1
|
Wang X, Shen X, Qu Y, Zhang H, Wang C, Yang F, Shen H. Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters. NATURE PLANTS 2024; 10:633-644. [PMID: 38570642 DOI: 10.1038/s41477-024-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Plant high-affinity K+ transporters (HKTs) play a pivotal role in maintaining the balance of Na+ and K+ ions in plants, thereby influencing plant growth under K+-depleted conditions and enhancing tolerance to salinity stress. Here we report the cryo-electron microscopy structures of Oryza sativa HKT2;1 and HKT2;2/1 at overall resolutions of 2.5 Å and 2.3 Å, respectively. Both transporters adopt a dimeric assembly, with each protomer enclosing an ion permeation pathway. Comparison between the selectivity filters of the two transporters reveals the critical roles of Ser88/Gly88 and Val243/Gly243 in determining ion selectivity. A constriction site along the ion permeation pathway is identified, consisting of Glu114, Asn273, Pro392, Pro393, Arg525, Lys517 and the carboxy-terminal Trp530 from the neighbouring protomer. The linker between domains II and III adopts a stable loop structure oriented towards the constriction site, potentially participating in the gating process. Electrophysiological recordings, yeast complementation assays and molecular dynamics simulations corroborate the functional importance of these structural features. Our findings provide crucial insights into the ion selectivity and transport mechanisms of plant HKTs, offering valuable structural templates for developing new salinity-tolerant cultivars and strategies to increase crop yields.
Collapse
Affiliation(s)
- Xiaohui Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoshuai Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yannan Qu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Heng Zhang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Chu Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
Yang X, Hu R, Sun F, Shen S, Zhang M, Liu Y, Zhang Y, Du H, Lu K, Qu C, Yin N. Identification of the High-Affinity Potassium Transporter Gene Family (HKT) in Brassica U-Triangle Species and Its Potential Roles in Abiotic Stress in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3768. [PMID: 37960124 PMCID: PMC10649870 DOI: 10.3390/plants12213768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Members of the high-affinity potassium transporter (HKT) protein family regulate the uptake and homeostasis of sodium and potassium ions, but little research describes their roles in response to abiotic stresses in rapeseed (Brassica napus L.). In this study, we identified and characterized a total of 36 HKT genes from the species comprising the triangle of U model (U-triangle species): B. rapa, B. nigra, B. oleracea, B. juncea, B. napus, and B. carinata. We analyzed the phylogenetic relationships, gene structures, motif compositions, and chromosomal distributions of the HKT family members of rapeseed. Based on their phylogenetic relationships and assemblage of functional domains, we classified the HKT members into four subgroups, HKT1;1 to HKT1;4. Analysis of the nonsynonymous substitutions (Ka), synonymous substitutions (Ks), and the Ka/Ks ratios of HKT gene pairs suggested that these genes have experienced strong purifying selective pressure after duplication, with their evolutionary relationships supporting the U-triangle theory. Furthermore, the expression profiles of BnaHKT genes varies among potassium, phytohormone and heavy-metal treatment. Their repression provides resistance to heavy-metal stress, possibly by limiting uptake. Our results systematically reveal the characteristics of HKT family proteins and their encoding genes in six Brassica species and lay a foundation for further exploration of the role of HKT family genes in heavy-metal tolerance.
Collapse
Affiliation(s)
- Xiaoran Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ran Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yiwei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
3
|
Feng Q, Cao S, Liao S, Wassie M, Sun X, Chen L, Xie Y. Fusarium equiseti-inoculation altered rhizosphere soil microbial community, potentially driving perennial ryegrass growth and salt tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162153. [PMID: 36764552 DOI: 10.1016/j.scitotenv.2023.162153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Fusarium equiseti is an effective plant growth-promoting fungi that induce systemic disease resistance in plants. However, the role of F. equiseti in regulating salt stress response and the underlying mechanisms remain largely unknown. Here, we investigated the effect of F. equiseti Z7 strain on the growth and salt stress response in perennial ryegrass. Additionally, the role of Z7 in regulating the abundance, composition, and structure of native microbial communities in the rhizosphere soil was determined. We observed that Z7 could produce indole-3-acetic acid (IAA) and siderophores. Hence, Z7 inoculation further enhanced plant growth and salt tolerance in perennial ryegrass. Inoculating Z7 increased K+ and decreased Na+ in plant tissues. Z7 inoculation also enhanced soil quality by reducing soluble salt and increasing available phosphorus. Moreover, inoculating Z7 altered the compositions of bacterial and fungal communities in the rhizosphere soil. For instance, beneficial bacterial genera, such as Flavobacterium, Enterobacter, Agrobacterium, and Burkholderiales were dominantly enriched in Z7-inoculated soil. Interestingly, the relative abundance of these genera showed significantly positive correlations with the fresh weight of perennial ryegrass. Our results demonstrate that Z7 could remarkably promote plant growth and salt tolerance by regulating ion homeostasis in plant tissues and microbial communities in the rhizosphere soil. This study provides a scientific foundation for applying microbes to improve plant growth under extreme salt stress conditions.
Collapse
Affiliation(s)
- Qijia Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Shilong Cao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbe, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Almira Casellas MJ, Pérez‐Martín L, Busoms S, Boesten R, Llugany M, Aarts MGM, Poschenrieder C. A genome-wide association study identifies novel players in Na and Fe homeostasis in Arabidopsis thaliana under alkaline-salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:225-245. [PMID: 36433704 PMCID: PMC10108281 DOI: 10.1111/tpj.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In nature, multiple stress factors occur simultaneously. The screening of natural diversity panels and subsequent Genome-Wide Association Studies (GWAS) is a powerful approach to identify genetic components of various stress responses. Here, the nutritional status variation of a set of 270 natural accessions of Arabidopsis thaliana grown on a natural saline-carbonated soil is evaluated. We report significant natural variation on leaf Na (LNa) and Fe (LFe) concentrations in the studied accessions. Allelic variation in the NINJA and YUC8 genes is associated with LNa diversity, and variation in the ALA3 is associated with LFe diversity. The allelic variation detected in these three genes leads to changes in their mRNA expression and correlates with plant differential growth performance when plants are exposed to alkaline salinity treatment under hydroponic conditions. We propose that YUC8 and NINJA expression patters regulate auxin and jasmonic signaling pathways affecting plant tolerance to alkaline salinity. Finally, we describe an impairment in growth and leaf Fe acquisition associated with differences in root expression of ALA3, encoding a phospholipid translocase active in plasma membrane and the trans Golgi network which directly interacts with proteins essential for the trafficking of PIN auxin transporters, reinforcing the role of phytohormonal processes in regulating ion homeostasis under alkaline salinity.
Collapse
Affiliation(s)
- Maria Jose Almira Casellas
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Laura Pérez‐Martín
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
- Department of Botany and Plant BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Silvia Busoms
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - René Boesten
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| |
Collapse
|
5
|
Zhu J, Zhou H, Fan Y, Guo Y, Zhang M, Shabala S, Zhao C, Lv C, Guo B, Wang F, Zhou M, Xu R. HvNCX, a prime candidate gene for the novel qualitative locus qS7.1 associated with salinity tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:9. [PMID: 36656369 PMCID: PMC9852152 DOI: 10.1007/s00122-023-04267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A major QTL (qS7.1) for salinity damage score and Na+ exclusion was identified on chromosome 7H from a barley population derived from a cross between a cultivated variety and a wild accession. qS7.1 was fine-mapped to a 2.46 Mb physical interval and HvNCX encoding a sodium/calcium exchanger is most likely the candidate gene. Soil salinity is one of the major abiotic stresses affecting crop yield. Developing salinity-tolerant varieties is critical for minimizing economic penalties caused by salinity and providing solutions for global food security. Many genes/QTL for salt tolerance have been reported in barley, but only a few of them have been cloned. In this study, a total of 163 doubled haploid lines from a cross between a cultivated barley variety Franklin and a wild barley accession TAM407227 were used to map QTL for salinity tolerance. Four significant QTL were identified for salinity damage scores. One (qS2.1) was located on 2H, determining 7.5% of the phenotypic variation. Two (qS5.1 and qS5.2) were located on 5H, determining 5.3-11.7% of the phenotypic variation. The most significant QTL was found on 7H, explaining 27.8% of the phenotypic variation. Two QTL for Na+ content in leaves under salinity stress were detected on chromosomes 1H (qNa1.1) and 7H(qNa7.1). qS7.1 was fine-mapped to a 2.46 Mb physical interval using F4 recombinant inbred lines. This region contains 23 high-confidence genes, with HvNCX which encodes a sodium/calcium exchanger being most likely the candidate gene. HvNCX was highly induced by salinity stress and showed a greater expression level in the sensitive parent. Multiple nucleotide substitutions and deletions/insertions in the promoter sequence of HvNCX were found between the two parents. cDNA sequencing of the HvNCX revealed that the difference between the two parents is conferred by a single Ala77/Pro77 amino acid substitution, which is located on the transmembrane domain. These findings open new prospects for improving salinity tolerance in barley by targeting a previously unexplored trait.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Yun Fan
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Yu Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Dave A, Agarwal P, Agarwal PK. Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech 2022; 12:51. [PMID: 35127306 PMCID: PMC8795266 DOI: 10.1007/s13205-021-03092-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Glycophytic plants are susceptible to salinity and their growth is hampered in more than 40 mM of salt. Salinity not only affects crop yield but also limits available land for farming by decreasing its fertility. Presence of distinct traits in response to environmental conditions might result in evolutionary adaptations. A better understanding of salinity tolerance through a comprehensive study of how Na+ is transported will help in the development of plants with improved salinity tolerance and might lead to increased yield of crops growing in strenuous environment. Ion transporters play pivotal role in salt homeostasis and maintain low cytotoxic effect in the cell. High-affinity potassium transporters are the critical class of integral membrane proteins found in plants. It mainly functions to remove excess Na+ from the transpiration stream to prevent sodium toxicity in the salt-sensitive shoot and leaf tissues. However, there are large number of HKT proteins expressed in plants, and it is possible that these members perform in a wide range of functions. Understanding their mechanism and functions will aid in further manipulation and genetic transformation of different crops. This review focuses on current knowledge of ion selectivity and molecular mechanisms controlling HKT gene expression. The current review highlights the mechanism of different HKT transporters from different plant sources and how this knowledge could prove as a valuable tool to improve crop productivity.
