine R. Shaw
- Program in Plant Molecular and Cellular BiologyDepartment of Horticultural SciencesUniversity of FloridaGainesvilleFLUSA
| | - Maureen A. Clancy
- Program in Plant Molecular and Cellular BiologyDepartment of Horticultural SciencesUniversity of FloridaGainesvilleFLUSA
| | - Nikolaos Georgelis
- Program in Plant Molecular and Cellular BiologyDepartment of Horticultural SciencesUniversity of FloridaGainesvilleFLUSA
- Present address:
Simplot Plant SciencesJ.R. Simplot CompanyBoiseIDUSA
| | - Susan K. Boehlein
- Program in Plant Molecular and Cellular BiologyDepartment of Horticultural SciencesUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
5
|
Seferoglu AB, Gul S, Dikbas UM, Baris I, Koper K, Caliskan M, Cevahir G, Kavakli IH. Glu-370 in the large subunit influences the substrate binding, allosteric, and heat stability properties of potato ADP-glucose pyrophosphorylase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:125-132. [PMID: 27717448 DOI: 10.1016/j.plantsci.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key allosteric enzyme in plant starch biosynthesis. Plant AGPase is a heterotetrameric enzyme that consists of large (LS) and small subunits (SS), which are encoded by two different genes. In this study, we showed that the conversion of Glu to Gly at position 370 in the LS of AGPase alters the heterotetrameric stability along with the binding properties of substrate and effectors of the enzyme. Kinetic analyses revealed that the affinity of the LSE370GSSWT AGPase for glucose-1-phosphate is 3-fold less than for wild type (WT) AGPase. Additionally, the LSE370GSSWT AGPase requires 3-fold more 3-phosphogyceric acid to be activated. Finally, the LSE370GSSWTAGPase is less heat stable compared with the WT AGPase. Computational analysis of the mutant Gly-370 in the 3D modeled LS AGPase showed that this residue changes charge distribution of the surface and thus affect stability of the LS AGPase and overall heat stability of the heterotetrameric AGPase. In summary, our results show that LSE370 intricately modulate the heat stability and enzymatic activity of potato the AGPase.
Collapse
Affiliation(s)
- Ayse Bengisu Seferoglu
- Koc University, Department of Chemical and Biological Engineering, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Seref Gul
- Koc University, Department of Chemical and Biological Engineering, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Ugur Meric Dikbas
- Koc University, Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Ibrahim Baris
- Koc University, Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Kaan Koper
- Koc University, Department of Chemical and Biological Engineering, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Mahmut Caliskan
- Istanbul University, Department of Biology, 34134 Suleymaniye, Istanbul, Turkey
| | - Gul Cevahir
- Istanbul University, Department of Biology, 34134 Suleymaniye, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Koc University, Department of Chemical and Biological Engineering, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey; Koc University, Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.
| |
Collapse
|
6
|
Enhancing the heat stability and kinetic parameters of the maize endosperm ADP-glucose pyrophosphorylase using iterative saturation mutagenesis. Arch Biochem Biophys 2015; 568:28-37. [DOI: 10.1016/j.abb.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 11/30/2022]
|
7
|
Seferoglu AB, Koper K, Can FB, Cevahir G, Kavakli IH. Enhanced heterotetrameric assembly of potato ADP-glucose pyrophosphorylase using reverse genetics. PLANT & CELL PHYSIOLOGY 2014; 55:1473-1483. [PMID: 24891561 DOI: 10.1093/pcp/pcu078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key allosteric enzyme in plant starch biosynthesis. Plant AGPase is a heterotetrameric enzyme that consists of large (LS) and small subunits (SS), which are encoded by two different genes. Computational and experimental studies have revealed that the heterotetrameric assembly of AGPase is thermodynamically weak. Modeling studies followed by the mutagenesis of the LS of the potato AGPase identified a heterotetramer-deficient mutant, LS(R88A). To enhance heterotetrameric assembly, LS(R88A) cDNA was subjected to error-prone PCR, and second-site revertants were identified according to their ability to restore glycogen accumulation, as assessed with iodine staining. Selected mutations were introduced into the wild-type (WT) LS and co-expressed with the WT SS in Escherichia coli glgC(-). The biochemical characterization of revertants revealed that LS(I90V)SS(WT), LS(Y378C)SS(WT) and LS(D410G)SS(WT) mutants displayed enhanced heterotetrameric assembly with the WT SS. Among these mutants, LS(Y378C)SS(WT) AGPase displayed increased heat stability compared with the WT enzyme. Kinetic characterization of the mutants indicated that the LS(I90V)SS(WT) and LS(Y378C)SS(WT) AGPases have comparable allosteric and kinetic properties. However, the LS(D410G)SS(WT) mutant exhibited altered allosteric properties of being less responsive and more sensitive to 3-phosphoglyceric acid activation and inorganic phosphate inhibition. This study not only enhances our understanding of the interaction between the SS and the LS of AGPase but also enables protein engineering to obtain enhanced assembled heat-stable variants of AGPase, which can be used for the improvement of plant yields.
