1
|
Vijayan S, Liu R, George S, Bhaskaran S. Polyethylene terephthalate nanoparticles induce oxidative damage in Chlorella vulgaris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108987. [PMID: 39089045 DOI: 10.1016/j.plaphy.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Polyethylene Terephthalate (PET) is a type of plastic largely used for packing food and beverages. Unfortunately, it includes a major portion of the plastic distributed through aquatic systems wherever systematic collection and recycling are lacking. Although PET is known to be non-toxic, it is not obvious whether the nanoparticles (NPs) formed due to their degradation have any direct/indirect effect on aquatic organisms. In order to study the effects on aquatic environment, fresh water algae Chlorella vulgaris was subjected to incremental concentrations of the NPs. We observed a concentration and duration of exposure dependent decrease in algal growth rate along with reduced total chlorophyll content. Scanning electron microscopy revealed deformities in cell shape and the uptake of Propidium Iodide suggested membrane damage in response to NP exposure. Intracellular Reactive Oxygen Species level was also found significantly higher, evidenced by Dichlorodihydrofluorescein diacetate staining. Activity of antioxidant enzymes Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) were significantly higher in the NP exposed groups suggesting the cellular response to regain homeostasis. Further, expression levels of the genes psaB, psbC, and rbcL associated with photosynthesis increased above two fold with respect to the control inferring the possibility of damage to photosynthesis and the initial molecular responses to circumvent the situation. In short, our studies provide evidence for oxidative stress mediated cellular damages in Chlorella vulgaris exposed to NPs of PET.
Collapse
Affiliation(s)
- Siji Vijayan
- Department of Botany, Fatima Mata National College, Kollam, Kerala, India, 691001
| | - Ruby Liu
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Sinilal Bhaskaran
- Department of Botany, Fatima Mata National College, Kollam, Kerala, India, 691001.
| |
Collapse
|
2
|
Neusius D, Kleinknecht L, Teh JT, Ostermeier M, Kelterborn S, Eirich J, Hegemann P, Finkemeier I, Bohne AV, Nickelsen J. Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1780-1800. [PMID: 35899410 DOI: 10.1111/tpj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.
Collapse
Affiliation(s)
- Daniel Neusius
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Laura Kleinknecht
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jing Tsong Teh
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Matthias Ostermeier
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Simon Kelterborn
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jörg Nickelsen
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| |
Collapse
|
3
|
Spotting the Targets of the Apospory Controller TGS1 in Paspalum notatum. PLANTS 2022; 11:plants11151929. [PMID: 35893633 PMCID: PMC9332697 DOI: 10.3390/plants11151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Sexuality and apomixis are interconnected plant reproductive routes possibly behaving as polyphenic traits under the influence of the environment. In the subtropical grass Paspalum notatum, one of the controllers of apospory, a main component of gametophytic apomixis reproduction, is TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1), a multifunctional gene previously associated with RNA cleavage regulation (including mRNA splicing as well as rRNA and miRNA processing), transcriptional modulation and the establishment of heterochromatin. In particular, the downregulation of TGS1 induces a sexuality decline and the emergence of aposporous-like embryo sacs. The present work was aimed at identifying TGS1 target RNAs expressed during reproductive development of Paspalum notatum. First, we mined available RNA databases originated from spikelets of sexual and apomictic plants, which naturally display a contrasting TGS1 representation, to identify differentially expressed mRNA splice variants and miRNAs. Then, the role of TGS1 in the generation of these particular molecules was investigated in antisense tgs1 sexual lines. We found that CHLOROPHYLL A-B BINDING PROTEIN 1B-21 (LHC Ib-21, a component of the chloroplast light harvesting complex), QUI-GON JINN (QGJ, encoding a MAP3K previously associated with apomixis) and miR2275 (a meiotic 24-nt phasi-RNAs producer) are directly or indirectly targeted by TGS1. Our results point to a coordinated control exercised by signal transduction and siRNA machineries to induce the transition from sexuality to apomixis.
Collapse
|
4
|
Perdomo JA, Buchner P, Carmo-Silva E. The relative abundance of wheat Rubisco activase isoforms is post-transcriptionally regulated. PHOTOSYNTHESIS RESEARCH 2021; 148:47-56. [PMID: 33796933 PMCID: PMC8154801 DOI: 10.1007/s11120-021-00830-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/11/2021] [Indexed: 06/06/2023]
Abstract
Diurnal rhythms and light availability affect transcription-translation feedback loops that regulate the synthesis of photosynthetic proteins. The CO2-fixing enzyme Rubisco is the most abundant protein in the leaves of major crop species and its activity depends on interaction with the molecular chaperone Rubisco activase (Rca). In Triticum aestivum L. (wheat), three Rca isoforms are present that differ in their regulatory properties. Here, we tested the hypothesis that the relative abundance of the redox-sensitive and redox-insensitive Rca isoforms could be differentially regulated throughout light-dark diel cycle in wheat. While TaRca1-β expression was consistently negligible throughout the day, transcript levels of both TaRca2-β and TaRca2-α were higher and increased at the start of the day, with peak levels occurring at the middle of the photoperiod. Abundance of TaRca-β protein was maximal 1.5 h after the peak in TaRca2-β expression, but the abundance of TaRca-α remained constant during the entire photoperiod. The redox-sensitive TaRca-α isoform was less abundant, representing 85% of the redox-insensitive TaRca-β at the transcript level and 12.5% at the protein level. Expression of Rubisco large and small subunit genes did not show a consistent pattern throughout the diel cycle, but the abundance of Rubisco decreased by up to 20% during the dark period in fully expanded wheat leaves. These results, combined with a lack of correlation between transcript and protein abundance for both Rca isoforms and Rubisco throughout the entire diel cycle, suggest that the abundance of these photosynthetic enzymes is post-transcriptionally regulated.
