1
|
Cui J, Chen H, Tang X, Zhang H, Chen YQ, Chen W. Characterization and Molecular Mechanism of a Novel Cytochrome b5 Reductase with NAD(P)H Specificity from Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5186-5196. [PMID: 35416034 DOI: 10.1021/acs.jafc.1c08108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electron-transfer capabilities of cytochrome b5 reductase (Cyt b5R) and NADPH supply have been shown to be critical factors in microbial fatty acid synthesis. Unfortunately, Cyt b5R substrate specificity is limited to the coenzyme NADH. In this study, we discovered that a novel Cyt b5R from Mortierella alpina (MaCytb5RII) displays affinity for NADPH and NADH. The enzymatic characteristics of high-purity MaCytb5RII were determined with the Km,NADPH and Km,NADH being 0.42 and 0.07 mM, respectively. MaCytb5RII shows high specific activity at 4 °C and pH 9.0. We anchored the residues that interacted with the coenzymes using the homology models of MaCytb5Rs docking NAD(P)H and FAD. The enzyme activity analysis of the purified mutants MaCytb5RII[S230N], MaCytb5RII[Y242F], and MaCytb5RII[S272A] revealed that Ser230 is essential for MaCytb5RII to have dual NAD(P)H dependence, whereas Tyr242 influences MaCytb5RII's NADPH affinity and Ala272 greatly decreases MaCytb5RII's NADH affinity.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27127, United States
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
2
|
Shandilya M, Kumar G, Gomkale R, Singh S, Khan MA, Kateriya S, Kundu S. Multiple putative methemoglobin reductases in C. reinhardtii may support enzymatic functions for its multiple hemoglobins. Int J Biol Macromol 2021; 171:465-479. [PMID: 33428952 DOI: 10.1016/j.ijbiomac.2021.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.
Collapse
Affiliation(s)
- Manish Shandilya
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Gaurav Kumar
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Ridhima Gomkale
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Swati Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
3
|
Uppal S, Khan MA, Kundu S. Identification and characterization of a recombinant cognate hemoglobin reductase from Synechocystis sp. PCC 6803. Int J Biol Macromol 2020; 162:1054-1063. [DOI: 10.1016/j.ijbiomac.2020.06.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
|
4
|
Abstract
NO (nitric oxide) is a signal molecule involved in diverse physiological processes in cells which can become very toxic under certain conditions determined by its rate of production and diffusion. Several studies have clearly shown the production of NO in early stages of rhizobia–legume symbiosis and in mature nodules. In functioning nodules, it has been demonstrated that NO, which has been reported as a potent inhibitor of nitrogenase activity, can bind Lb (leghaemoglobin) to form LbNOs (nitrosyl–leghaemoglobin complexes). These observations have led to the question of how nodules overcome the toxicity of NO. On the bacterial side, one candidate for NO detoxification in nodules is the respiratory Nor (NO reductase) that catalyses the reduction of NO to nitrous oxide. In addition, rhizobial fHbs (flavohaemoglobins) and single-domain Hbs which dioxygenate NO to form nitrate are candidates to detoxify NO under free-living and symbiotic conditions. On the plant side, sHbs (symbiotic Hbs) (Lb) and nsHbs (non-symbiotic Hbs) have been proposed to play important roles as modulators of NO levels in the rhizobia–legume symbiosis. In the present review, current knowledge of NO detoxification by legume-associated endosymbiotic bacteria is summarized.
Collapse
|
5
|
Hoy JA, Hargrove MS. The structure and function of plant hemoglobins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:371-9. [PMID: 18321722 DOI: 10.1016/j.plaphy.2007.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Indexed: 05/24/2023]
Abstract
Plants, like humans, contain hemoglobin. Three distinct types of hemoglobin exist in plants: symbiotic, non-symbiotic, and truncated hemoglobins. Crystal structures and other structural and biophysical techniques have revealed important knowledge about ligand binding and conformational stabilization in all three types. In symbiotic hemoglobins (leghemoglobins), ligand binding regulatory mechanisms have been shown to differ dramatically from myoglobin and red blood cell hemoglobin. In the non-symbiotic hemoglobins found in all plants, crystal structures and vibrational spectroscopy have revealed the nature of the structural transition between the hexacoordinate and ligand-bound states. In truncated hemoglobins, the abbreviated globin is porous, providing tunnels that may assist in ligand binding, and the bound ligand is stabilized by more than one distal pocket residue. Research has implicated these plant hemoglobins in a number of possible functions differing among hemoglobin types, and possibly between plant species.