Collapse
Affiliation(s)
- A Bengisu Seferoglu
- Department of Chemical and Biological Engineering, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, Turkey
| | - Kaan Koper
- Department of Chemical and Biological Engineering, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, Turkey
| | - F Betul Can
- Department of Molecular Biology and Genetics, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, Turkey
| | - Gul Cevahir
- Istanbul University, Department of Biology, 34134 Suleymaniye, Istanbul, Turkey
| | - I Halil Kavakli
- Department of Chemical and Biological Engineering, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, TurkeyDepartment of Molecular Biology and Genetics, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, Turkey
| |
Collapse
|
8
|
Huang B, Hennen-Bierwagen TA, Myers AM. Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf. PLANT PHYSIOLOGY 2014; 164:596-611. [PMID: 24381067 PMCID: PMC3912092 DOI: 10.1104/pp.113.231605] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) provides the nucleotide sugar ADP-glucose and thus constitutes the first step in starch biosynthesis. The majority of cereal endosperm AGPase is located in the cytosol with a minor portion in amyloplasts, in contrast to its strictly plastidial location in other species and tissues. To investigate the potential functions of plastidial AGPase in maize (Zea mays) endosperm, six genes encoding AGPase large or small subunits were characterized for gene expression as well as subcellular location and biochemical activity of the encoded proteins. Seven transcripts from these genes accumulate in endosperm, including those from shrunken2 and brittle2 that encode cytosolic AGPase and five candidates that could encode subunits of the plastidial enzyme. The amino termini of these five polypeptides directed the transport of a reporter protein into chloroplasts of leaf protoplasts. All seven proteins exhibited AGPase activity when coexpressed in Escherichia coli with partner subunits. Null mutations were identified in the genes agpsemzm and agpllzm and shown to cause reduced AGPase activity in specific tissues. The functioning of these two genes was necessary for the accumulation of normal starch levels in embryo and leaf, respectively. Remnant starch was observed in both instances, indicating that additional genes encode AGPase large and small subunits in embryo and leaf. Endosperm starch was decreased by approximately 7% in agpsemzm- or agpllzm- mutants, demonstrating that plastidial AGPase activity contributes to starch production in this tissue even when the major cytosolic activity is present.
Collapse
|
9
|
Boehlein SK, Shaw JR, Georgelis N, Hannah LC. Enhanced heat stability and kinetic parameters of maize endosperm ADPglucose pyrophosphorylase by alteration of phylogenetically identified amino acids. Arch Biochem Biophys 2013; 543:1-9. [PMID: 24378757 DOI: 10.1016/j.abb.2013.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/12/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
ADP-glucose pyrophosphorylase (AGPase) controls the rate-limiting step in starch biosynthesis and is regulated at various levels. Cereal endosperm enzymes, in contrast to other plant AGPases, are particularly heat labile and transgenic studies highlight the importance of temperature for cereal yield. Previously, a phylogenetic approach identified Type II and positively selected amino acid positions in the large subunit of maize endosperm AGPase. Glycogen content, kinetic parameters and heat stability were measured in AGPases having mutations in these sites and interesting differences were observed. This study expands on our earlier evolutionary work by determining how all Type II and positively selected sites affect kinetic constants, heat stability and catalytic rates at increased temperatures. Variants with enhanced properties were identified and combined into one gene, designated Sh2-E. Enhanced properties include: heat stability, enhanced activity at 37 °C, activity at 55 °C, reduced Ka and activity in the absence of activator. The resulting enzyme exhibited all improved properties of the various individual changes. Additionally, Sh2-E was expressed with a small subunit variant with enhanced enzyme properties resulting in an enzyme that has exceptional heat stability, a high catalytic rate at increased temperatures and significantly decreased Km values for both substrates in the absence of the activator.