Collapse
Affiliation(s)
| | - Peter Buchner
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | |
Collapse
|
5
|
ZnJ6 Is a Thylakoid Membrane DnaJ-Like Chaperone with Oxidizing Activity in Chlamydomonas reinhardtii. Int J Mol Sci 2021; 22:ijms22031136. [PMID: 33498879 PMCID: PMC7865324 DOI: 10.3390/ijms22031136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/28/2022] Open
Abstract
Assembly of photosynthetic complexes is sensitive to changing light intensities, drought and pathogens, each of which induces a redox imbalance that requires the assistance of specific chaperones to maintain protein structure. Here we report a thylakoid membrane-associated DnaJ-like protein, ZnJ6 (Cre06.g251716.t1.2), in Chlamydomonas reinhardtii. The protein has four CXXCX(G)X(G) motifs that form two zinc fingers (ZFs). Site-directed mutagenesis (Cys > Ser) eliminates the ability to bind zinc. An intact ZF is required for ZnJ6 stability at elevated temperatures. Chaperone assays with recombinant ZnJ6 indicate that it has holding and oxidative activities. ZnJ6 is unable to reduce the disulfide bonds of insulin but prevents its aggregation in a reducing environment. It also assists in the reactivation of reduced denatured RNaseA, possibly by its oxidizing activity. ZnJ6 pull-down assays revealed interactions with oxidoreductases, photosynthetic proteins and proteases. In vivo experiments with a C. reinhardtii insertional mutant (∆ZnJ6) indicate enhanced tolerance to oxidative stress but increased sensitivity to heat and reducing conditions. Moreover, ∆ZnJ6 has reduced photosynthetic efficiency shown by the Chlorophyll fluorescence transient. Taken together, we identify a role for this thylakoid-associated DnaJ-like oxidizing chaperone that assists in the prevention of protein misfolding and aggregation, thus contributing to stress endurance, redox maintenance and photosynthetic balance.
Collapse
|
6
|
Bach-Pages M, Homma F, Kourelis J, Kaschani F, Mohammed S, Kaiser M, van der Hoorn RAL, Castello A, Preston GM. Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules 2020; 10:E661. [PMID: 32344669 PMCID: PMC7226388 DOI: 10.3390/biom10040661] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines and organisms, including plants, greatly expanding the repertoire of RBPs. However, several technical challenges have limited the efficacy of RIC when applied to plant tissues. Here, we report an improved version of RIC that overcomes the difficulties imposed by leaf tissue. Using this improved RIC method in Arabidopsis leaves, we identified 717 RBPs, generating a deep RNA-binding proteome for leaf tissues. While 75% of these RBPs can be linked to RNA biology, the remaining 25% were previously not known to interact with RNA. Interestingly, we observed that a large number of proteins related to photosynthesis associate with RNA in vivo, including proteins from the four major photosynthetic supercomplexes. As has previously been reported for mammals, a large proportion of leaf RBPs lack known RNA-binding domains, suggesting unconventional modes of RNA binding. We anticipate that this improved RIC method will provide critical insights into RNA metabolism in plants, including how cellular RBPs respond to environmental, physiological and pathological cues.
Collapse
Affiliation(s)
- Marcel Bach-Pages
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Felix Homma
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Jiorgos Kourelis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Farnusch Kaschani
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Markus Kaiser
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Renier A. L. van der Hoorn
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| |
Collapse
|
7
|
Abstract
Moonlighting refers to a protein with at least two unrelated, mechanistically different functions. As a concept, moonlighting describes a large and diverse group of proteins which have been discovered in a multitude of organisms. As of today, a systematized view on these proteins is missing. Here, we propose a classification of moonlighting proteins by two classifiers. We use the function of the protein as a first classifier: activating - activating (Type I), activating - inhibiting (Type II), inhibiting - activating (Type III) and inhibiting - inhibiting (Type IV). To further specify the type of moonlighting protein, we used a second classifier based on the character of the factor that switches the function of the protein: external factor affecting the protein (Type A), change in the first pathway (Type B), change in the second pathway (Type C), equal competition between both pathways (Type D). Using a small two-pathway model we simulated these types of moonlighting proteins to elucidate possible behaviors of the types of moonlighting proteins. We find that, using the results of our simulations, we can classify the behavior of the moonlighting types into Blinker, Splitter andSwitch.
Collapse
Affiliation(s)
- Maria Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Colina F, Carbó M, Meijón M, Cañal MJ, Valledor L. Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:110. [PMID: 32577129 PMCID: PMC7305600 DOI: 10.1186/s13068-020-01750-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The exposure of microalgae and plants to low UV-C radiation dosages can improve their biomass composition and stress tolerance. Despite UV-C sharing these effects with UV-A/B but at much lower dosages, UV-C sensing and signal mechanisms are still mostly unknown. Thus, we have described and integrated the proteometabolomic and physiological changes occurring in Chlamydomonas reinhardtii-a simple Plantae model-into the first 24 h after a short and low-intensity UV-C irradiation in order to reconstruct the microalgae response system to this stress. RESULTS The microalgae response was characterized by increased redox homeostasis, ROS scavenging and protein damage repair/avoidance elements. These processes were upregulated along with others related to the modulation of photosynthetic electron flux, carbon fixation and C/N metabolism. These changes, attributed to either direct UV-C-, ROS- or redox unbalances-associated damage, trigger a response process involving novel signaling intermediaries and effectors such as the translation modulator FAP204, a PP2A-like protein and a novel DYRK kinase. These elements were found linked to the modulation of Chlamydomonas biomass composition (starch accumulation) and proliferation, within an UV-C response probably modulated by different epigenetic factors. CONCLUSION Chosen multiomics integration approach was able to describe many fast changes, including biomass composition and ROS stress tolerance, as a response to a low-intensity UV-C stress. Moreover, the employed omics and systems biology approach placed many previously unidentified protein and metabolites at the center of these changes. These elements would be promising targets for the characterization of this stress response in microalgae and plants and the engineering of more productive microalgae strains.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Guadagno CR, Pugliese M, Bonanno S, Manco AM, Sodano N, D'Ambrosio N. Gas exchange and chlorophyll a fluorescence measurements as proxies of X-ray resistance in Phaseolus vulgaris L. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:575-583. [PMID: 31463523 DOI: 10.1007/s00411-019-00811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Phaseolus vulgaris L. plants were irradiated with different doses (0.3, 10, 50 and 100 Gy) of X-rays in order to obtain a reference curve of response to ionizing radiations for this species. Growth analysis, gas exchange and chlorophyll a fluorescence measurements were performed to estimate the radio-resistance of bean plants. Specifically, there was a negative influence of X-rays on the net photosynthesis rate at 50 and 100 Gy, already on the day of irradiation. Experimental data showed a recovery over time in the gas exchange while the theoretical maximum photochemical efficiency of the photosystem II (Fv/Fm) was fairly constant throughout the period of measurements (20 days) and for all the experimental conditions. On the other hand, the quantum yield of PSII linear electron transport (ΦPSII) and non-photochemical quenching (NPQ) were deeply influenced over time by X-ray dose, suggesting a decrease in the functionality of the photosynthetic apparatus at the highest radiation doses. The growth was affected only at the highest doses of radiation with a significant and severe reduction of leaf expansion and number of leaves per plant. Despite the arrest in growth, X-ray exposure seems to trigger an increased photochemical activity probably signifying that P. vulgaris plants have a fairly elevated resistance to this kind of ionizing radiation. Our current results will provide a complete analysis of the photosystem II (PSII) response of P. vulgaris to different doses (0.3, 10, 50 and 100 Gy) of X-rays, providing sound references for both space-oriented and radioecology questions.