Collapse
Affiliation(s)
- Ankita Dave
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
7
|
Plant HKT Channels: An Updated View on Structure, Function and Gene Regulation. Int J Mol Sci 2021; 22:ijms22041892. [PMID: 33672907 PMCID: PMC7918770 DOI: 10.3390/ijms22041892] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
HKT channels are a plant protein family involved in sodium (Na+) and potassium (K+) uptake and Na+-K+ homeostasis. Some HKTs underlie salt tolerance responses in plants, while others provide a mechanism to cope with short-term K+ shortage by allowing increased Na+ uptake under K+ starvation conditions. HKT channels present a functionally versatile family divided into two classes, mainly based on a sequence polymorphism found in the sequences underlying the selectivity filter of the first pore loop. Physiologically, most class I members function as sodium uniporters, and class II members as Na+/K+ symporters. Nevertheless, even within these two classes, there is a high functional diversity that, to date, cannot be explained at the molecular level. The high complexity is also reflected at the regulatory level. HKT expression is modulated at the level of transcription, translation, and functionality of the protein. Here, we summarize and discuss the structure and conservation of the HKT channel family from algae to angiosperms. We also outline the latest findings on gene expression and the regulation of HKT channels.
Collapse
|
8
|
Dabravolski SA, Isayenkov SV. Evolution of Plant Na +-P-Type ATPases: From Saline Environments to Land Colonization. PLANTS 2021; 10:plants10020221. [PMID: 33498844 PMCID: PMC7911474 DOI: 10.3390/plants10020221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Soil salinity is one of the major factors obstructing the growth and development of agricultural crops. Eukaryotes have two main transport systems involved in active Na+ removal: cation/H+ antiporters and Na+-P-type ATPases. Key transport proteins, Na+/K+-P-ATPases, are widely distributed among the different taxa families of pumps which are responsible for keeping cytosolic Na+ concentrations below toxic levels. Na+/K+-P-ATPases are considered to be absent in flowering plants. The data presented here are a complete inventory of P-type Na+/K+-P-ATPases in the major branches of the plant kingdom. We also attempt to elucidate the evolution of these important membrane pumps in plants in comparison with other organisms. We were able to observe the gradual replacement of the Na+-binding site to the Ca2+-binding site, starting with cyanobacteria and moving to modern land plants. Our results show that the α-subunit likely evolved from one common ancestor to bacteria, fungi, plants, and mammals, whereas the β-subunit did not evolve in green algae. In conclusion, our results strongly suggest the significant differences in the domain architecture and subunit composition of plant Na+/K+-P-ATPases depending on plant taxa and the salinity of the environment. The obtained data clarified and broadened the current views on the evolution of Na+/K+-P-ATPases. The results of this work would be helpful for further research on P-type ATPase functionality and physiological roles.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 21002 Vitebsk, Belarus;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, 04123 Kyiv, Ukraine
- Correspondence: author:
| |
Collapse
|
9
|
Cushman KR, Pabuayon ICM, Hinze LL, Sweeney ME, de los Reyes BG. Networks of Physiological Adjustments and Defenses, and Their Synergy With Sodium (Na +) Homeostasis Explain the Hidden Variation for Salinity Tolerance Across the Cultivated Gossypium hirsutum Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 11:588854. [PMID: 33363555 PMCID: PMC7752944 DOI: 10.3389/fpls.2020.588854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The abilities to mobilize and/or sequester excess ions within and outside the plant cell are important components of salt-tolerance mechanisms. Mobilization and sequestration of Na+ involves three transport systems facilitated by the plasma membrane H+/Na+ antiporter (SOS1), vacuolar H+/Na+ antiporter (NHX1), and Na+/K+ transporter in vascular tissues (HKT1). Many of these mechanisms are conserved across the plant kingdom. While Gossypium hirsutum (upland cotton) is significantly more salt-tolerant relative to other crops, the critical factors contributing to the phenotypic variation hidden across the germplasm have not been fully unraveled. In this study, the spatio-temporal patterns of Na+ accumulation along with other physiological and biochemical interactions were investigated at different severities of salinity across a meaningful genetic diversity panel across cultivated upland Gossypium. The aim was to define the importance of holistic or integrated effects relative to the direct effects of Na+ homeostasis mechanisms mediated by GhHKT1, GhSOS1, and GhNHX1. Multi-dimensional physio-morphometric attributes were investigated in a systems-level context using univariate and multivariate statistics, randomForest, and path analysis. Results showed that mobilized or sequestered Na+ contributes significantly to the baseline tolerance mechanisms. However, the observed variance in overall tolerance potential across a meaningful diversity panel were more significantly attributed to antioxidant capacity, maintenance of stomatal conductance, chlorophyll content, and divalent cation (Mg2+) contents other than Ca2+ through a complex interaction with Na+ homeostasis. The multi-tier macro-physiological, biochemical and molecular data generated in this study, and the networks of interactions uncovered strongly suggest that a complex physiological and biochemical synergy beyond the first-line-of defense (Na+ sequestration and mobilization) accounts for the total phenotypic variance across the primary germplasm of Gossypium hirsutum. These findings are consistent with the recently proposed Omnigenic Theory for quantitative traits and should contribute to a modern look at phenotypic selection for salt tolerance in cotton breeding.
Collapse
Affiliation(s)
- Kevin R. Cushman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Isaiah C. M. Pabuayon
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Lori L. Hinze
- USDA-ARS, Crop Germplasm Research, College Station, TX, United States
| | | | | |
Collapse
|
10
|
Wang J, Nan N, Li N, Liu Y, Wang TJ, Hwang I, Liu B, Xu ZY. A DNA Methylation Reader-Chaperone Regulator-Transcription Factor Complex Activates OsHKT1;5 Expression during Salinity Stress. THE PLANT CELL 2020; 32:3535-3558. [PMID: 32938753 PMCID: PMC7610284 DOI: 10.1105/tpc.20.00301] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Irrigated lands are increasingly salinized, which adversely affects agricultural productivity. To respond to high sodium (Na+) concentrations, plants harbor multiple Na+ transport systems. Rice (Oryza sativa) HIGH-AFFINITY POTASSIUM (K+) TRANSPORTER1;5 (OsHKT1;5), a Na+-selective transporter, maintains K+/Na+ homeostasis under salt stress. However, the mechanism regulating OsHKT1;5 expression remains unknown. Here, we present evidence that a protein complex consisting of rice BCL-2-ASSOCIATED ATHANOGENE4 (OsBAG4), OsMYB106, and OsSUVH7 regulates OsHKT1;5 expression in response to salt stress. We isolated a salt stress-sensitive mutant, osbag4-1, that showed significantly reduced OsHKT1;5 expression and reduced K+ and elevated Na+ levels in shoots. Using comparative interactomics, we isolated two OsBAG4-interacting proteins, OsMYB106 (a MYB transcription factor) and OsSUVH7 (a DNA methylation reader), that were crucial for OsHKT1;5 expression. OsMYB106 and OsSUVH7 bound to the MYB binding cis-element (MYBE) and the miniature inverted-repeat transposable element (MITE) upstream of the MYBE, respectively, in the OsHKT1;5 promoter. OsBAG4 functioned as a bridge between OsSUVH7 and OsMYB106 to facilitate OsMYB106 binding to the consensus MYBE in the OsHKT1;5 promoter, thereby activating the OsHKT1;5 expression. Elimination of the MITE or knockout of OsMYB106 or OsSUVH7 decreased OsHKT1;5 expression and increased salt sensitivity. Our findings reveal a transcriptional complex, consisting of a DNA methylation reader, a chaperone regulator, and a transcription factor, that collaboratively regulate OsHKT1;5 expression during salinity stress.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
11
|
Nambiar DM, Kumari J, Arya GC, Singh AK, Bisht NC. A cell suspension based uptake method to study high affinity glucosinolate transporters. PLANT METHODS 2020; 16:75. [PMID: 32489397 PMCID: PMC7247208 DOI: 10.1186/s13007-020-00618-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Glucosinolates are an important class of secondary metabolites characteristic to the order Brassicales. They are known to play a major role in plant defense and from the human perspective, can be anticarcinogenic or antinutritive. GTRs are plasma-membrane localized high affinity glucosinolate transporters, which are important components of the source (leaf) to sink (seed) translocation of intact glucosinolates in members of Brassicaceae family. GTRs are identified as major candidates for Brassica crop improvement, thus dictating a need for their functional characterization. However, currently there are limitations in availability of heterologous assay systems for functional characterization of plant secondary metabolite transporters. To date, the animal-based Xenopus oocyte system is the best established heterologous system for functional characterization of these transporters. Inherent biochemical and physiological attributes unique to the plant membranes necessitate the need for developing plant-based transporters assay systems as well. METHODS In this study, Agrobacterium mediated transformation was used to develop GTR expressing cotton cell lines (CCL-1) for functional characterization of the Arabidopsis high affinity glucosinolate transporters, AtGTR1 and AtGTR2. Following sub-cellular localization of AtGTRs, we standardized the glucosinolate uptake assays using cell suspension cultures of AtGTR expressing CCL-1 its requirement of pH, salt, and time based glucosinolate uptake. Using the GTR expressing CCL-1, we subsequently performed kinetic analysis of AtGTR1 and AtGTR2 for different glucosinolate substrates, sinigrin, gluconapin and sinalbin. RESULTS Several clones expressing each of AtGTR1 and AtGTR2 were obtained showing high level of GTR expression and were maintained through regular sub-culturing. Both AtGTR1 and AtGTR2 are predominantly plasma-localized proteins when overexpressed in CCL-1 cells. Uptake assays were standardized, suggesting that glucosinolate uptake of GTR expressing CCL-1 is robust within the physiological pH range 5-6, and at lower concentration of nitrate salts. GTR expressing CCL-1 cells show increasing glucosinolate accumulation in time course experiment. Kinetic studies over a wide glucosinolate concentrations (10-800 µM) revealed that our novel assay system displayed robust GTR-mediated uptake of different glucosinolates and unambiguously helps elucidate the saturable kinetics of GTRs. Our system confirms the high affinity of AtGTRs for both aliphatic and aromatic glucosinolates. CONCLUSION The transporter assay system described in this study holds potential for studying sub-functionalization amongst GTR homologs present across Brassicaceae family. The fast growing CCL-1 cells, confer the benefits of an in vitro system for quick assays and is plant based thus enabling optimal expression without sequence modifications. The efficient functioning of the GTR transporters in the heterologous CCL-1 opens the possibility of using this plant cell suspension system for functional characterization of other metabolite transporters.