Collapse
Affiliation(s)
- Susan K Boehlein
- 1253 Fifield Hall, University of Florida, Gainesville, FL 32611, USA
| | - Janine R Shaw
- 1253 Fifield Hall, University of Florida, Gainesville, FL 32611, USA
| | | | - L Curtis Hannah
- 1253 Fifield Hall, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
10
|
Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases. Arch Biochem Biophys 2013; 535:215-26. [DOI: 10.1016/j.abb.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022]
|
11
|
Seferoglu AB, Baris I, Morgil H, Tulum I, Ozdas S, Cevahir G, Kavakli IH. Transcriptional regulation of the ADP-glucose pyrophosphorylase isoforms in the leaf and the stem under long and short photoperiod in lentil. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:29-37. [PMID: 23498860 DOI: 10.1016/j.plantsci.2013.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 05/23/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key enzyme in plant starch biosynthesis. It contains large (LS) and small (SS) subunits encoded by two different genes. In this study, we explored the transcriptional regulation of both the LS and SS subunits of AGPase in stem and leaf under different photoperiods length in lentil. To this end, we first isolated and characterized different isoforms of the LS and SS of lentil AGPase and then we performed quantitative real time PCR (qPCR) to see the effect of photoperiod length on the transcription of the AGPase isforms under the different photoperiod regimes in lentil. Analysis of the qPCR results revealed that the transcription of different isoforms of the LSs and the SSs of lentil AGPase are differentially regulated when photoperiod shifted from long-day to short-day in stem and leaves. While transcript levels of LS1 and SS2 in leaf significantly decreased, overall transcript levels of SS1 increased in short-day regime. Our results indicated that day length affects the transcription of lentil AGPase isoforms differentially in stems and leaves most likely to supply carbon from the stem to other tissues to regulate carbon metabolism under short-day conditions.
Collapse
Affiliation(s)
- Ayse Bengisu Seferoglu
- Koc University, Department of Chemical and Biological Engineering, Rumeli Feneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
12
|
Kuhn ML, Figueroa CM, Iglesias AA, Ballicora MA. The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms. BMC Evol Biol 2013; 13:51. [PMID: 23433303 PMCID: PMC3585822 DOI: 10.1186/1471-2148-13-51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/13/2013] [Indexed: 11/30/2022] Open
Abstract
Background ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the synthesis of glycogen in bacteria and starch in algae and plants. In oxygenic photosynthetic organisms, ADP-Glc PPase is mainly activated by 3-phosphoglycerate (3-PGA) and to a lesser extent by other metabolites. In this work, we analyzed the activation promiscuity of ADP-Glc PPase subunits from the cyanobacterium Anabaena PCC 7120, the green alga Ostreococcus tauri, and potato (Solanum tuberosum) tuber by comparing a specificity constant for 3-PGA, fructose-1,6-bisphosphate (FBP), fructose-6-phosphate, and glucose-6-phosphate. Results The 3-PGA specificity constant for the enzymes from Anabaena (homotetramer), O. tauri, and potato tuber was considerably higher than for other activators. O. tauri and potato tuber enzymes were heterotetramers comprising homologous small and large subunits. Conversely, the O. tauri small subunit (OtaS) homotetramer was more promiscuous because its FBP specificity constant was similar to that for 3-PGA. To explore the role of both OtaS and OtaL (O. tauri large subunit) in determining the specificity of the heterotetramer, we knocked out the catalytic activity of each subunit individually by site-directed mutagenesis. Interestingly, the mutants OtaSD148A/OtaL and OtaS/OtaLD171A had higher specificity constants for 3-PGA than for FBP. Conclusions After gene duplication, OtaS seemed to have lost specificity for 3-PGA compared to FBP. This was physiologically and evolutionarily feasible because co-expression of both subunits restored the specificity for 3-PGA of the resulting heterotetrameric wild type enzyme. This widespread promiscuity seems to be ancestral and intrinsic to the enzyme family. Its presence could constitute an efficient evolutionary mechanism to accommodate the ADP-Glc PPase regulation to different metabolic needs.