Collapse
Affiliation(s)
- C R Guadagno
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 7, 80126, Naples, Italy
- Department of Botany, University of Wyoming, 1000 University Avenue, Laramie, WY, USA
| | - M Pugliese
- Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 6, 80126, Naples, Italy
| | - S Bonanno
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 7, 80126, Naples, Italy
| | - A M Manco
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 7, 80126, Naples, Italy
| | - N Sodano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 7, 80126, Naples, Italy
| | - N D'Ambrosio
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 7, 80126, Naples, Italy.
| |
Collapse
|
10
|
Gudkov SV, Grinberg MA, Sukhov V, Vodeneev V. Effect of ionizing radiation on physiological and molecular processes in plants. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 202:8-24. [PMID: 30772632 DOI: 10.1016/j.jenvrad.2019.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/09/2023]
Abstract
The study of effects of ionizing radiation (IR) on plants is important in relation to several problems: (I) the existence of zones where background radiation - either natural or technogenic - is increased; (II) the problems of space biology; (III) the use of IR in agricultural selection; (IV) general biological problems related to the fundamental patterns and specifics of the effects of IR on various living organisms. By now, researchers have accumulated and systematized a large body of data on the effects of IR on the growth and reproduction of plants, as well as on the changes induced by IR at the genetic level. At the same time, there is a large gap in understanding the mechanisms of IR influence on the biochemical and physiological processes - despite the fact that these processes form the basis determining the manifestation of IR effects at the level of the whole organism. On the one hand, the activity of physiological processes determines the growth of plants; on the other, it is determined by changes at the genetic level. Thus, it is the study of IR effects at the physiological and biochemical levels that can give the most detailed and complex picture of IR action in plants. The review focuses on the effects of radiation on the essential physiological processes, including photosynthesis, respiration, long-distance transport, the functioning of the hormonal system, and various biosynthetic processes. On the basis of a large body of experimental data, we analyze dose and time dependences of the IR-induced effects - which are qualitatively similar - on various physiological and biochemical processes. We also consider the sequence of stages in the development of those effects and discuss their mechanisms, as well as the cause-effect relationships between them. The primary IR-induced physicochemical reactions include the formation of various forms of reactive oxygen species (ROS) and are the cause of the observed changes in the functional activity of plants. The review emphasizes the role of hydrogen peroxide, a long-lived ROS, not only as a damaging agent, but also as a mediator - a universal intracellular messenger, which provides for the mechanism of long-distance signaling. A supposition is made that IR affects physiological processes mainly by violating the regulation of their activity. The violation seems to become possible due to the fact that there exists a crosstalk between different signaling systems of plants, such as ROS, calcium, hormonal and electrical systems. As a result of both acute and chronic irradiation, an increase in the level of ROS can influence the activity of a wide range of physiological processes - by regulating them both at the genetic and physiological levels. To understand the ways, by which IR affects plant growth and development, one needs detailed knowledge about the mechanisms of the processes that occur at the (i) genetic and (ii) physiological levels, as well as their interplay and (iii) knowledge about regulation of these processes at different levels.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Lobachevsky State University of Nizhni Novgorod, Department of Biophysics, Gagarin St. 23, Nizhny Novgorod, 603950, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St., 38, Moscow, 119991, Russia; Moscow Regional Research and Clinical Institute (MONIKI), Shchepkina St., 61/2, Moscow, 129110, Russia
| | - Marina A Grinberg
- Lobachevsky State University of Nizhni Novgorod, Department of Biophysics, Gagarin St. 23, Nizhny Novgorod, 603950, Russia
| | - Vladimir Sukhov
- Lobachevsky State University of Nizhni Novgorod, Department of Biophysics, Gagarin St. 23, Nizhny Novgorod, 603950, Russia
| | - Vladimir Vodeneev
- Lobachevsky State University of Nizhni Novgorod, Department of Biophysics, Gagarin St. 23, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
11
|
Schmid LM, Ohler L, Möhlmann T, Brachmann A, Muiño JM, Leister D, Meurer J, Manavski N. PUMPKIN, the Sole Plastid UMP Kinase, Associates with Group II Introns and Alters Their Metabolism. PLANT PHYSIOLOGY 2019; 179:248-264. [PMID: 30409856 PMCID: PMC6324238 DOI: 10.1104/pp.18.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 05/07/2023]
Abstract
The chloroplast hosts photosynthesis and a variety of metabolic pathways that are essential for plant viability and acclimation processes. In this study, we show that the sole plastid UMP kinase (PUMPKIN) in Arabidopsis (Arabidopsis thaliana) associates specifically with the introns of the plastid transcripts trnG-UCC, trnV-UAC, petB, petD, and ndhA in vivo, as revealed by RNA immunoprecipitation coupled with deep sequencing (RIP-Seq); and that PUMPKIN can bind RNA efficiently in vitro. Analyses of target transcripts showed that PUMPKIN affects their metabolism. Null alleles and knockdowns of pumpkin were viable but clearly affected in growth, plastid translation, and photosynthetic performance. In pumpkin mutants, the levels of many plastid transcripts were reduced, while the amounts of others were increased, as revealed by RNA-Seq analysis. PUMPKIN is a homomultimeric, plastid-localized protein that forms in vivo RNA-containing megadalton-sized complexes and catalyzes the ATP-dependent conversion of UMP to UDP in vitro with properties characteristic of known essential eubacterial UMP kinases. A moonlighting function of PUMPKIN combining RNA and pyrimidine metabolism is discussed.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa Ohler
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jose M Muiño
- Humboldt University, Faculty of Life Science, Philipp Street 13, 10115 Berlin, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Zhong M, Wang Y, Hou K, Shu S, Sun J, Guo S. TGase positively regulates photosynthesis via activation of Calvin cycle enzymes in tomato. HORTICULTURE RESEARCH 2019; 6:92. [PMID: 31645950 PMCID: PMC6804539 DOI: 10.1038/s41438-019-0173-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 05/09/2023]
Abstract
Transglutaminases (TGases), which are widespread cross-linking enzymes in plants, play key roles in photosynthesis and abiotic/biotic stress responses; however, evidence concerning the genetics underlying how TGase improves the capability of photosynthesis and the mechanism of TGase-mediated photosynthesis are not clear in this crop species. In this study, we clarified the function of TGase in the regulation of photosynthesis in tomato by comparing wild-type (WT) plants, tgase mutants generated by the CRISPR/Cas9 system and TGase-overexpressing (TGaseOE) plants. Our results showed that increasing the transcript level of TGase resulted in an enhanced net photosynthetic rate (Pn), whereas the tgase mutants presented significantly inhibited Pns and CO2 assimilation compared with the WT. Although the total RuBisCO activity was not affected by TGase, the initial and activation status of RuBisCO and the activity of RuBisCO activase (RCA) and fructose-1,6-bisphosphatase (FBPase) in TGaseOE plants were significantly higher than that in WT plants. Except for RuBisCO small subunit (RbcS), the transcription levels of Benson-Calvin cycle-related genes were positively related to the endogenous TGase activity. Furthermore, TGaseOE plants had higher protein levels of RuBisCO large subunit (RbcL) and RCA than did WT plants and showed a reduced redox status by enhancing the activity of dehydroascorbate reductase (DHAR) and glutathione reductase (GR), which was compromised in TGase-deficient plants. Overall, TGase positively regulated photosynthesis by maintaining the activation states of the Benson-Calvin cycle and inducing changes in cellular redox homeostasis in tomato.