Collapse
Affiliation(s)
- Deepti M. Nambiar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Juhi Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Gulab C. Arya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Amarjeet K. Singh
- Department of Genetics, CGMCP, University of Delhi South Campus, New Delhi, 110021 India
| | - Naveen C. Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
12
|
Raddatz N, Morales de los Ríos L, Lindahl M, Quintero FJ, Pardo JM. Coordinated Transport of Nitrate, Potassium, and Sodium. FRONTIERS IN PLANT SCIENCE 2020; 11:247. [PMID: 32211003 PMCID: PMC7067972 DOI: 10.3389/fpls.2020.00247] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 05/19/2023]
Abstract
Potassium (K+) and nitrogen (N) are essential nutrients, and their absorption and distribution within the plant must be coordinated for optimal growth and development. Potassium is involved in charge balance of inorganic and organic anions and macromolecules, control of membrane electrical potential, pH homeostasis and the regulation of cell osmotic pressure, whereas nitrogen is an essential component of amino acids, proteins, and nucleic acids. Nitrate (NO3 -) is often the primary nitrogen source, but it also serves as a signaling molecule to the plant. Nitrate regulates root architecture, stimulates shoot growth, delays flowering, regulates abscisic acid-independent stomata opening, and relieves seed dormancy. Plants can sense K+/NO3 - levels in soils and adjust accordingly the uptake and root-to-shoot transport to balance the distribution of these ions between organs. On the other hand, in small amounts sodium (Na+) is categorized as a "beneficial element" for plants, mainly as a "cheap" osmolyte. However, at high concentrations in the soil, Na+ can inhibit various physiological processes impairing plant growth. Hence, plants have developed specific mechanisms to transport, sense, and respond to a variety of Na+ conditions. Sodium is taken up by many K+ transporters, and a large proportion of Na+ ions accumulated in shoots appear to be loaded into the xylem by systems that show nitrate dependence. Thus, an adequate supply of mineral nutrients is paramount to reduce the noxious effects of salts and to sustain crop productivity under salt stress. In this review, we will focus on recent research unraveling the mechanisms that coordinate the K+-NO3 -; Na+-NO3 -, and K+-Na+ transports, and the regulators controlling their uptake and allocation.
Collapse
Affiliation(s)
| | | | | | | | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Shohan MUS, Sinha S, Nabila FH, Dastidar SG, Seraj ZI. HKT1;5 Transporter Gene Expression and Association of Amino Acid Substitutions With Salt Tolerance Across Rice Genotypes. FRONTIERS IN PLANT SCIENCE 2019; 10:1420. [PMID: 31749823 PMCID: PMC6843544 DOI: 10.3389/fpls.2019.01420] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/14/2019] [Indexed: 05/20/2023]
Abstract
Plants need to maintain a low Na+/K+ ratio for their survival and growth when there is high sodium concentration in soil. Under these circumstances, the high affinity K+ transporter (HKT) and its homologs are known to perform a critical role with HKT1;5 as a major player in maintaining Na+ concentration. Preferential expression of HKT1;5 in roots compared to shoots was observed in rice and rice-like genotypes from real time PCR, microarray, and RNAseq experiments and data. Its expression trend was generally higher under increasing salt stress in sensitive IR29, tolerant Pokkali, both glycophytes; as well as the distant wild rice halophyte, Porteresia coarctata, indicative of its importance during salt stress. These results were supported by a low Na+/K+ ratio in Pokkali, but a much lower one in P. coarctata. HKT1;5 has functional variability among salt sensitive and tolerant varieties and multiple sequence alignment of sequences of HKT1;5 from Oryza species and P. coarctata showed 4 major amino acid substitutions (140 P/A/T/I, 184 H/R, D332H, V395L), with similarity amongst the tolerant genotypes and the halophyte but in variance with sensitive ones. The best predicted 3D structure of HKT1;5 was generated using Ktrab potassium transporter as template. Among the four substitutions, conserved presence of aspartate (332) and valine (395) in opposite faces of the membrane along the Na+/K+ channel was observed only for the tolerant and halophytic genotypes. A model based on above, as well as molecular dynamics simulation study showed that valine is unable to generate strong hydrophobic network with its surroundings in comparison to leucine due to reduced side chain length. The resultant alteration in pore rigidity increases the likelihood of Na+ transport from xylem sap to parenchyma and further to soil. The model also proposes that the presence of aspartate at the 332 position possibly leads to frequent polar interactions with the extracellular loop polar residues which may shift the loop away from the opening of the constriction at the pore and therefore permit easy efflux of the Na+. These two substitutions of the HKT1;5 transporter probably help tolerant varieties maintain better Na+/K+ ratio for survival under salt stress.
Collapse
Affiliation(s)
- Mohammad Umer Sharif Shohan
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Souvik Sinha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Fahmida Habib Nabila
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Zeba I. Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
14
|
Hmidi D, Messedi D, Corratgï-Faillie C, Marhuenda TO, Fizames CC, Zorrig W, Abdelly C, Sentenac H, Vï Ry AAN. Investigation of Na+ and K+ Transport in Halophytes: Functional Analysis of the HmHKT2;1 Transporter from Hordeum maritimum and Expression under Saline Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:2423-2435. [PMID: 31292634 DOI: 10.1093/pcp/pcz136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
Control of K+ and Na+ transport plays a central role in plant adaptation to salinity. In the halophyte Hordeum maritimum, we have characterized a transporter gene, named HmHKT2;1, whose homolog HvHKT2;1 in cultivated barley, Hordeum vulgare, was known to give rise to increased salt tolerance when overexpressed. The encoded protein is strictly identical in two H. maritimum ecotypes, from two biotopes (Tunisian sebkhas) affected by different levels of salinity. These two ecotypes were found to display distinctive responses to salt stress in terms of biomass production, Na+ contents, K+ contents and K+ absorption efficiency. Electrophysiological analysis of HmHKT2;1 in Xenopus oocytes revealed distinctive properties when compared with HvHKT2;1 and other transporters from the same group, especially a much higher affinity for both Na+ and K+, and an Na+-K+ symporter behavior in a very broad range of Na+ and K+ concentrations, due to reduced K+ blockage of the transport pathway. Domain swapping experiments identified the region including the fifth transmembrane segment and the adjacent extracellular loop as playing a major role in the determination of the affinity for Na+ and the level of K+ blockage in these HKT2;1 transporters. The analysis (quantitative reverse transcription-PCR; qRT-PCR) of HmHKT2;1 expression in the two ecotypes submitted to saline conditions revealed that the levels of HmHKT2;1 transcripts were maintained constant in the most salt-tolerant ecotype whereas they decreased in the less tolerant one. Both the unique functional properties of HmHKT2;1 and the regulation of the expression of the encoding gene could contribute to H. maritimum adaptation to salinity.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Dorsaf Messedi
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Claire Corratgï-Faillie
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Thï O Marhuenda
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Cï Cile Fizames
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Walid Zorrig
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Hervï Sentenac
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Anne-Aliï Nor Vï Ry
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| |
Collapse
|
15
|
Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110687] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Salinity is one of the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigor, and crop yield. This salinity may be natural or induced by agricultural activities such as irrigation or the use of certain types of fertilizer. The most detrimental effect of salinity stress is the accumulation of Na+ and Cl− ions in tissues of plants exposed to soils with high NaCl concentrations. The entry of both Na+ and Cl− into the cells causes severe ion imbalance, and excess uptake might cause significant physiological disorder(s). High Na+ concentration inhibits the uptake of K+, which is an element for plant growth and development that results in lower productivity and may even lead to death. The genetic analyses revealed K+ and Na+ transport systems such as SOS1, which belong to the CBL gene family and play a key role in the transport of Na+ from the roots to the aerial parts in the Arabidopsis plant. In this review, we mainly discuss the roles of alkaline cations K+ and Na+, Ion homeostasis-transport determinants, and their regulation. Moreover, we tried to give a synthetic overview of soil salinity, its effects on plants, and tolerance mechanisms to withstand stress.