Collapse
Affiliation(s)
- Misty L Kuhn
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 W, Sheridan Rd, Chicago, IL 60660, USA
| | | | | | | |
Collapse
|
13
|
Understanding the allosteric trigger for the fructose-1,6-bisphosphate regulation of the ADP-glucose pyrophosphorylase from Escherichia coli. Biochimie 2011; 93:1816-23. [DOI: 10.1016/j.biochi.2011.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022]
|
14
|
Affiliation(s)
- Peter L. Keeling
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| | - Alan M. Myers
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
15
|
Boehlein SK, Shaw JR, Stewart JD, Hannah LC. Studies of the kinetic mechanism of maize endosperm ADP-glucose pyrophosphorylase uncovered complex regulatory properties. PLANT PHYSIOLOGY 2010; 152:1056-64. [PMID: 20018600 PMCID: PMC2815884 DOI: 10.1104/pp.109.149450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
ADP-glucose pyrophosphorylase catalyzes the synthesis of ADP-glucose (ADP-Glc) from Glc-1-phosphate (G-1-P) and ATP. Kinetic studies were performed to define the nature of the reaction, both in the presence and absence of allosteric effector molecules. When 3-phosphoglycerate (3-PGA), the putative physiological activator, was present at a saturating level, initial velocity studies were consistent with a Theorell-Chance BiBi mechanism and product inhibition data supported sequential binding of ATP and G-1-P, followed by ordered release of pyrophosphate and ADP-Glc. A sequential mechanism was also followed when 3-PGA was absent, but product inhibition patterns changed dramatically. In the presence of 3-PGA, ADP-Glc is a competitive inhibitor with respect to ATP. In the absence of 3-PGA--with or without 5.0 mm inorganic phosphate--ADP-Glc actually stimulated catalytic activity, acting as a feedback product activator. By contrast, the other product, pyrophosphate, is a potent inhibitor in the absence of 3-PGA. In the presence of subsaturating levels of allosteric effectors, G-1-P serves not only as a substrate but also as an activator. Finally, in the absence of 3-PGA, inorganic phosphate, a classic inhibitor or antiactivator of the enzyme, stimulates enzyme activity at low substrate by lowering the K(M) values for both substrates.
Collapse
|
16
|
Boehlein SK, Shaw JR, Hannah LC, Stewart JD. Probing allosteric binding sites of the maize endosperm ADP-glucose pyrophosphorylase. PLANT PHYSIOLOGY 2010; 152:85-95. [PMID: 19889875 PMCID: PMC2799348 DOI: 10.1104/pp.109.146928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Maize (Zea mays) endosperm ADP-glucose pyrophosphorylase (AGPase) is a highly regulated enzyme that catalyzes the rate-limiting step in starch biosynthesis. Although the structure of the heterotetrameric maize endosperm AGPase remains unsolved, structures of a nonnative, low-activity form of the potato tuber (Solanum tuberosum) AGPase (small subunit homotetramer) reported previously by others revealed that several sulfate ions bind to each enzyme. These sites are also believed to interact with allosteric regulators such as inorganic phosphate and 3-phosphoglycerate (3-PGA). Several arginine (Arg) side chains contact the bound sulfate ions in the potato structure and likely play important roles in allosteric effector binding. Alanine-scanning mutagenesis was applied to the corresponding Arg residues in both the small and large subunits of maize endosperm AGPase to determine their roles in allosteric regulation and thermal stability. Steady-state kinetic and regulatory parameters were measured for each mutant. All of the Arg mutants examined--in both the small and large subunits--bound 3-PGA more weakly than the wild type (A(50) increased by 3.5- to 20-fold). By contrast, the binding of two other maize AGPase allosteric activators (fructose-6-phosphate and glucose-6-phosphate) did not always mimic the changes observed for 3-PGA. In fact, compared to 3-PGA, fructose-6-phosphate is a more efficient activator in two of the Arg mutants. Phosphate binding was also affected by Arg substitutions. The combined data support a model for the binding interactions associated with 3-PGA in which allosteric activators and inorganic phosphate compete directly.