Collapse
Affiliation(s)
- Min Zhong
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kun Hou
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, 223800 Suqian, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, 223800 Suqian, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, 223800 Suqian, China
| |
Collapse
|
13
|
Zoschke R, Bock R. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. THE PLANT CELL 2018; 30:745-770. [PMID: 29610211 PMCID: PMC5969280 DOI: 10.1105/tpc.18.00016] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
14
|
De Porcellinis AJ, Nørgaard H, Brey LMF, Erstad SM, Jones PR, Heazlewood JL, Sakuragi Y. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. Metab Eng 2018; 47:170-183. [PMID: 29510212 DOI: 10.1016/j.ymben.2018.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
Abstract
Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic factories for sustainable productions of fuels and chemicals. The Calvin Benson cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants. Previous studies have overexpressed the Calvin Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), in both plants and algae, although their impacts on cyanobacteria have not yet been rigorously studied. Here, we show that overexpression of BiBPase and RuBisCO have distinct impacts on carbon metabolism in the cyanobacterium Synechococcus sp. PCC 7002 through physiological, biochemical, and proteomic analyses. The former enhanced growth, cell size, and photosynthetic O2 evolution, and coordinately upregulated enzymes in the Calvin Benson cycle including RuBisCO and fructose-1,6-bisphosphate aldolase. At the same time it downregulated enzymes in respiratory carbon metabolism (glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase (G6PDH). The content of glycogen was also significantly reduced while the soluble carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and carbon partitioning towards non-storage carbohydrates. In contrast, whilst overexpression of RuBisCO had no measurable impact on growth and photosynthetic O2 evolution, it led to coordinated increase in the abundance of proteins involved in pyruvate metabolism and fatty acid biosynthesis. Our results underpin that singular genetic modifications in the Calvin Benson cycle can have far broader cellular impact than previously expected. These features could be exploited to more efficiently direct carbons towards desired bioproducts.
Collapse
Affiliation(s)
- Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Carlsberg Research Laboratory, 100 Ny Carlsberg Vej, 1799 Copenhagen V, Denmark
| | - Hanne Nørgaard
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Laura Maria Furelos Brey
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Patrik R Jones
- Department Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark.
| |
Collapse
|
15
|
Kacar B, Hanson‐Smith V, Adam ZR, Boekelheide N. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. GEOBIOLOGY 2017; 15:628-640. [PMID: 28670785 PMCID: PMC5575542 DOI: 10.1111/gbi.12243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/09/2017] [Indexed: 05/04/2023]
Abstract
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen-sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem-bearing, oxygen-evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the adaptation of key oxygen-sensitive components of Rubisco prior to, or coincident with, the Great Oxidation Event.
Collapse
Affiliation(s)
- B. Kacar
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - V. Hanson‐Smith
- Department of Microbiology and ImmunologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Z. R. Adam
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | | |
Collapse
|
16
|
Yerramsetty P, Agar EM, Yim WC, Cushman JC, Berry JO. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4635-4649. [PMID: 28981775 PMCID: PMC5853808 DOI: 10.1093/jxb/erx264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Nuclear-encoded RLSB protein binds chloroplastic rbcL mRNA encoding the Rubisco large subunit. RLSB is highly conserved across all groups of land plants and is associated with positive post-transcriptional regulation of rbcL expression. In C3 leaves, RLSB and Rubisco occur in all chlorenchyma cell chloroplasts, while in C4 leaves these accumulate only within bundle sheath (BS) chloroplasts. RLSB's role in rbcL expression makes modification of its localization a likely prerequisite for the evolutionary restriction of Rubisco to BS cells. Taking advantage of evolutionarily conserved RLSB orthologs in several C3, C3-C4, C4-like, and C4 photosynthetic types within the genus Flaveria, we show that low level RLSB sequence divergence and modification to BS specificity coincided with ontogeny of Rubisco specificity and Kranz anatomy during C3 to C4 evolution. In both C3 and C4 species, Rubisco production reflected RLSB production in all cell types, tissues, and conditions examined. Co-localization occurred only in photosynthetic tissues, and both proteins were co-ordinately induced by light at post-transcriptional levels. RLSB is currently the only mRNA-binding protein to be associated with rbcL gene regulation in any plant, with variations in sequence and acquisition of cell type specificity reflecting the progression of C4 evolution within the genus Flaveria.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Erin M Agar
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
17
|
Bohne AV, Nickelsen J. Metabolic Control of Chloroplast Gene Expression: An Emerging Theme. MOLECULAR PLANT 2017; 10:1-3. [PMID: 27530365 DOI: 10.1016/j.molp.2016.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Alexandra-Viola Bohne
- Department Biology I, Molecular Plant Sciences, LMU Munich, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Department Biology I, Molecular Plant Sciences, LMU Munich, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
18
|
Rasmussen RE, Erstad SM, Ramos-Martinez EM, Fimognari L, De Porcellinis AJ, Sakuragi Y. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria. Microb Cell Fact 2016; 15:186. [PMID: 27825349 PMCID: PMC5101802 DOI: 10.1186/s12934-016-0587-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls, lysis of cyanobacterial cells is inefficient and often laborious. In some cases radioisotope-labeled substrates can be fed directly to intact cells; however, label-free assays are often favored due to safety and practical reasons. RESULTS Here we show an easy and highly efficient method for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism in cyanobacteria. Incubation of the cyanobacterial cells in the commercially available B-PER reagent for 10 min permeabilized the cells, as confirmed by the SYTOX Green staining. There was no significant change in the cell shape and no major loss of intracellular proteins was observed during the treatment. When used directly in the assays, the permeabilized cells exhibited the enzyme activities that are comparable or even higher than those detected for cell-free lysates. Moreover, the permeabilized cells could be stored at -20 °C without losing the enzyme activities. The permeabilization process and subsequent activity assays were successfully adapted to the 96-well plate system. CONCLUSIONS An easy, efficient and scalable permeabilization protocol was established for cyanobacteria. The permeabilized cells can be directly applied for measurement of G6PDH and Rubisco activities without using radioisotopes and the protocol may be readily adapted to studies of other cyanobacterial species and other intracellular enzymes. The permeabilization and enzyme assays can be performed in 96-well plates in a high-throughput manner.