Collapse
|
16
|
Xie Y, Sun X, Feng Q, Luo H, Wassie M, Amee M, Amombo E, Chen L. Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:342-350. [PMID: 31382176 DOI: 10.1016/j.plaphy.2019.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Aspergillus aculeatus has been shown to stimulate plant growth, but its role in plants abiotic stress tolerance and the underlying mechanisms are not fully documented. In this study, we investigated the mechanisms of A.aculeatus-mediated drought, heat and salt stress tolerance in tall fescue. The results showed that A.aculeatus inoculation improved drought and heat stress tolerance in tall fescue as observed from its effect on turf quality (TQ) and leaf relative water content (LWC). In the same stress conditions, A.aculeatus alleviated reactive oxygen species (ROS) induced burst and cell damage, as indicated by lower H2O2, electrolyte leakage (EL) and malondialdehyde (MDA) levels. Additionally, the A.aculeatus inoculated plants exhibited higher photosynthetic efficiency than uninoculated plants under drought, heat and salt stress conditions. The fungus reduced the uptake of Na+, and inoculated plants showed lower Na+/K+, Na+/Ca2+and Na+/Mg2+ ratios compared to uninoculated ones under salt stress. Furthermore, comparative metabolomic analysis showed that A.aculeatus exclusively increased amino acid (such as proline and glycine) and sugar (such as glucose, fructose, sorbose, and talose) accumulation under drought and heat stress. However, there were no differences between inoculated and uninoculated plants except for changes in H2O2 level, Na+ in the root and photosynthetic efficiency under salt stress. Taken together, this study provides the first evidence of the protective roles of A.aculeatus in the tall fescue response to abiotic stresses, partially via protection of photosynthesis and modulation of metabolic homeostasis.
Collapse
Affiliation(s)
- Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Xiaoyan Sun
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang City, China
| | - Qijia Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Hongji Luo
- Sichuan Changhong Green Environmental Science &Technology Co., Ltd, Chengdu City, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Erick Amombo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China.
| |
Collapse
|
17
|
Riedelsberger J, Vergara-Jaque A, Piñeros M, Dreyer I, González W. An extracellular cation coordination site influences ion conduction of OsHKT2;2. BMC PLANT BIOLOGY 2019; 19:316. [PMID: 31307394 PMCID: PMC6632200 DOI: 10.1186/s12870-019-1909-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND HKT channels mediate sodium uniport or sodium and potassium symport in plants. Monocotyledons express a higher number of HKT proteins than dicotyledons, and it is only within this clade of HKT channels that cation symport mechanisms are found. The prevailing ion composition in the extracellular medium affects the transport abilities of various HKT channels by changing their selectivity or ion transport rates. How this mutual effect is achieved at the molecular level is still unknown. Here, we built a homology model of the monocotyledonous OsHKT2;2, which shows sodium and potassium symport activity. We performed molecular dynamics simulations in the presence of sodium and potassium ions to investigate the mutual effect of cation species. RESULTS By analyzing ion-protein interactions, we identified a cation coordination site on the extracellular protein surface, which is formed by residues P71, D75, D501 and K504. Proline and the two aspartate residues coordinate cations, while K504 forms salt bridges with D75 and D501 and may be involved in the forwarding of cations towards the pore entrance. Functional validation via electrophysiological experiments confirmed the biological relevance of the predicted ion coordination site and identified K504 as a central key residue. Mutation of the cation coordinating residues affected the functionality of HKT only slightly. Additional in silico mutants and simulations of K504 supported experimental results. CONCLUSION We identified an extracellular cation coordination site, which is involved in ion coordination and influences the conduction of OsHKT2;2. This finding proposes a new viewpoint in the discussion of how the mutual effect of variable ion species may be achieved in HKT channels.
Collapse
Affiliation(s)
- Janin Riedelsberger
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Ariela Vergara-Jaque
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Miguel Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY USA
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| |
Collapse
|
18
|
Ali A, Maggio A, Bressan RA, Yun DJ. Role and Functional Differences of HKT1-Type Transporters in Plants under Salt Stress. Int J Mol Sci 2019; 20:E1059. [PMID: 30823627 PMCID: PMC6429402 DOI: 10.3390/ijms20051059] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses generally cause a series of morphological, biochemical and molecular changes that unfavorably affect plant growth and productivity. Among these stresses, soil salinity is a major threat that can seriously impair crop yield. To cope with the effects of high salinity on plants, it is important to understand the mechanisms that plants use to deal with it, including those activated in response to disturbed Na⁺ and K⁺ homeostasis at cellular and molecular levels. HKT1-type transporters are key determinants of Na⁺ and K⁺ homeostasis under salt stress and they contribute to reduce Na⁺-specific toxicity in plants. In this review, we provide a brief overview of the function of HKT1-type transporters and their importance in different plant species under salt stress. Comparison between HKT1 homologs in different plant species will shed light on different approaches plants may use to cope with salinity.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea.
| | - Albino Maggio
- Department of Agriculture, University of Naples Federico II, Via Universita 100, I-80055 Portici, Italy.
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA.
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
19
|
|
20
|
Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca. Genes Genomics 2018; 41:325-336. [DOI: 10.1007/s13258-018-0767-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/13/2018] [Indexed: 11/26/2022]
|
21
|
Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang G. A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. PLANT & CELL PHYSIOLOGY 2018; 59:1976-1989. [PMID: 29917153 DOI: 10.1093/pcp/pcy116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/10/2018] [Indexed: 05/21/2023]
Abstract
Our previous studies showed that high salt tolerance in Tibetan wild barley accessions was associated with HvHKT1;1, a member of the high-affinity potassium transporter family. However, molecular mechanisms of HvHKT1;1 for salt tolerance and its roles in K+/Na+ homeostasis remain to be elucidated. Functional characterization of HvHKT1;1 was conducted in the present study. NaCl-induced transcripts of HvHKT1;1 were significantly higher in the roots of Tibetan wild barley XZ16 relative to other genotypes, being closely associated with its higher biomass and lower tissue Na+ content under salt stress. Heterologous expression of HvHKT1;1 in Saccharomyces cerevisiae (yeast) and Xenopus laevis oocytes showed that HvHKT1;1 had higher selectivity for Na+ over K+ and other monovalent cations. HvHKT1;1 was found to be localized at the cell plasma membrane of root stele and epidermis. Knock-down of HvHKT1;1 in barley led to higher Na+ accumulation in both roots and leaves, while overexpression of HvHKT1;1 in salt-sensitive Arabidopsis hkt1-4 and sos1-12 loss-of-function lines resulted in significantly less shoot and root Na+ accumulation. Additionally, microelectrode ion flux measurements and root elongation assay revealed that the transgenic Arabidopsis plants exhibited a remarkable capacity for regulation of Na+, K+, Ca2+ and H+ homeostasis under salt stress. These results indicate that HvHKT1;1 is critical in radial root Na+ transport, which eventually reduces shoot Na+ accumulation. Additionally, HvHKT1;1 may be indirectly involved in retention of K+ and Ca2+ in root cells, which also improves plant salt tolerance.