Collapse
Affiliation(s)
- Julie A Hoy
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50014, USA
| | | |
Collapse
|
6
|
Urarte E, Auzmendi I, Rol S, Ariz I, Aparicio-Tejo P, Arredondo-Peter R, Moran JF. A self-induction method to produce high quantities of recombinant functional flavo-leghemoglobin reductase. Methods Enzymol 2008; 436:411-23. [PMID: 18237646 DOI: 10.1016/s0076-6879(08)36023-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ferric leghemoglobin reductase (FLbR) is able to reduce ferric leghemoglobin (Lb3+) to ferrous (Lb2+) form. This reaction makes Lb functional in performing its role since only reduced hemoglobins bind O2. FLbR contains FAD as prosthetic group to perform its activity. FLbR-1 and FLbR-2 were isolated from soybean root nodules and it has been postulated that they reduce Lb3+. The existence of Lb2+ is essential for the nitrogen fixation process that occurs in legume nodules; thus, the isolation of FLbR for the study of this enzyme in the nodule physiology is of interest. However, previous methods for the production of recombinant FLbR are inefficient as yields are too low. We describe the production of a recombinant FLbR-2 from Escherichia coli BL21(DE3) by using an overexpression method based on the self-induction of the recombinant E. coli. This expression system is four times more efficient than the previous overexpression method. The quality of recombinant FLbR-2 (based on spectroscopy, SDS-PAGE, IEF, and native PAGE) is comparable to that of the previous expression system. Also, FLbR-2 is purified near to homogeneity in only few steps (in a time scale, the full process takes 3 days). The purification method involves affinity chromatography using a Ni-nitrilotriacetic acid column. Resulting rFLbR-2 showed an intense yellow color, and spectral characterization of rFLbR-2 indicated that rFLbR-2 contains flavin. Pure rFLbR-2 was incubated with soybean Lba and NADH, and time drive rates showed that rFLbR-2 efficiently reduces Lb3+.
Collapse
Affiliation(s)
- Estibaliz Urarte
- Instituto de Agrobiotecnologia, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Navarre, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Herold S, Puppo A. Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? J Biol Inorg Chem 2005; 10:935-45. [PMID: 16267661 DOI: 10.1007/s00775-005-0046-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 10/03/2005] [Indexed: 01/28/2023]
Abstract
It has been demonstrated that the NO* produced by nitric oxide synthase or by the reduction of nitrite by nitrate reductase plays an important role in plants' defense against microbial pathogens. The detection of nitrosyl Lb in nodules strongly suggests that NO* is also formed in functional nodules. Moreover, NO* may react with superoxide (which has been shown to be produced in nodules by various processes), leading to the formation of peroxynitrite. We have determined the second-order rate constants of the reactions of soybean oxyleghemoglobin with nitrogen monoxide and peroxynitrite. At pH 7.3 and 20 degrees C, the values are on the order of 10(8) and 10(4) M-1 s-1, respectively. In the presence of physiological amounts of CO2 (1.2 mM), the second-order rate constant of the reaction of oxyleghemoglobin peroxynitrite is even larger (10(5) M-1 s-1). The results presented here clearly show that oxyleghemoglobin is able to scavenge any NO* and peroxynitrite formed in functional nodules. This may help to stop NO* triggering a plant defense reaction.
Collapse
Affiliation(s)
- Susanna Herold
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, ETH Hönggerberg, 8093, Zürich, Switzerland.
| | | |
Collapse
|
8
|
Herold S, Puppo A. Kinetics and mechanistic studies of the reactions of metleghemoglobin, ferrylleghemoglobin, and nitrosylleghemoglobin with reactive nitrogen species. J Biol Inorg Chem 2005; 10:946-57. [PMID: 16267660 DOI: 10.1007/s00775-005-0047-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 10/03/2005] [Indexed: 01/04/2023]
Abstract
It is now established that nitrogen monoxide is produced not only in animals but also in plants. However, much less is known about the pathways of generation and the functions of NO. in planta. One of the possible targets of NO. is leghemoglobin (Lb), the hemoprotein found in high concentrations in the root nodules of legumes that establish a symbiosis with nitrogen-fixing bacteria. In analogy to hemoglobin and myoglobin, we have shown that different forms of Lb react not only with NO. but also with so-called reactive nitrogen species derived from it, among others peroxynitrite and nitrite. Because of the wider active-site pocket, the rate constants measured in this work for NO. and for nitrite binding to metLb are 1 order of magnitude larger than the corresponding values for binding of these species to metmyoglobin and methemoglobin. Moreover, we showed that reactive nitrogen species are able to react with two forms of Lb that are produced in vivo but that cannot bind oxygen: ferrylLb is reduced by NO. and nitrite, and nitrosylLb is oxidized by peroxynitrite. The second-order rate constants of these reactions are on the order of 10(2), 10(6), and 10(5) M-1 s-1, respectively. In all cases, the final reaction product is metLb, a further Lb form that has been detected in vivo. Since a specific reductase is active in nodules, which reduces metLb, reactive nitrogen species could contribute to the recycling of these inactive forms to regenerate deoxyLb, the oxygen-binding form of Lb.