Collapse
|
17
|
Kuhn ML, Falaschetti CA, Ballicora MA. Ostreococcus tauri ADP-glucose pyrophosphorylase reveals alternative paths for the evolution of subunit roles. J Biol Chem 2009; 284:34092-102. [PMID: 19737928 DOI: 10.1074/jbc.m109.037614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-glucose pyrophosphorylase controls starch synthesis in plants and is an interesting case to study the evolution and differentiation of roles in heteromeric enzymes. It includes two homologous subunits, small (S) and large (L), that originated from a common photosynthetic eukaryotic ancestor. In present day organisms, these subunits became complementary after loss of certain roles in a process described as subfunctionalization. For instance, the potato tuber enzyme has a noncatalytic L subunit that complements an S subunit with suboptimal allosteric properties. To understand the evolution of catalysis and regulation in this family, we artificially synthesized both subunit genes from the unicellular alga Ostreococcus tauri. This is among the most ancient species in the green lineage that diverged from the ancestor of all green plants and algae. After heterologous gene expression, we purified and characterized the proteins. The O. tauri enzyme was not redox-regulated, suggesting that redox regulation of ADP-glucose pyrophosphorylases appeared later in evolution. The S subunit had a typical low apparent affinity for the activator 3-phosphoglycerate, but it was atypically defective in the catalytic efficiency (V(max)/K(m)) for the substrate Glc-1-P. The L subunit needed the S subunit for soluble expression. In the presence of a mutated S subunit (to avoid interference), the L subunit had a high apparent affinity for 3-phosphoglycerate and substrates suggesting a leading role in catalysis. Therefore, the subfunctionalization of the O. tauri enzyme was different from previously described cases. To the best of our knowledge, this is the first biochemical description of a system with alternative subfunctionalization paths.
Collapse
Affiliation(s)
- Misty L Kuhn
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois 60626, USA
| | | | | |
Collapse
|
18
|
Georgelis N, Shaw JR, Hannah LC. Phylogenetic analysis of ADP-glucose pyrophosphorylase subunits reveals a role of subunit interfaces in the allosteric properties of the enzyme. PLANT PHYSIOLOGY 2009; 151:67-77. [PMID: 19625637 PMCID: PMC2735977 DOI: 10.1104/pp.109.138933] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties. Amino acid changes that could account for these differences were identified previously by evolutionary analysis. In this study, these large subunit residues were mapped onto a modeled structure of the maize (Zea mays) endosperm enzyme. Surprisingly, of 29 amino acids identified via evolutionary considerations, 17 were located at subunit interfaces. Fourteen of the 29 amino acids were mutagenized in the maize endosperm large subunit (SHRUNKEN-2 [SH2]), and resulting variants were expressed in Escherichia coli with the maize endosperm small subunit (BT2). Comparisons of the amount of glycogen produced in E. coli, and the kinetic and allosteric properties of the variants with wild-type SH2/BT2, indicate that 11 variants differ from the wild type in enzyme properties or in vivo glycogen level. More interestingly, six of nine residues located at subunit interfaces exhibit altered allosteric properties. These results indicate that the interfaces between the large and small subunits are important for the allosteric properties of AGPase, and changes at these interfaces contribute to AGPase functional specialization. Our results also demonstrate that evolutionary analysis can greatly facilitate enzyme structure-function analyses.
Collapse
Affiliation(s)
- Nikolaos Georgelis
- Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | |
Collapse
|
19
|
Boehlein SK, Shaw JR, Stewart JD, Hannah LC. Characterization of an autonomously activated plant ADP-glucose pyrophosphorylase. PLANT PHYSIOLOGY 2009; 149:318-26. [PMID: 18715954 PMCID: PMC2613723 DOI: 10.1104/pp.108.126862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/08/2008] [Indexed: 05/23/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch biosynthesis in plants and changes in its catalytic and/or allosteric properties can lead to increased starch production. Recently, a maize (Zea mays)/potato (Solanum tuberosum) small subunit mosaic, MP [Mos(1-198)], containing the first 198 amino acids of the small subunit of the maize endosperm enzyme and the last 277 amino acids from the potato tuber enzyme, was expressed with the maize endosperm large subunit and was reported to have favorable kinetic and allosteric properties. Here, we show that this mosaic, in the absence of activator, performs like a wild-type AGPase that is partially activated with 3-phosphoglyceric acid (3-PGA). In the presence of 3-PGA, enzyme properties of Mos(1-198)/SH2 are quite similar to those of the wild-type maize enzyme. In the absence of 3-PGA, however, the mosaic enzyme exhibits greater activity, higher affinity for the substrates, and partial inactivation by inorganic phosphate. The Mos(1-198)/SH2 enzyme is also more stable to heat inactivation. The different properties of this protein were mapped using various mosaics containing smaller portions of the potato small subunit. Enhanced heat stability of Mos(1-198) was shown to originate from five potato-derived amino acids between 322 and 377. These amino acids were shown previously to be important in small subunit/large subunit interactions. These five potato-derived amino acids plus other potato-derived amino acids distributed throughout the carboxyl-terminal portion of the protein are required for the enhanced catalytic and allosteric properties exhibited by Mos(1-198)/SH2.