Collapse
Affiliation(s)
- Yong Han
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shuya Yin
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Huang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xuelong Wu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianbin Zeng
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaohui Liu
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Long Qiu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rana Munns
- Australian Research Council Centre of Excellence in Plant Energy Biology and School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Zhong-Hua Chen
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Guoping Zhang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Sun J, Cao H, Cheng J, He X, Sohail H, Niu M, Huang Y, Bie Z. Pumpkin CmHKT1;1 Controls Shoot Na⁺ Accumulation via Limiting Na⁺ Transport from Rootstock to Scion in Grafted Cucumber. Int J Mol Sci 2018; 19:E2648. [PMID: 30200653 PMCID: PMC6165489 DOI: 10.3390/ijms19092648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
Soil salinity adversely affects the growth and yield of crops, including cucumber, one of the most important vegetables in the world. Grafting with salt-tolerant pumpkin as the rootstock effectively improves the growth of cucumber under different salt conditions by limiting Na⁺ transport from the pumpkin rootstock to the cucumber scion. High-affinity potassium transporters (HKTs) are crucial for the long distance transport of Na⁺ in plants, but the function of pumpkin HKTs in this process of grafted cucumber plants remains unclear. In this work, we have characterized CmHKT1;1 as a member of the HKT gene family in Cucurbita moschata and observed an obvious upregulation of CmHKT1;1 in roots under NaCl stress conditions. Heterologous expression analyses in yeast mutants indicated that CmHKT1;1 is a Na⁺-selective transporter. The transient expression in tobacco epidermal cells and in situ hybridization showed CmHKT1;1 localization at plasma membrane, and preferential expression in root stele. Moreover, ectopic expression of CmHKT1;1 in cucumber decreased the Na⁺ accumulation in the plants shoots. Finally, the CmHKT1;1 transgenic line as the rootstock decreased the Na⁺ content in the wild type shoots. These findings suggest that CmHKT1;1 plays a key role in the salt tolerance of grafted cucumber by limiting Na⁺ transport from the rootstock to the scion and can further be useful for engineering salt tolerance in cucurbit crops.
Collapse
Affiliation(s)
- Jingyu Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintao Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaomeng He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengliang Niu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Ali A, Khan IU, Jan M, Khan HA, Hussain S, Nisar M, Chung WS, Yun DJ. The High-Affinity Potassium Transporter EpHKT1;2 From the Extremophile Eutrema parvula Mediates Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1108. [PMID: 30105045 PMCID: PMC6077265 DOI: 10.3389/fpls.2018.01108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/09/2018] [Indexed: 05/23/2023]
Abstract
To survive salt stress, plants must maintain a balance between sodium and potassium ions. High-affinity potassium transporters (HKTs) play a key role in reducing Na+ toxicity through K+ uptake. Eutrema parvula (formerly known as Thellungiella parvula), a halophyte closely related to Arabidopsis, has two HKT1 genes that encode EpHKT1;1 and EpHKT1;2. In response to high salinity, the EpHKT1;2 transcript level increased rapidly; by contrast, the EpHKT1;1 transcript increased more slowly in response to salt treatment. Yeast cells expressing EpHKT1;2 were able to tolerate high concentrations of NaCl, whereas EpHKT1;1-expressing yeast cells remained sensitive to NaCl. Amino acid sequence alignment with other plant HKTs showed that EpHKT1;1 contains an asparagine residue (Asn-213) in the second pore-loop domain, but EpHKT1;2 contains an aspartic acid residue (Asp-205) at the same position. Yeast cells expressing EpHKT1;1, in which Asn-213 was substituted with Asp, were able to tolerate high concentrations of NaCl. In contrast, substitution of Asp-205 by Asn in EpHKT1;2 did not enhance salt tolerance and rather resulted in a similar function to that of AtHKT1 (Na+ influx but no K+ influx), indicating that the presence of Asn or Asp determines the mode of cation selectivity of the HKT1-type transporters. Moreover, Arabidopsis plants (Col-gl) overexpressing EpHKT1;2 showed significantly higher tolerance to salt stress and accumulated less Na+ and more K+ compared to those overexpressing EpHKT1;1 or AtHKT1. Taken together, these results suggest that EpHKT1;2 mediates tolerance to Na+ ion toxicity in E. parvula and is a major contributor to its halophytic nature.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Irfan Ullah Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Masood Jan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Shah Hussain
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Muhammad Nisar
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Woo Sik Chung
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
24
|
Tounsi S, Feki K, Saïdi MN, Maghrebi S, Brini F, Masmoudi K. Promoter of the TmHKT1;4-A1 gene of Triticum monococcum directs stress inducible, developmental regulated and organ specific gene expression in transgenic Arbidopsis thaliana. World J Microbiol Biotechnol 2018; 34:99. [DOI: 10.1007/s11274-018-2485-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/16/2018] [Indexed: 11/30/2022]
|
25
|
Jiang Z, Song G, Shan X, Wei Z, Liu Y, Jiang C, Jiang Y, Jin F, Li Y. Association Analysis and Identification of ZmHKT1;5 Variation With Salt-Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1485. [PMID: 30369939 PMCID: PMC6194160 DOI: 10.3389/fpls.2018.01485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 05/20/2023]
Abstract
The high-affinity potassium transporter (HKT) genes are essential for plant salt stress tolerance. However, there were limited studies on HKTs in maize (Zea mays), and it is basically unknown whether natural sequence variations in these genes are associated with the phenotypic variability of salt tolerance. Here, the characterization of ZmHKT1;5 was reported. Under salt stress, ZmHKT1;5 expression increased strongly in salt-tolerant inbred lines, which accompanied a better-balanced Na+/K+ ratio and preferable plant growth. The association between sequence variations in ZmHKT1;5 and salt tolerance was evaluated in a diverse population comprising 54 maize varieties from different maize production regions of China. Two SNPs (A134G and A511G) in the coding region of ZmHKT1;5 were significantly associated with different salt tolerance levels in maize varieties. In addition, the favorable allele of ZmHKT1; 5 identified in salt tolerant maize varieties effectively endowed plant salt tolerance. Transgenic tobacco plants of overexpressing the favorable allele displayed enhanced tolerance to salt stress better than overexpressing the wild type ZmHKT1;5. Our research showed that ZmHKT1;5 expression could effectively enhance salt tolerance by maintaining an optimal Na+/K+ balance and increasing the antioxidant activity that keeps reactive oxygen species (ROS) at a low accumulation level. Especially, the two SNPs in ZmHKT1;5 might be related with new amino acid residues to confer salt tolerance in maize. Key Message: Two SNPs of ZmHKT1;5 related with salt tolerance were identified by association analysis. Overexpressing ZmHKT1;5 in tobaccos showed that the SNPs might enhance its ability to regulating Na+/K+ homeostasis.
Collapse
Affiliation(s)
- Zhilei Jiang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangshu Song
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaohui Shan
- College of Plant Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaohui Shan, Yidan Li,
| | - Zhengyi Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yanzhi Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chao Jiang
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yu Jiang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Fengxue Jin
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yidan Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Xiaohui Shan, Yidan Li,
| |
Collapse
|
26
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
27
|
Jaime-Pérez N, Pineda B, García-Sogo B, Atares A, Athman A, Byrt CS, Olías R, Asins MJ, Gilliham M, Moreno V, Belver A. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. PLANT, CELL & ENVIRONMENT 2017; 40:658-671. [PMID: 27987209 DOI: 10.1111/pce.12883] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/05/2016] [Indexed: 05/20/2023]
Abstract
Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+ /K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+ /K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.
Collapse
Affiliation(s)
- Noelia Jaime-Pérez
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Prof. Albareda 1, E-18008, Granada, Spain
| | - Benito Pineda
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Begoña García-Sogo
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Alejandro Atares
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Asmini Athman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Raquel Olías
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Prof. Albareda 1, E-18008, Granada, Spain
| | - Maria José Asins
- Plant Protection and Biotechnology Center, Instituto Valenciano de Investigaciones Agrarias (IVIA), E46113 Moncada, Valencia, Spain
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Vicente Moreno
- Laboratory of Tissue Culture and Plant Breeding, Institute of Plant Molecular and Cellular Biology, CSIC, Polytechnic University of Valencia, Valencia, 46022, Spain
| | - Andrés Belver
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Prof. Albareda 1, E-18008, Granada, Spain
| |
Collapse
|
28
|
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 2017; 40:326-345. [PMID: 28350038 PMCID: PMC5452131 DOI: 10.1590/1678-4685-gmb-2016-0106] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023] Open
Abstract
Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
29
|
Xie Y, Han S, Li X, Amombo E, Fu J. Amelioration of Salt Stress on Bermudagrass by the Fungus Aspergillus aculeatus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:245-254. [PMID: 28134574 DOI: 10.1094/mpmi-12-16-0263-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is considerable evidence that plant abiotic-stress tolerance can be evoked by the exploitation of a globally abundant microbe. A. aculeatus, which was initially isolated from the rhizosphere of bermudagrass, has been shown to increase heavy metal tolerance in turfgrasses. Here, we report on the potential of A. aculeatus to induce tolerance to salt stress in bermudagrass. Physiological markers for salt stress, such as plant growth rate, lipid peroxidation, photosynthesis, and ionic homeostasis were assessed. Results indicated that strain A. aculeatus produced indole-3-acetic acid (IAA) and siderophores and exhibited a greater capacity for Na+ absorption under salt stress. The plant inoculation by A. aculeatus increased plant growth and attenuated the NaCl-induced lipid peroxidation in roots and leaves of bermudagrass. The fungus significantly elevated the amount of IAA and glutathione and slightly enhanced photosynthetic efficiency of salt-treated bermudagrass. Tissues of inoculated plants had significantly increased concentrations of K+ but lower Na+ concentrations than those of uninoculated regimes. It appears that the role of A. aculeatus in alleviating bermudagrass salt stress is partly to produce IAA, to increase the activity of antioxidases, to absorb Na+ by fungal hyphae, and to prevent the plant from ionic homeostasis disruption.