Collapse
Affiliation(s)
- Randi Engelberth Rasmussen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Erick Miguel Ramos-Martinez
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
19
|
Koay TW, Wong HL, Lim BH. Engineering of chimeric eukaryotic/bacterial Rubisco large subunits in Escherichia coli. Genes Genet Syst 2016; 91:139-150. [PMID: 27301279 DOI: 10.1266/ggs.15-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a rate-limiting photosynthetic enzyme that catalyzes carbon fixation in the Calvin cycle. Much interest has been devoted to engineering this ubiquitous enzyme with the goal of increasing plant growth. However, experiments that have successfully produced improved Rubisco variants, via directed evolution in Escherichia coli, are limited to bacterial Rubisco because the eukaryotic holoenzyme cannot be produced in E. coli. The present study attempts to determine the specific differences between bacterial and eukaryotic Rubisco large subunit primary structure that are responsible for preventing heterologous eukaryotic holoenzyme formation in E. coli. A series of chimeric Synechococcus Rubiscos were created in which different sections of the large subunit were swapped with those of the homologous Chlamydomonas Rubisco. Chimeric holoenzymes that can form in vivo would indicate that differences within the swapped sections do not disrupt holoenzyme formation. Large subunit residues 1-97, 198-247 and 448-472 were successfully swapped without inhibiting holoenzyme formation. In all ten chimeras, protein expression was observed for the separate subunits at a detectable level. As a first approximation, the regions that can tolerate swapping may be targets for future engineering.
Collapse
Affiliation(s)
- Teng Wei Koay
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman
| | | | | |
Collapse
|
20
|
Berry JO, Mure CM, Yerramsetty P. Regulation of Rubisco gene expression in C4 plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:23-28. [PMID: 27026038 DOI: 10.1016/j.pbi.2016.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) incorporates inorganic carbon into an organic form, making this chloroplastic enzyme one of the most essential factors for all life on earth. Despite its central role in photosynthesis, research into regulation of the chloroplast rbcL and nuclear RbcS genes that encode this enzyme has lagged behind other plant gene systems. A major characteristic of kranz-type C4 plants is the accumulation of Rubisco only within chloroplasts of internalized bundle sheath cells that surround the leaf vascular centers. In plants that utilize the less common single cell C4 system, Rubisco accumulates only within one type of dimorphic chloroplasts localized to a specific region of leaf chlorenchyma cells. Understanding regulatory processes that restrict Rubisco gene expression to only one cell type or chloroplast type is a major focus of C4 research. Regulatory steps may include transcriptional, post-transcriptional, and post-translational processes.
Collapse
Affiliation(s)
- James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14120, United States.
| | - Christopher M Mure
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14120, United States
| | - Pradeep Yerramsetty
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14120, United States
| |
Collapse
|
21
|
Li XJ, Guo X, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ. Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC PLANT BIOLOGY 2016; 16:33. [PMID: 26822290 PMCID: PMC4730719 DOI: 10.1186/s12870-016-0715-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Genetic manipulation of brassinosteroid (BR) biosynthesis or signaling is a promising strategy to improve crop yield and quality. However, the relationships between the BR-promoted growth and photosynthesis and the exact mechanism of BR-regulated photosynthetic capacity are not clear. Here, we generated transgenic tomato plants by overexpressing Dwarf, a BR biosynthetic gene that encodes the CYP85A1, and compared the photosynthetic capacity with the BR biosynthetic mutant d (im) and wild type. RESULTS Overexpression of Dwarf promoted net photosynthetic rate (P N), whereas BR deficiency in d (im) led to a significant inhibition in P N as compared with WT. The activation status of RuBisCO, and the protein content and activity of RuBisCO activase, but not the total content and transcripts of RuBisCO were closely related to the endogenous BR levels in different genotypes. However, endogenous BR positively regulated the expression and activity of fructose-1,6-bisphosphatase. Dwarf overexpression enhanced the activity of dehydroascorbate reductase and glutathione reductase, leading to a reduced redox status, whereas BR deficiency had the contrasting effects. In addition, BR induced a reduction of 2-cystein peroxiredoxin without altering the protein content. CONCLUSIONS BR plays a role in the regulation of photosynthesis. BR can increase the photosynthetic capacity by inducing a reduced redox status that maintains the activation states of Calvin cycle enzymes.
Collapse
Affiliation(s)
- Xiao-Jing Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China.
| | - Xie Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China.
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China.
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China.
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China.
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Zhan Y, Dhaliwal JS, Adjibade P, Uniacke J, Mazroui R, Zerges W. Localized control of oxidized RNA. J Cell Sci 2015; 128:4210-9. [PMID: 26449969 DOI: 10.1242/jcs.175232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/23/2015] [Indexed: 12/23/2022] Open
Abstract
The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive or toxic. This includes the oxidation of RNA, which appears to underlie the detrimental effects of oxidative stress, aging and certain neurodegenerative diseases. Here, we investigate the management of oxidized RNA in the chloroplast of the green alga Chlamydomonas reinhardtii. Our immunofluorescence microscopy results reveal that oxidized RNA (with 8-hydroxyguanine) is localized in the pyrenoid, a chloroplast microcompartment where CO2 is assimilated by the Calvin cycle enzyme Rubisco. Results of genetic analyses support a requirement for the Rubisco large subunit (RBCL), but not Rubisco, in the management of oxidized RNA. An RBCL pool that can carry out such a 'moonlighting' function is revealed by results of biochemical fractionation experiments. We also show that human (HeLa) cells localize oxidized RNA to cytoplasmic foci that are distinct from stress granules, processing bodies and mitochondria. Our results suggest that the compartmentalization of oxidized RNA management is a general phenomenon and therefore has some fundamental significance.