Collapse
Affiliation(s)
- Susan K Boehlein
- Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | |
Collapse
|
20
|
Dose-dependent significance of monosaccharides on intracellular α-l-rhamnosidase activity from Pseudoalteromonas sp. Biotechnol Lett 2008; 30:2147-50. [DOI: 10.1007/s10529-008-9810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
21
|
Hannah LC, James M. The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol 2008; 19:160-5. [PMID: 18400487 DOI: 10.1016/j.copbio.2008.02.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 01/10/2023]
Abstract
Starch serves not only as an energy source for plants, animals, and humans but also as an environmentally friendly alternative for fossil fuels. Here, we describe recent findings concerning the synthesis of this important molecule in the cereal endosperm. Results from six separate transgenic reports point to the importance of adenosine diphosphate glucose pyrophosphorylase in controlling the amount of starch synthesized. The unexpected cause underlying the contrast in sequence divergence of its two subunits is also described. A major unresolved question concerning the synthesis of starch is the origin of nonrandom or clustered alpha-1,6 branch-points within the major component of starch, amylopectin. Developing evidence that several of the starch biosynthetic enzymes involved in amylopectin synthesis occur in complexes is reviewed. These complexes may provide the specificity for the formation of nonrandom branch-points.
Collapse
Affiliation(s)
- L Curtis Hannah
- University of Florida, Program in Plant Molecular and Cellular Biology & Department of Horticultural Sciences, P.O. Box 110690, 2211 Fifield Hall, Gainesville, FL 32611, USA
| | | |
Collapse
|
22
|
Boehlein SK, Shaw JR, Stewart JD, Hannah LC. Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined. PLANT PHYSIOLOGY 2008; 146:289-99. [PMID: 18024561 PMCID: PMC2230563 DOI: 10.1104/pp.107.109942] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 11/07/2007] [Indexed: 05/23/2023]
Abstract
ADP-glucose (Glc) pyrophosphorylase (AGPase), a key regulatory enzyme in starch biosynthesis, is highly regulated. Transgenic approaches in four plant species showed that alterations in either thermal stability or allosteric modulation increase starch synthesis. Here, we show that the classic regulators 3-phosphoglyceric acid (3-PGA) and inorganic phosphate (Pi) stabilize maize (Zea mays) endosperm AGPase to thermal inactivation. In addition, we show that glycerol phosphate and ribose-5-P increase the catalytic activity of maize AGPase to the same extent as the activator 3-PGA, albeit with higher K(a) (activation constant) values. Activation by fructose-6-P and Glc-6-P is comparable to that of 3-PGA. The reactants ATP and ADP-Glc, but not Glc-1-P and pyrophosphate, protect AGPase from thermal inactivation, a result consistent with the ordered kinetic mechanism reported for other AGPases. 3-PGA acts synergistically with both ATP and ADP-Glc in heat protection, decreasing the substrate concentration needed for protection and increasing the extent of protection. Characterization of a series of activators and inhibitors suggests that they all bind at the same site or at mutually exclusive sites. Pi, the classic "inhibitor" of AGPase, binds to the enzyme in the absence of other metabolites, as determined by thermal protections experiments, but does not inhibit activity. Rather, Pi acts by displacing bound activators and returning the enzyme to its activity in their absence. Finally, we show from thermal inactivation studies that the enzyme exists in two forms that have significantly different stabilities and do not interconvert rapidly.