Collapse
Affiliation(s)
- Yan Xie
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
| | - Shijuan Han
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
- 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoning Li
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
- 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Erick Amombo
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
- 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinmin Fu
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
| |
Collapse
|
30
|
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 2017. [PMID: 28350038 DOI: 10.1590/1678-4685-gmb-2016-2106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
31
|
Ali A, Yun DJ. Differential selection of sodium and potassium ions by TsHKT1;2. PLANT SIGNALING & BEHAVIOR 2016; 11:e1206169. [PMID: 27380309 PMCID: PMC5022409 DOI: 10.1080/15592324.2016.1206169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/23/2023]
Abstract
Among abiotic stresses, soil salinity is a major threat to agriculture. To address and control the effects of high salinity on plants, it is important to understand their responses to salt stress that disturbs the homeostatic equilibrium at cellular and molecular levels. To deal and control effects of high salinity on plants, it is important to understand their responses to salt stress that disturbs the homeostatic equilibrium at cellular and molecular levels. In this regard, halophytes (salt tolerant plants) can provide superior models for the study of salt stress defense parameters compared to glycophytes (salt sensitive species). TsHKT1;2 one of the 3 copies of HKT1 in the Arabidopsis relative halophyte, Thellungiella salsuginea acts as a potassium transporter, even under salt stress. TsHKT1;2 includes a conserved Asp (D) residue in the 2(nd) pore-loop domain. Most other HKT1 sequences, including AtHKT1, contain Asn (N) in this position. We found that athkt1-1 plants complemented by TsHKT1;2 under native AtHKT1 promoter were more tolerant to salt stress, while substitution of Asp (D207) by Asn (N) significantly reduced resistance to salinity. We suggest that the presence of Asn or Asp is the essential feature that defines and establishes cation selectivity in dicot HKT1-type transporters.
Collapse
Affiliation(s)
- Akhtar Ali
- Division of Applied Life Science (BK21plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
32
|
Ariyarathna HACK, Francki MG. Phylogenetic relationships and protein modelling revealed two distinct subfamilies of group II HKT genes between crop and model grasses. Genome 2016; 59:509-17. [PMID: 27203707 DOI: 10.1139/gen-2016-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular evolution of large protein families in closely related species can provide useful insights on structural functional relationships. Phylogenetic analysis of the grass-specific group II HKT genes identified two distinct subfamilies, I and II. Subfamily II was represented in all species, whereas subfamily I was identified only in the small grain cereals and possibly originated from an ancestral gene duplication post divergence from the coarse grain cereal lineage. The core protein structures were highly analogous despite there being no more than 58% amino acid identity between members of the two subfamilies. Distinctly variable regions in known functional domains, however, indicated functional divergence of the two subfamilies. The subsets of codons residing external to known functional domains predicted signatures of positive Darwinian selection potentially identifying new domains of functional divergence and providing new insights on the structural function and relationships between protein members of the two subfamilies.
Collapse
Affiliation(s)
- H A Chandima K Ariyarathna
- a School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley WA 6009, Australia.,b State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA 6150, Australia
| | - Michael G Francki
- b State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA 6150, Australia.,c Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth WA 6151, Australia
| |
Collapse
|
33
|
Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:835-44. [PMID: 26585227 PMCID: PMC4737075 DOI: 10.1093/jxb/erv493] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na(+) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na(+) from the xylem, thus limiting the rates of Na(+) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na(+)/H(+) exchanger in both root cortical and stelar tissues. Net Na(+) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na(+)/H(+) exchanger) and was mirrored by net H(+) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na(+) content. One enhances the retrieval of Na(+) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na(+) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na(+) delivery to the shoot.
Collapse
Affiliation(s)
- Min Zhu
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Tracey A Cuin
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | - Xin Huang
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Rana Munns
- School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA 6009, Australia CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
34
|
Suzuki K, Costa A, Nakayama H, Katsuhara M, Shinmyo A, Horie T. OsHKT2;2/1-mediated Na(+) influx over K(+) uptake in roots potentially increases toxic Na(+) accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress. JOURNAL OF PLANT RESEARCH 2016; 129:67-77. [PMID: 26578190 DOI: 10.1007/s10265-015-0764-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/18/2015] [Indexed: 05/10/2023]
Abstract
HKT transporters are Na(+)-permeable membrane proteins, which mediate Na(+) and K(+) homeostasis in K(+)-depleted and saline environments in plants. Class II HKT transporters, a distinct subgroup found predominantly in monocots, are known to mediate Na(+)-K(+) co-transport in principle. Here we report features of ion transport functions of No-OsHKT2;2/1, a class II transporter identified in a salt tolerant landrace of indica rice, Nona Bokra. We profiled No-OsHKT2;2/1 expression in organs of Nona Bokra plants with or without salinity stress. Dominant accumulation of the No-OsHKT2;2/1 transcript in K(+)-starved roots of Nona Bokra plants largely disappeared in response to 50 mM NaCl. We found that No-OsHKT2;2/1 expressed in the high-affinity K(+) uptake deficient mutant of Saccharomyces cerevisiae and Xenopus laevis oocytes shows robust K(+) selectivity even in the presence of a large amount of NaCl as reported previously. However, No-OsHKT2;2/1-expressing yeast cells exhibited Na(+) hypersensitive growth under various concentrations of K(+) and Na(+) as the cells expressing Po-OsHKT2;2, a similar class II transporter from another salt tolerant indica rice Pokkali, when compared with the growth of cells harboring empty vector or cells expressing OsHKT2;4. The OsHKT2;4 protein expressed in Xenopus oocytes showed strong K(+) selectivity in the presence of 50 mM NaCl in comparison with No-OsHKT2;2/1 and Po-OsHKT2;2. Together with apparent plasma membrane-localization of No-OsHKT2;2/1, these results point to possibilities that No-OsHKT2;2/1 could mediate destructive Na(+) influx over K(+) uptake in Nona Bokra plants upon salinity stress, and that a predominant physiological function of No-OsHKT2;2/1 might be the acquisition of Na(+) and K(+) in K(+)-limited environments.
Collapse
Affiliation(s)
- Kei Suzuki
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133, Milan, Italy
| | - Hideki Nakayama
- Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Atsuhiko Shinmyo
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
35
|
Yang C, Ma B, He SJ, Xiong Q, Duan KX, Yin CC, Chen H, Lu X, Chen SY, Zhang JS. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice. PLANT PHYSIOLOGY 2015; 169:148-65. [PMID: 25995326 PMCID: PMC4577385 DOI: 10.1104/pp.15.00353] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/18/2015] [Indexed: 05/19/2023]
Abstract
Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K(+) TRANSPORTER2;1 expression and Na(+) uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Jie He
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Xiong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai-Xuan Duan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Shahzad K, Rauf M, Ahmed M, Malik ZA, Habib I, Ahmed Z, Mahmood K, Ali R, Masmoudi K, Lemtiri-Chlieh F, Gehring C, Berkowitz GA, Saeed NA. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:840-51. [PMID: 25631371 DOI: 10.1111/plb.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.
Collapse
Affiliation(s)
- K Shahzad
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Rauf
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Ahmed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z A Malik
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - I Habib
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z Ahmed
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - K Mahmood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - R Ali
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - K Masmoudi
- International Centre for Biosaline Agriculture (ICBA), Dubai, UAE
| | - F Lemtiri-Chlieh
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - C Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - G A Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - N A Saeed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
37
|
Pinto E, Ferreira IMPLVO. Cation transporters/channels in plants: Tools for nutrient biofortification. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:64-82. [PMID: 25841207 DOI: 10.1016/j.jplph.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 05/07/2023]
Abstract
Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.
Collapse
Affiliation(s)
- Edgar Pinto
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal; CISA - Research Centre on Environment and Health, School of Allied Health Sciences, Polytechnic Institute of Porto, Portugal.
| | - Isabel M P L V O Ferreira
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal
| |
Collapse
|
38
|
Wu H, Ye H, Yao R, Zhang T, Xiong L. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:1-12. [PMID: 25617318 DOI: 10.1016/j.plantsci.2014.12.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 05/21/2023]
Abstract
The basic functions of plant-specific TIFY proteins as transcriptional regulators have been reported in plants. Some TIFY genes are responsive to abiotic stresses, but the functions of these genes in stress tolerance have seldom been reported. OsJAZ9 is a member of the JAZ subfamily which belongs to the TIFY gene family in rice (Oryza sativa). Suppression of OsJAZ9 resulted in reduced salt tolerance. The altered salt tolerance was mainly due to changes in ion (especially K(+)) homeostasis, which was supported by the altered expression levels of several ion transporter genes. The OsJAZ9-suppression rice plants showed increased sensitivity to jasmonic acid (JA) treatment. OsJAZ9 interacts with OsCOI1a, a component of the SCF(COI1) E3 ubiquitin ligase complex, in a coronatine-dependent manner, suggesting that OsJAZ9 is involved in the regulation of JA signaling. OsJAZ9 interacts with several bHLH transcription factors including OsbHLH062 via the Jas domain. OsbHLH062 can bind to an E-box in the promoters of the ion transporter genes such as OsHAK21, and most of these ion transporter genes are responsive to JA treatment. We found that OsJAZ9 can also interact with OsNINJA, a rice homolog of the Arabidopsis thaliana transcriptional repressor NINJA in JA signaling. Both OsJAZ9 and OsNINJA (Novel Interactor of JAZ) repressed OsbHLH062-mediated transcription activation. These results together suggest that OsJAZ9 acts as a transcriptional regulator by forming a transcriptional regulation complex with OsNINJA and OsbHLH to fine tune the expression of JA-responsive genes involved in salt stress tolerance in rice.