Collapse
Affiliation(s)
- Yu Zhan
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - James S Dhaliwal
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Pauline Adjibade
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - James Uniacke
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Rachid Mazroui
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - William Zerges
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
23
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
24
|
Sudhani HP, Moreno J. Control of the ribulose 1,5-bisphosphate carboxylase/oxygenase activity by the chloroplastic glutathione pool. Arch Biochem Biophys 2015; 567:30-4. [DOI: 10.1016/j.abb.2014.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022]
|
25
|
Recuenco-Muñoz L, Offre P, Valledor L, Lyon D, Weckwerth W, Wienkoop S. Targeted quantitative analysis of a diurnal RuBisCO subunit expression and translation profile in Chlamydomonas reinhardtii introducing a novel Mass Western approach. J Proteomics 2014; 113:143-53. [PMID: 25301535 DOI: 10.1016/j.jprot.2014.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED RuBisCO catalyzes the rate-limiting step of CO2 fixation in photosynthesis. Hypothetical mechanisms for the regulation of rbcL and rbcS gene expression assume that both large (LSU) and small (SSU) RuBisCO subunit proteins (RSUs) are present in equimolar amounts to fit the 1:1 subunit stoichiometry of the holoenzyme. However, the actual quantities of the RSUs have never been determined in any photosynthetic organism. In this study the absolute amount of rbc transcripts and RSUs was quantified in Chlamydomonas reinhardtii grown during a diurnal light/dark cycle. A novel approach utilizing more reliable protein stoichiometry quantification is introduced. The rbcL:rbcS transcript and protein ratios were both 5:1 on average during the diurnal time course, indicating that SSU is the limiting factor for the assembly of the holoenzyme. The oscillation of the RSUs was 9h out of phase relative to the transcripts. The amount of rbc transcripts was at its maximum in the dark while that of RSUs was at its maximum in the light phase suggesting that translation of the rbc transcripts is activated by light as previously hypothesized. A possible post-translational regulation that might be involved in the accumulation of a 37-kDa N-terminal LSU fragment during the light phase is discussed. BIOLOGICAL SIGNIFICANCE A novel MS based approach enabling the exact stoichiometric analysis and absolute quantification of protein complexes is presented in this article. The application of this method revealed new insights in RuBisCO subunit dynamics.
Collapse
Affiliation(s)
- Luis Recuenco-Muñoz
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Pierre Offre
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David Lyon
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Doron L, Segal N, Gibori H, Shapira M. The BSD2 ortholog in Chlamydomonas reinhardtii is a polysome-associated chaperone that co-migrates on sucrose gradients with the rbcL transcript encoding the Rubisco large subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:345-55. [PMID: 25124725 DOI: 10.1111/tpj.12638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/13/2014] [Accepted: 08/04/2014] [Indexed: 05/13/2023]
Abstract
The expression of the CO2 -fixation enzyme ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which is affected by light, involves the cysteine-rich protein bundle-sheath defective-2 (BSD2) that was originally identified in maize bundle-sheath cells. We identified the BSD2 ortholog in Chlamydomonas reinhardtii as a small protein (17 kDa) localized to the chloroplast. The algal BSD2-ortholog contains four CXXCXGXG DnaJ-like elements, but lacks the other conserved domains of DnaJ. BSD2 co-migrated with the rbcL transcript on heavy polysomes, and both BSD2 and rbcL mRNA shifted to the lighter fractions under oxidizing conditions that repress the translation of the Rubisco large subunit (RbcL). This profile of co-migration supports the possibility that BSD2 is required for the de novo synthesis of RbcL. Furthermore, BSD2 co-migrated with the rbcL transcript in a C. reinhardtii premature-termination mutant that encodes the first 60 amino acids of RbcL. In both strains, BSD2 shared its migration profile with the rbcL transcript but not with psbA mRNA. The chaperone activity of BSD2 was exemplified by its ability to prevent the aggregation of both citrate synthase (CS) and RbcL in vitro following their chemical denaturation. This activity did not depend on the presence of the thiol groups on BSD2. In contrast, the activity of BSD2 in preventing the precipitation of reduced β-chains in vitro in the insulin turbidity assay was thiol-dependent. We conclude that BSD2 combines a chaperone 'holdase' function with the ability to interact with free thiols, with both activities being required to protect newly synthesized RbcL chains.
Collapse
Affiliation(s)
- Lior Doron
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer Sheva, 84105, Israel
| | | | | | | |
Collapse
|
27
|
Morisse S, Zaffagnini M, Gao XH, Lemaire SD, Marchand CH. Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid Redox Signal 2014; 21:1271-84. [PMID: 24328795 PMCID: PMC4158989 DOI: 10.1089/ars.2013.5632] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Protein S-nitrosylation, a post-translational modification (PTM) consisting of the covalent binding of nitric oxide (NO) to a cysteine thiol moiety, plays a major role in cell signaling and is recognized to be involved in numerous physiological processes and diseases in mammals. The importance of nitrosylation in photosynthetic eukaryotes has been less studied. The aim of this study was to expand our knowledge on protein nitrosylation by performing a large-scale proteomic analysis of proteins undergoing nitrosylation in vivo in Chlamydomonas reinhardtii cells under nitrosative stress. RESULTS Using two complementary proteomic approaches, 492 nitrosylated proteins were identified. They participate in a wide range of biological processes and pathways, including photosynthesis, carbohydrate metabolism, amino acid metabolism, translation, protein folding or degradation, cell motility, and stress. Several proteins were confirmed in vitro by western blot, site-directed mutagenesis and activity measurements. Moreover, 392 sites of nitrosylation were also identified. These results strongly suggest that S-nitrosylation could constitute a major mechanism of regulation in C. reinhardtii under nitrosative stress conditions. INNOVATION This study constitutes the largest proteomic analysis of protein nitrosylation reported to date. CONCLUSION The identification of 381 previously unrecognized targets of nitrosylation further extends our knowledge on the importance of this PTM in photosynthetic eukaryotes. The data have been deposited to the ProteomeXchange repository with identifier PXD000569.