Collapse
Affiliation(s)
- Susanna Herold
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, ETH Hönggerberg, 8093, Zurich, Switzerland.
| | | |
Collapse
|
9
|
Moran JF, Sun Z, Sarath G, Arredondo-Peter R, James EK, Becana M, Klucas RV. Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase. PLANT PHYSIOLOGY 2002; 128:300-13. [PMID: 11788775 PMCID: PMC149001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2001] [Revised: 08/17/2001] [Accepted: 10/17/2001] [Indexed: 05/23/2023]
Abstract
Nodule ferric leghemoglobin reductase (FLbR) and leaf dihydrolipoamide reductase (DLDH) belong to the same family of pyridine nucleotide-disulfide oxidoreductases. We report here the cloning, expression, and characterization of a second protein with FLbR activity, FLbR-2, from soybean (Glycine max) nodules. The cDNA is 1,779 bp in length and codes for a precursor protein comprising a 30-residue mitochondrial transit peptide and a 470-residue mature protein of 50 kD. The derived protein has considerable homology with soybean nodule FLbR-1 (93% identity) and pea (Pisum sativum) leaf mitochondria DLDH (89% identity). The cDNA encoding the mature protein was overexpressed in Escherichia coli. The recombinant enzyme showed Km and kcat values for ferric leghemoglobin that were very similar to those of DLDH. The transcripts of FLbR-2 were more abundant in stems and roots than in nodules and leaves. Immunoblots of nodule fractions revealed that an antibody raised against pea leaf DLDH cross-reacted with recombinant FLbR-2, native FLbR-2 of soybean nodule mitochondria, DLDH from bacteroids, and an unknown protein of approximately 70 kD localized in the nodule cytosol. Immunogold labeling was also observed in the mitochondria, cytosol, and bacteroids of soybean nodules. The similar biochemical, kinetic, and immunological properties, as well as the high amino acid sequence identity and mitochondrial localization, draw us to conclude that FLbR-2 is soybean DLDH.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dihydrolipoamide Dehydrogenase/genetics
- Dihydrolipoamide Dehydrogenase/isolation & purification
- Dihydrolipoamide Dehydrogenase/metabolism
- Escherichia coli/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Mass Spectrometry
- Microscopy, Immunoelectron
- Molecular Sequence Data
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/isolation & purification
- NADH, NADPH Oxidoreductases/metabolism
- Pisum sativum/enzymology
- Pisum sativum/genetics
- Pisum sativum/ultrastructure
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Soybean Proteins/genetics
- Soybean Proteins/isolation & purification
- Soybean Proteins/metabolism
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/ultrastructure
- Symbiosis
Collapse
Affiliation(s)
- Jose F Moran
- Departmento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
10
|
Luan P, Aréchaga-Ocampo E, Sarath G, Arredondo-Peter R, Klucas RV. Analysis of a ferric leghemoglobin reductase from cowpea (Vigna unguiculata) root nodules. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 154:161-170. [PMID: 10729615 DOI: 10.1016/s0168-9452(99)00272-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ferric leghemoglobin reductase (FLbR), an enzyme reducing ferric leghemoglobin (Lb) to ferrous Lb, was purified from cowpea (Vigna unguiculata) root nodules by sequential chromatography on hydroxylapatite followed by Mono-Q HR5/5 FPLC and Sephacryl S-200 gel filtration. The purified cowpea FLbR had a specific activity of 216 nmol Lb(2+)O(2) formed min(-1) mg(-1) of enzyme for cowpea Lb(3+) and a specific activity of 184 nmol Lb(2+)O(2) formed min(-1) mg(-1) of enzyme for soybean Lb(3+). A cDNA clone of cowpea FLbR was obtained by screening a cowpea root nodule cDNA library. The nucleotide sequence of cowpea FLbR cDNA exhibited about 88% similarity with soybean (Glycine max) FLbR and 85% with pea (Pisum sativum) dihydrolipoamide dehydrogenase (DLDH, EC 1.8.1.4) cDNAs. Conserved regions for the FAD-binding site, NAD(P)H-binding site, and disulfide active site were identified among the deduced amino acid sequences of cowpea FLbR, soybean FLbR, pea DLDH and other enzymes in the family of the pyridine nucleotide-disulfide oxido-reductases.