Collapse
Affiliation(s)
- Hua Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Ye
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Model of Cation Transportation Mediated by High-Affinity Potassium Transporters (HKTs) in Higher Plants. Biol Proced Online 2015; 17:1. [PMID: 25698907 PMCID: PMC4334588 DOI: 10.1186/s12575-014-0013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trk/Ktr/HKT transporters probably were evolved from simple K+ channels KcsA. HKT transporters, which mediate Na+-uniport or Na+/K+-symport, maintain K+/Na+ homeostasis and increase salinity tolerance, can be classified into three subfamilies in higher plants. In this review, we systematically analyzed the characteristics of amino acids sequences and physiological functions of HKT transporters in higher plant. Furthermore, we depicted the hypothetical models of cations selection and transportation mediated by HKT transporters according to the highly conserved structure for the goal of better understanding the cations transportation processes.
Collapse
|
40
|
Shao Q, Han N, Ding T, Zhou F, Wang B. SsHKT1;1 is a potassium transporter of the C 3 halophyte Suaeda salsa that is involved in salt tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:790-802. [PMID: 32481033 DOI: 10.1071/fp13265] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/28/2014] [Indexed: 05/18/2023]
Abstract
SsHKT1;1, a HKT1 homologue, was isolated from the C3 halophyte Suaeda salsa L. and its ion transport properties were investigated in heterologous systems. The expression of SsHKT1;1 suppressed a K+ transport-defective phenotype of the yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+ uptake with SsHKT1;1. However, it did not suppress the salt-sensitive phenotype of the yeast strain G19 (Δena1-4), which lacks a major component of Na+ efflux. Transgenic Arabidopsis thaliana (L.) Heynh. plants overexpressing SsHKT1;1 showed enhanced salt tolerance and increased shoot K+ concentration, whereas no significant changes in shoot Na+ concentration were observed. S. salsa was also used to investigate K+ uptake properties under salinity. The K+ transporters in the roots selectively mediated K+ uptake irrespective of external Na+ and their inhibitor did not affect Na+ uptake at low K+. Thus, both molecular and physiological studies provide strong in vivo evidence that SsHKT1;1 mainly acts as a potassium transporter in heterologous expression systems and S. salsa, and that it is involved in salt tolerance by taking part in the maintenance of cytosolic cation homeostasis, particularly, in the maintenance of K+ nutrition under salinity.
Collapse
Affiliation(s)
- Qun Shao
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Ning Han
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Tonglou Ding
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Feng Zhou
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Baoshan Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| |
Collapse
|
41
|
Almeida P, Feron R, de Boer GJ, de Boer AH. Role of Na+, K+, Cl-, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato. AOB PLANTS 2014; 6:plu039. [PMID: 24996430 PMCID: PMC4122256 DOI: 10.1093/aobpla/plu039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/20/2014] [Indexed: 05/25/2023]
Abstract
One of the major abiotic stresses affecting agriculture is soil salinity, which reduces crop yield and, consequently, revenue for farmers. Although tomato is an important agricultural species, elite varieties are poor at withstanding salinity stress. Thus, a feasible way of improving yield under conditions of salinity stress is to breed for improved salt tolerance. In this study, we analysed the physiological and genetic parameters of 23 tomato accessions in order to identify possible traits to be used by plant breeders to develop more tolerant tomato varieties. Although we observed a wide range of Na(+) concentrations within the leaves, stems and roots, the maintenance of growth in the presence of 100 mM NaCl did not correlate with the exclusion or accumulation of Na(+). Nor could we correlate the growth with accumulation of sugars and proline or with the expression of any gene involved in the homoeostasis of Na(+) in the plant. However, several significant correlations between gene expression and Na(+) accumulation were observed. For instance, Na(+) concentrations both in the leaves and stems were positively correlated with HKT1;2 expression in the roots, and Na(+) concentration measured in the roots was positively correlated with HKT1;1 expression also in the roots. Higher and lower Na(+) accumulation in the roots and leaves were significantly correlated with higher NHX3 and NHX1 expression in the roots, respectively. These results suggest that, in tomato, for a particular level of tolerance to salinity, a complex relationship between Na(+) concentration in the cells and tissue tolerance defines the salinity tolerance of individual tomato accessions. In tomato it is likely that tissue and salinity tolerance work independently, making tolerance to salinity depend on their relative effects rather than on one of these mechanisms alone.
Collapse
Affiliation(s)
- Pedro Almeida
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
| | - Richard Feron
- Enza Zaden, Research and Development, Haling 1/E, 1602 DB Enkhuizen, The Netherlands
| | - Gert-Jan de Boer
- Enza Zaden, Research and Development, Haling 1/E, 1602 DB Enkhuizen, The Netherlands
| | - Albertus H de Boer
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
42
|
Ariyarathna HACK, Ul-Haq T, Colmer TD, Francki MG. Characterization of the multigene family TaHKT 2;1 in bread wheat and the role of gene members in plant Na(+) and K(+) status. BMC PLANT BIOLOGY 2014; 14:159. [PMID: 24920193 PMCID: PMC4079177 DOI: 10.1186/1471-2229-14-159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND A member of the TaHKT2;1 multigene family was previously identified as a Na(+) transporter with a possible role in root Na(+) uptake. In the present study, the existing full-length cDNA of this member was used as a basis to query the International Wheat Genome Survey Sequence to identify all members of the TaHKT2;1 family. Individual TaHKT2;1 genes were subsequently studied for gene and predicted protein structures, promoter variability, tissue expression and their role in Na(+) and K(+) status of wheat. RESULTS Six TaHKT2;1 genes were characterized which included four functional genes (TaHKT2;1 7AL-1, TaHKT2;1 7BL-1, TaHKT2;1 7BL-2 and TaHKT2;1 7DL-1) and two pseudogenes (TaHKT2;1 7AL-2 and TaHKT2;1 7AL-3), on chromosomes 7A, 7B and 7D of hexaploid wheat. Variability in protein domains for cation specificity and in cis-regulatory elements for salt response in gene promoters, were identified amongst the functional TaHKT2;1 members. The functional genes were expressed under low and high NaCl conditions in roots and leaf sheaths, but were down regulated in leaf blades. Alternative splicing events were evident in TaHKT2;1 7AL-1. Aneuploid lines null for each functional gene were grown in high NaCl nutrient solution culture to identify potential role of each TaHKT2;1 member. Aneuploid lines null for TaHKT2;1 7AL-1, TaHKT2;1 7BL-1 and TaHKT2;1 7BL-2 showed no difference in Na(+) concentration between Chinese Spring except for higher Na(+) in sheaths. The same aneuploid lines had lower K(+) in roots, sheath and youngest fully expanded leaf but only under high (200 mM) NaCl in the external solution. There was no difference in Na(+) or K(+) concentration for any treatment between aneuploid line null for the TaHKT2;1 7DL-1 gene and Chinese Spring. CONCLUSIONS TaHKT2;1 is a complex family consisting of pseudogenes and functional members. TaHKT2;1 genes do not have an apparent role in controlling root Na(+) uptake in bread wheat seedlings under experimental conditions in this study, contrary to existing hypotheses. However, TaHKT2;1 genes or, indeed other genes in the same chromosome region on 7AL, are candidates that may control Na(+) transport from root to sheath and regulate K(+) levels in different plant tissues.
Collapse
Affiliation(s)
- HA Chandima K Ariyarathna
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley 6009, Western Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Western Australia
| | - Tanveer Ul-Haq
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley 6009, Western Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Western Australia
- College of Agriculture, D. G. Khan, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Timothy D Colmer
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley 6009, Western Australia
| | - Michael G Francki
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Western Australia
- Department of Agriculture and Food Western Australia, South Perth 6151, Western Australia
| |
Collapse
|
43
|
Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2014; 3:75-84. [PMID: 30805376 PMCID: PMC6373570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The plants were grown in standard nutrient solution for 21 days and then starved in a media without nitrate for seven days. Starved plants were stimulated with various concentrations of sodium nitrate, potassium nitrate, ammonia and urea, and the expression of nitrate reductase mRNA was analyzed by real-time PCR. Our results indicated that starvation caused significant decrease in the production of nitrate reductase mRNA in the plant leaf. Sodium and potassium nitrate were capable of restoring the production of nitrate mRNA in a dose-dependent manner, since 50 mM of each produced the highest level of the mRNA. The stimulatory effect of potassium nitrate was higher than sodium nitrate, while ammonia and urea did not show such activity. At low concentrations, sodium nitrate and potassium nitrate caused significant increase in the nitrate/nitrite mRNA production, whereas high concentrations of these salts suppressed the expression of this gene considerably.