Collapse
Affiliation(s)
- Samuel Morisse
- 1 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie Curie , Paris, France
| | | | | | | | | |
Collapse
|
28
|
Rosnow J, Yerramsetty P, Berry JO, Okita TW, Edwards GE. Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici. BMC PLANT BIOLOGY 2014; 14:34. [PMID: 24443986 PMCID: PMC3904190 DOI: 10.1186/1471-2229-14-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/15/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND In the model single-cell C4 plant Bienertia sinuspersici, chloroplast- and nuclear-encoded photosynthetic enzymes, characteristically confined to either bundle sheath or mesophyll cells in Kranz-type C4 leaves, all occur together within individual leaf chlorenchyma cells. Intracellular separation of dimorphic chloroplasts and key enzymes within central and peripheral compartments allow for C4 carbon fixation analogous to NAD-malic enzyme (NAD-ME) Kranz type species. Several methods were used to investigate dimorphic chloroplast differentiation in B. sinuspersici. RESULTS Confocal analysis revealed that Rubisco-containing chloroplasts in the central compartment chloroplasts (CCC) contained more photosystem II proteins than the peripheral compartment chloroplasts (PCC) which contain pyruvate,Pi dikinase (PPDK), a pattern analogous to the cell type-specific chloroplasts of many Kranz type NAD-ME species. Transient expression analysis using GFP fusion constructs containing various lengths of a B. sinuspersici Rubisco small subunit (RbcS) gene and the transit peptide of PPDK revealed that their import was not specific to either chloroplast type. Immunolocalization showed the rbcL-specific mRNA binding protein RLSB to be selectively localized to the CCC in B. sinuspersici, and to Rubisco-containing BS chloroplasts in the closely related Kranz species Suaeda taxifolia. Comparative fluorescence analyses were made using redox-sensitive and insensitive GFP forms, as well comparative staining using the peroxidase indicator 3,3-diaminobenzidine (DAB), which demonstrated differences in stromal redox potential, with the CCC having a more negative potential than the PCC. CONCLUSIONS Both CCC RLSB localization and the differential chloroplast redox state are suggested to have a role in post-transcriptional rbcL expression.
Collapse
Affiliation(s)
- Josh Rosnow
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
29
|
Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD. Redox regulation of the Calvin-Benson cycle: something old, something new. FRONTIERS IN PLANT SCIENCE 2013; 4:470. [PMID: 24324475 PMCID: PMC3838966 DOI: 10.3389/fpls.2013.00470] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Laure Michelet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Samuel Morisse
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesca Sparla
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - María Esther Pérez-Pérez
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesco Francia
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Antoine Danon
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| |
Collapse
|
30
|
Rochaix JD. Redox regulation of thylakoid protein kinases and photosynthetic gene expression. Antioxid Redox Signal 2013; 18:2184-201. [PMID: 23339452 PMCID: PMC3629850 DOI: 10.1089/ars.2012.5110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Photosynthetic organisms are subjected to frequent changes in their environment that include fluctuations in light quality and quantity, temperature, CO(2) concentration, and nutrient availability. They have evolved complex responses to these changes that allow them to protect themselves against photo-oxidative damage and to optimize their growth under these adverse conditions. In the case of light changes, these acclimatory processes can occur in either the short or the long term and are mainly mediated through the redox state of the plastoquinone pool and the ferredoxin/thioredoxin system. RECENT ADVANCES Short-term responses involve a dynamic reorganization of photosynthetic complexes, and long-term responses (LTRs) modulate the chloroplast and nuclear gene expression in such a way that the levels of the photosystems and their antennae are rebalanced for an optimal photosynthetic performance. These changes are mediated through a complex signaling network with several protein kinases and phosphatases that are conserved in land plants and algae. The phosphorylation status of the light-harvesting proteins of photosystem II and its core proteins is mainly determined by two complementary kinase-phosphatase pairs corresponding to STN7/PPH1 and STN8/PBCP, respectively. CRITICAL ISSUES The activity of the Stt7 kinase is principally regulated by the redox state of the plastoquinone pool, which in turn depends on the light irradiance, ambient CO(2) concentration, and cellular energy status. In addition, this kinase is also involved in the LTR. FUTURE DIRECTIONS Other chloroplast kinases modulate the activity of the plastid transcriptional machinery, but the global signaling network that connects all of the identified kinases and phosphatases is still largely unknown.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
31
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
32
|
Ogawa S, Suzuki Y, Yoshizawa R, Kanno K, Makino A. Effect of individual suppression of RBCS multigene family on Rubisco contents in rice leaves. PLANT, CELL & ENVIRONMENT 2012; 35:546-553. [PMID: 21951138 DOI: 10.1111/j.1365-3040.2011.02434.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In higher plants, a small subunit of Rubisco is encoded for by an RBCS multigene family in the nuclear genome. However, it is unknown how each multigene member contributes to the accumulation of Rubisco holoenzyme. Here, four RBCS genes that are highly expressed in leaf blaedes of rice (Oryza sativa L.) were individually suppressed by RNAi, and the effects on leaf Rubisco content were examined at seedling, vegetative and reproductive stages. Rubisco contents in each transgenic line declined irrespective of growth stage, and the ratios of Rubisco-N to total N were 66-96% of wild-type levels. The mRNA levels of the suppressed RBCS genes declined significantly, whereas those of the unsuppressed ones did not change drastically. These results indicate that four RBCS genes all contribute to accumulation of Rubisco holoenzyme irrespective of growth stage and that suppression of one RBCS gene is not fully compensated by other RBCS genes. Additionally, the mRNA levels of the large subunit of Rubisco showed a change similar to that of total RBCS mRNA level irrespective of genotype and growth stage. These results suggest that gene expression of RBCS and RBCL is regulated in a coordinated manner at the transcript level in rice.
Collapse
Affiliation(s)
- Shun Ogawa
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | | | | | | | | |
Collapse
|
33
|
Johnson X. Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2011; 76:397-405. [PMID: 21607658 DOI: 10.1007/s11103-011-9783-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 04/27/2011] [Indexed: 05/03/2023]
Abstract
The nuclear factor, Maturation/stability of RbcL (MRL1), regulates the accumulation of the chloroplast rbcL gene transcript in Chlamydomonas reinhardtii by stabilising the mRNA via its 5' UTR. An absence of MRL1 in algal mrl1 mutants leads to a complete absence of RuBisCO large subunit protein and thus a lack of accumulation of the RuBisCO holoenzyme. By complementing mrl1 mutants by random transformation of the nuclear genome with the MRL1 cDNA, different levels of rbcL transcript accumulate. We also observe that RuBisCO Large Subunit accumulation is perturbed. Complemented strains accumulating as little as 15% RuBisCO protein can grow phototrophically while RuBisCO in this range is limiting for phototrophic growth. We also observe that photosynthetic activity, here measured by the quantum yield of PSII, appears to be a determinant for phototrophic growth. In some strains that accumulate less RuBisCO, a strong production of reactive oxygen species is detected. In the absence of RuBisCO, oxygen possibly acts as the PSI terminal electron acceptor. These results show that random transformation of MRL1 into mrl1 mutants can change RuBisCO accumulation allowing a range of phototrophic growth phenotypes. Furthermore, this technique allows for the isolation of strains with low RuBisCO, within the range of acceptable photosynthetic growth and reasonably low ROS production. MRL1 is thus a potential tool for applications to divert electrons away from photosynthetic carbon metabolism towards alternative pathways.