Collapse
Affiliation(s)
- Susan K Boehlein
- Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | |
Collapse
|
23
|
Georgelis N, Braun EL, Shaw JR, Hannah LC. The two AGPase subunits evolve at different rates in angiosperms, yet they are equally sensitive to activity-altering amino acid changes when expressed in bacteria. THE PLANT CELL 2007; 19:1458-72. [PMID: 17496118 PMCID: PMC1913735 DOI: 10.1105/tpc.106.049676] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rate of protein evolution is generally thought to reflect, at least in part, the proportion of amino acids within the protein that are needed for proper function. In the case of ADP-glucose pyrophosphorylase (AGPase), this premise led to the hypothesis that, because the AGPase small subunit is more conserved compared with the large subunit, a higher proportion of the amino acids of the small subunit are required for enzyme activity compared with the large subunit. Evolutionary analysis indicates that the AGPase small subunit has been subject to more intense purifying selection than the large subunit in the angiosperms. However, random mutagenesis and expression of the maize (Zea mays) endosperm AGPase in bacteria show that the two AGPase subunits are equally predisposed to enzyme activity-altering amino acid changes when expressed in one environment with a single complementary subunit. As an alternative hypothesis, we suggest that the small subunit exhibits more evolutionary constraints in planta than does the large subunit because it is less tissue specific and thus must form functional enzyme complexes with different large subunits. Independent approaches provide data consistent with this alternative hypothesis.
Collapse
Affiliation(s)
- Nikolaos Georgelis
- Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | |
Collapse
|
24
|
Iglesias AA, Ballicora MA, Sesma JI, Preiss J. Domain swapping between a cyanobacterial and a plant subunit ADP-glucose pyrophosphorylase. PLANT & CELL PHYSIOLOGY 2006; 47:523-30. [PMID: 16501256 DOI: 10.1093/pcp/pcj021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the regulatory step in the pathway for synthesis of bacterial glycogen and starch in plants. ADP-Glc PPases from cyanobacteria (homotetramer) and from potato (Solanum tuberosum) tuber (heterotetramer) are activated by 3-phosphoglycerate and inhibited by inorganic orthophosphate. To study the function of two putative domains, chimeric enzymes were constructed. PSSANA contained the N-terminus (292 amino acids) of the potato tuber ADP-Glc PPase small subunit (PSS) and the C-terminus (159 residues) of the Anabaena PCC 7120 enzyme. ANAPSS was the inverse chimera. These constructs were expressed separately or together with the large subunit of the potato tuber ADP-Glc PPase (PLS), to obtain homo- and heterotetrameric chimeric proteins. Characterization of these forms showed that the N-terminus determines stability and regulatory redox-dependent properties. The chimeric forms exhibited intermediate 3-phosphoglycerate activation properties with respect to the wild-type homotetrameric enzymes, indicating that the interaction between the putative N- and C-domains determines the affinity for the activator. Characterization of the chimeric heterotetramers showed the functionality of the large subunit, mainly in modulating regulation of the enzyme by the coordinate action of 3-phosphoglycerate and inorganic orthophosphate.
Collapse
Affiliation(s)
- Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Paraje El Pozo, CC 242, S3000ZAA, Santa Fe, Argentina
| | | | | | | |
Collapse
|
25
|
Linebarger CRL, Boehlein SK, Sewell AK, Shaw J, Hannah LC. Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit. PLANT PHYSIOLOGY 2005; 139:1625-34. [PMID: 16299180 PMCID: PMC1310547 DOI: 10.1104/pp.105.067637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/11/2005] [Accepted: 09/13/2005] [Indexed: 05/05/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis. However, plant AGPases differ in several parameters, including spatial and temporal expression, allosteric regulation, and heat stability. AGPases of cereal endosperms are heat labile, while those in other tissues, such as the potato (Solanum tuberosum) tuber, are heat stable. Sequence comparisons of heat-stable and heat-labile AGPases identified an N-terminal motif unique to heat-stable enzymes. Insertion of this motif into recombinant maize (Zea mays) endosperm AGPase increased the half-life at 58 degrees C more than 70-fold. Km values for physiological substrates were unaffected, although Kcat was doubled. A cysteine within the inserted motif gives rise to small subunit homodimers not found in the wild-type maize enzyme. Placement of this N-terminal motif into a mosaic small subunit containing the N terminus from maize endosperm and the C terminus from potato tuber AGPase increases heat stability more than 300-fold.
Collapse
Affiliation(s)
- Carla R Lyerly Linebarger
- Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|