Collapse
|
44
|
Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? JOURNAL OF PLANT PHYSIOLOGY 2014; 171:748-69. [PMID: 24666983 DOI: 10.1016/j.jplph.2014.01.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 05/20/2023]
Abstract
Cloning and characterizations of plant K(+) transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K(+) transport systems that are active at the plasma membrane: the Shaker K(+) channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K(+) in most environmental conditions, and two families of transporters, the HAK/KUP/KT K(+) transporter family, which includes some high-affinity transporters, and the HKT K(+) and/or Na(+) transporter family, in which K(+)-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.
Collapse
Affiliation(s)
- Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France.
| | - Manuel Nieves-Cordones
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Meriem Daly
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'sik, Université Hassan II-Mohammedia, Avenue Cdt Driss El Harti, BP 7955, Sidi Othmane, Casablanca, Morocco
| | - Imran Khan
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Cécile Fizames
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
45
|
Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. The twins K+ and Na+ in plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:723-31. [PMID: 24810769 DOI: 10.1016/j.jplph.2013.10.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 05/02/2023]
Abstract
In the earth's crust and in seawater, K(+) and Na(+) are by far the most available monovalent inorganic cations. Physico-chemically, K(+) and Na(+) are very similar, but K(+) is widely used by plants whereas Na(+) can easily reach toxic levels. Indeed, salinity is one of the major and growing threats to agricultural production. In this article, we outline the fundamental bases for the differences between Na(+) and K(+). We present the foundation of transporter selectivity and summarize findings on transporters of the HKT type, which are reported to transport Na(+) and/or Na(+) and K(+), and may play a central role in Na(+) utilization and detoxification in plants. Based on the structural differences in the hydration shells of K(+) and Na(+), and by comparison with sodium channels, we present an ad hoc mechanistic model that can account for ion permeation through HKTs.
Collapse
Affiliation(s)
- Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Anna Amtmann
- Institute of Molecular, Cellular and Systems Biology (MCSB), College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | - Tracey Ann Cuin
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, Montpellier, France
| | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
46
|
Maathuis FJM. Sodium in plants: perception, signalling, and regulation of sodium fluxes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:849-58. [PMID: 24151301 DOI: 10.1093/jxb/ert326] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although not essential for most plants, sodium (Na(+)) can be beneficial to plants in many conditions, particularly when potassium (K(+)) is deficient. As such it can be regarded a 'non-essential' or 'functional' nutrient. By contrast, the many salinized areas around the globe force plants to deal with toxicity from high levels of Na(+) in the environment and within tissues. Progress has been made in identifying the relevant membrane transporters involved in the uptake and distribution of Na(+). The latter is important in the context of mitigating salinity stress but also for the optimization of Na(+) as an abundantly available functional nutrient. In both cases plants are likely to require mechanism(s) to monitor Na(+) concentration, possibly in multiple compartments, to regulate gene expression and transport activities. Extremely little is known about whether such mechanisms are present and if so, how they operate, either at the cellular or the tissue level. This paper gives an overview of the regulatory and potential sensing mechanisms that pertain to Na(+), in both the context of salt stress and Na(+) as a nutrient.
Collapse
|
47
|
Chérel I, Lefoulon C, Boeglin M, Sentenac H. Molecular mechanisms involved in plant adaptation to low K(+) availability. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:833-48. [PMID: 24293613 DOI: 10.1093/jxb/ert402] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling.
Collapse
Affiliation(s)
- Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | | | | | | |
Collapse
|
48
|
Almeida PMF, de Boer GJ, de Boer AH. Assessment of natural variation in the first pore domain of the tomato HKT1;2 transporter and characterization of mutated versions of SlHKT1;2 expressed in Xenopus laevis oocytes and via complementation of the salt sensitive athkt1;1 mutant. FRONTIERS IN PLANT SCIENCE 2014; 5:600. [PMID: 25408697 PMCID: PMC4219482 DOI: 10.3389/fpls.2014.00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/15/2014] [Indexed: 05/08/2023]
Abstract
Single Nucleotide Polymorphisms (SNPs) within the coding sequence of HKT transporters are important for the functioning of these transporters in several plant species. To unravel the functioning of HKT transporters analysis of natural variation and multiple site-directed mutations studies are crucial. Also the in vivo functioning of HKT proteins, via complementation studies performed with athkt1;1 plants, could provide essential information about these transporters. In this work, we analyzed the natural variation present in the first pore domain of the HKT1;2 coding sequence of 93 different tomato accessions, which revealed that this region was conserved among all accessions analyzed. Analysis of mutations introduced in the first pore domain of the SlHKT1;2 gene showed, when heterologous expressed in Xenopus laevis oocytes, that the replacement of S70 by a G allowed SlHKT2;1 to transport K(+), but also caused a large reduction in both Na(+) and K(+) mediated currents. The study of the transport characteristics of SlHKT1;2 revealed that Na(+)-transport by the tomato SlHKT1;2 protein was inhibited by the presence of K(+) at the outside of the membrane. GUS expression under the AtHKT1;1 promoter gave blue staining in the vascular system of transgenic Arabidopsis. athkt1;1 mutant plants transformed with AtHKT1;1, SlHKT1;2, AtHKT1;1S68G, and SlHKT1;2S70G indicated that both AtHKT1;1 and SlHKT1;2 were able to restore the accumulation of K(+) in the shoot, although the low accumulation of Na(+) as shown by WT plants was only partially restored. The inhibition of Na(+) transport by K(+), shown by the SlHKT1;2 transporter in oocytes (and not by AtHKT1;1), was not reflected in Na(+) accumulation in the plants transformed with SlHKT1;2. Both AtHKT1;1-S68G and SlHKT1;2-S70G were not able to restore the phenotype of athkt1;1 mutant plants.
Collapse
Affiliation(s)
- Pedro M. F. Almeida
- Department of Structural Biology, Faculty Earth and Life Sciences, Vrije Universiteit AmsterdamAmsterdam, Netherlands
- *Correspondence: Pedro M. F. Almeida, Department of Structural Biology, Faculty Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands e-mail:
| | | | - Albertus H. de Boer
- Department of Structural Biology, Faculty Earth and Life Sciences, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
49
|
Ben Amar S, Brini F, Sentenac H, Masmoudi K, Véry AA. Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:213-22. [PMID: 24192995 PMCID: PMC3883290 DOI: 10.1093/jxb/ert361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant tolerance to salinity constraint involves complex and integrated functions including control of Na(+) uptake, translocation, and compartmentalization. Several members of the high-affinity K(+) transporter (HKT) family, which comprises plasma-membrane transporters permeable to K(+) and Na(+) or to Na(+) only, have been shown to play major roles in plant Na(+) and K(+) homeostasis. Among them, HKT1;4 has been identified as corresponding to a quantitative trait locus (QTL) of salt tolerance in wheat but was not functionally characterized. Here, we isolated two HKT1;4-type cDNAs from a salt-tolerant durum wheat (Triticum turgidum L. subsp. durum) cultivar, Om Rabia3, and investigated the functional properties of the encoded transporters using a two-electrode voltage-clamp technique, after expression in Xenopus oocytes. Both transporters displayed high selectivity for Na(+), their permeability to other monovalent cations (K(+), Li(+), Cs(+), and Rb(+)) being ten times lower than that to Na(+). Both TdHKT1;4-1 and TdHKT1;4-2 transported Na(+) with low affinity, although the half-saturation of the conductance was observed at a Na(+) concentration four times lower in TdHKT1;4-1 than in TdHKT1;4-2. External K(+) did not inhibit Na(+) transport through these transporters. Quinine slightly inhibited TdHKT1;4-2 but not TdHKT1;4-1. Overall, these data identified TdHKT1;4 transporters as new Na(+)-selective transporters within the HKT family, displaying their own functional features. Furthermore, they showed that important differences in affinity exist among durum wheat HKT1;4 transporters. This suggests that the salt tolerance QTL involving HKT1;4 may be at least in part explained by functional variability among wheat HKT1;4-type transporters.
Collapse
Affiliation(s)
- Siwar Ben Amar
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Faiçal Brini
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Khaled Masmoudi
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
50
|
HKT transporters--state of the art. Int J Mol Sci 2013; 14:20359-85. [PMID: 24129173 PMCID: PMC3821619 DOI: 10.3390/ijms141020359] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/15/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022] Open
Abstract
The increase in soil salinity poses a serious threat to agricultural yields. Under salinity stress, several Na⁺ transporters play an essential role in Na⁺ tolerance in plants. Amongst all Na+ transporters, HKT has been shown to have a crucial role in both mono and dicotyledonous plants in the tolerance to salinity stress. Here we present an overview of the physiological role of HKT transporters in plant Na⁺ homeostasis. HKT regulation and amino acids important to the correct function of HKT transporters are reviewed. The functions of the most recently characterized HKT members from both HKT1 and HKT2 subfamilies are also discussed. Topics that still need to be studied in future research (e.g., HKT regulation) as well as research suggestions (e.g., generation of HKT mutants) are addressed.
Collapse
|