Collapse
Affiliation(s)
- Xenie Johnson
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
34
|
Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. PLANT, CELL & ENVIRONMENT 2009; 32:417-27. [PMID: 19183297 DOI: 10.1111/j.1365-3040.2009.01937.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity limits light-saturated photosynthesis under present atmospheric condition, the effects of an overexpression of RBCSon Rubisco content and photosynthesis were examined in the leaves at different positions in rice (Oryza sativa L.). Rubisco content in the transformant was significantly greater in the uppermost, fully expanded leaves but decreased to levels similar to those in wild-type plants in the lower leaves. The mRNA levels of total RBCS and rbcL in these leaves were much less than those in the expanding leaves, where Rubisco synthesis is active, suggesting commensurately low level of synthesis. Although the activation state of Rubisco was lower in the uppermost, fully expanded leaves of the transformant, it recovered to its full level in the lower leaves. As a result, the photosynthetic rate did not differ in leaves at the same position between the transformant and the wild type. Similarly, whole plant biomass did not differ between these genotypes. Thus, we conclude that although the overexpression of RBCS led to an enhancement of Rubisco protein content in the uppermost, fully expanded leaves, it does not result in increased photosynthetic rates or plant biomass, because of an apparent down-regulation in its activation state.
Collapse
Affiliation(s)
- Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
36
|
Abstract
Plants and algae often absorb too much light-more than they can actually use in photosynthesis. To prevent photo-oxidative damage and to acclimate to changes in their environment, photosynthetic organisms have evolved direct and indirect mechanisms for sensing and responding to excess light. Photoreceptors such as phototropin, neochrome, and cryptochrome can sense excess light directly and relay signals for chloroplast movement and gene expression responses. Indirect sensing of excess light through biochemical and metabolic signals can be transduced into local responses within chloroplasts, into changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with photoacclimation.
Collapse
Affiliation(s)
- Zhirong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
37
|
Uniacke J, Zerges W. Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2008; 182:641-6. [PMID: 18710928 PMCID: PMC2518703 DOI: 10.1083/jcb.200805125] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Eukaryotic cells under stress repress translation and localize these messenger RNAs (mRNAs) to cytoplasmic RNA granules. We show that specific stress stimuli induce the assembly of RNA granules in an organelle with bacterial ancestry, the chloroplast of Chlamydomonas reinhardtii. These chloroplast stress granules (cpSGs) form during oxidative stress and disassemble during recovery from stress. Like mammalian stress granules, cpSGs contain poly(A)-binding protein and the small, but not the large, ribosomal subunit. In addition, mRNAs are in continuous flux between polysomes and cpSGs during stress. Localization of cpSGs within the pyrenoid reveals that this chloroplast compartment functions in this stress response. The large subunit of ribulosebisphosphate carboxylase/oxygenase also assembles into cpSGs and is known to bind mRNAs during oxidative stress, raising the possibility that it plays a role in cpSG assembly. This discovery within such an organelle suggests that mRNA localization to granules during stress is a more general phenomenon than currently realized.
Collapse
Affiliation(s)
- James Uniacke
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
38
|
Ichikawa K, Miyake C, Iwano M, Sekine M, Shinmyo A, Kato K. Ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit translation is regulated in a small subunit-independent manner in the expanded leaves of tobacco. PLANT & CELL PHYSIOLOGY 2008; 49:214-25. [PMID: 18178584 DOI: 10.1093/pcp/pcm179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of small subunits (SSs) encoded by rbcS on the nuclear genome and large subunits (LSs) encoded by rbcL on the chloroplast genome, and it is localized in the chloroplast stroma. Constitutive knockdown of the rbcS gene reportedly causes a reduction in LS quantity and the level of translation in tobacco and the unicellular green alga Chlamydomonas. Constitutively knockdown of the rbcS gene also causes a reduction in photosynthesis, which influences the expression of photosynthetic genes, including the rbcL gene. Here, to investigate the influence of the knockdown of the rbcS gene on the expression of the rbcL gene under normal photosynthetic conditions, we generated transgenic tobacco plants in which the amount of endogenous rbcS mRNA can be reduced by inducible expression of antisense rbcS mRNA with dexamethasone (DEX) treatment at later stages of growth. In already expanded leaves, after DEX treatment, the level of photosynthesis, RuBisCO quantity and the chloroplast ultrastructure were normal, but the amount of rbcS mRNA was reduced. An in vivo pulse labeling experiment and polysome analysis showed that LSs were translated at the same rate as in wild-type leaves. On the other hand, in newly emerging leaves, the rbcS mRNA quantity, the level of photosynthesis and the quantity of RuBisCO were reduced, and chloroplasts failed to develop. In these leaves, the level of LS translation was inhibited, as previously described. These results suggest that LS translation is regulated in an SS-independent manner in expanded leaves under normal photosynthetic conditions.
Collapse
Affiliation(s)
- Katsuhiko Ichikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Shibagaki N, Grossman A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
41
|
Wostrikoff K, Stern D. Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci U S A 2007; 104:6466-71. [PMID: 17404229 PMCID: PMC1851044 DOI: 10.1073/pnas.0610586104] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Indexed: 01/01/2023] Open
Abstract
Plants rely on ribulose bisphosphate carboxylase/oxygenase (Rubisco) for carbon fixation. Higher plant Rubisco possesses an L(8)S(8) structure, with the large subunit (LS) encoded in the chloroplast by rbcL and the small subunit encoded by the nuclear RBCS gene family. Because its components accumulate stoichiometrically but are encoded in two genetic compartments, rbcL and RBCS expression must be tightly coordinated. Although this coordination has been observed, the underlying mechanisms have not been defined. Here, we use tobacco to understand how LS translation is related to its assembly status. To do so, two transgenic lines deficient in LS biogenesis were created: a chloroplast transformant expressing a truncated and unstable LS polypeptide, and a line where a homolog of the maize Rubisco-specific chaperone, BSD2, was repressed by RNAi. We found that in both lines, LS translation is no longer regulated by the availability of small subunit (SS), indicating that LS translation is not activated by the presence of its assembly partner but, rather, undergoes an autoregulation of translation. Pulse labeling experiments indicate that LS is synthesized but not accumulated in the transgenic lines, suggesting that accumulation of a repressor motif is required for LS assembly-dependent translational regulation.
Collapse
Affiliation(s)
- Katia Wostrikoff
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853
| | - David Stern
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853
| |
Collapse
|
42
|
|