Collapse
Affiliation(s)
- P Luan
- Department of Biochemistry, The Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | |
Collapse
|
11
|
Arredondo-Peter R, Moran JF, Sarath G, Luan P, Klucas RV. Molecular cloning of the cowpea leghemoglobin II gene and expression of its cDNA in Escherichia coli. Purification and characterization of the recombinant protein. PLANT PHYSIOLOGY 1997; 114:493-500. [PMID: 9193085 PMCID: PMC158329 DOI: 10.1104/pp.114.2.493] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cowpea (Vigna unguiculata) nodules contain three leghemoglobins (LbI, LbII, and LbIII) that are encoded by at least two genes. We have cloned and sequenced the gene that encodes for LbII (lbII), the most abundant Lb in cowpea nodules, using total DNA as the template for PCR. Primers were designed using the sequence of the soybean lbc gene. The lbII gene is 679 bp in length and codes for a predicted protein of 145 amino acids. Using sequences of the cowpea lbII gene for the synthesis of primers and total nodule RNA as the template, we cloned a cDNA for LbII into a constitutive expression vector (pEMBL19+) and then expressed it in Escherichia coli. Recombinant LbII (rLbII) and native LbII (nLbII) from cowpea nodules were purified to homogeneity using standard techniques. Properties of rLbII were compared with nLbII by partially sequencing the proteins and by sodium dodecyl sulfate- and isoelectric focusing polyacrylamide gel electrophoresis, western-blot analysis using anti-soybean Lba antibodies, tryptic and chymotryptic mapping, and spectrophotometric techniques. The data showed that the structural and spectral characteristics of rLbII and nLbII were similar. The rLbII was reversibly oxygenated/deoxygenated, showing that it is a functional hemoglobin.
Collapse
Affiliation(s)
- R Arredondo-Peter
- Department of Biochemistry, University of Nebraska, Beadle Center, Lincoln 68588-0664, USA.
| | | | | | | | | |
Collapse
|
12
|
Hargrove MS, Barry JK, Brucker EA, Berry MB, Phillips GN, Olson JS, Arredondo-Peter R, Dean JM, Klucas RV, Sarath G. Characterization of recombinant soybean leghemoglobin a and apolar distal histidine mutants. J Mol Biol 1997; 266:1032-42. [PMID: 9086279 DOI: 10.1006/jmbi.1996.0833] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cDNA for soybean leghemoglobin a (Lba) was cloned from a root nodule cDNA library and expressed in Escherichia coli. The crystal structure of the ferric acetate complex of recombinant wild-type Lba was determined at a resolution of 2.2 A. Rate constants for O2, CO and NO binding to recombinant Lba are identical with those of native soybean Lba. Rate constants for hemin dissociation and auto-oxidation of wild-type Lba were compared with those of sperm whale myoglobin. At 37 degrees C and pH 7, soybean Lba is much less stable than sperm whale myoglobin due both to a fourfold higher rate of auto-oxidation and to a approximately 600-fold lower affinity for hemin. The role of His61(E7) in regulating oxygen binding was examined by site-directed mutagenesis. Replacement of His(E7) with Ala, Val or Leu causes little change in the equilibrium constant for O2 binding to soybean Lba, whereas the same mutations in sperm whale myoglobin cause 50 to 100-fold decreases in K(O2). These results show that, at neutral pH, hydrogen bonding with His(E7) is much less important in regulating O2 binding to the soybean protein. The His(E7) to Phe mutation does cause a significant decrease in K(O2) for Lba, apparently due to steric hindrance of the bound ligand. The rate constants for O2 dissociation from wild-type and native Lba decrease significantly with decreasing pH. In contrast, the O2 dissociation rate constants for mutants with apolar E7 residues are independent of pH, suggesting that hydrogen bonding to the distal histidine residue in the native protein is enhanced under acid conditions. All of these results support the hypothesis that the high affinity of Lba for oxygen and other ligands is determined primarily by enhanced accessibility and reactivity of the heme group.
Collapse
Affiliation(s)
- M S Hargrove
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee K, Shearman LL, Erickson BK, Klucas RV. Ferric Leghemoglobin in Plant-Attached Leguminous Nodules. PLANT PHYSIOLOGY 1995; 109:261-267. [PMID: 12228593 PMCID: PMC157584 DOI: 10.1104/pp.109.1.261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leghemoglobin (Lb) is essential for nitrogen fixation by intact leguminous nodules. To determine whether ferric Lb (Lb3+) was detectable in nodules under normal or stressed conditions, we monitored the status of Lb in intact nodules attached to sweet clover (Melilotus officinalis) and soybean (Glycine max [L.] Merr.) roots exposed to various conditions. The effects of N2 and O2 streams and elevated nicotinate levels on root-attached nodules were tested to determine whether the spectrophotometric technique was showing the predicted responses of Lb. The soybean and sweet clover nodules' Lb spectra indicated predominantly ferrous Lb and LbO2 in young (34 d) plants. As the nodule aged beyond 45 d, it was possible to induce Lb3+ with a 100% O2 stream (15 min). At 65 d without inducement, the nodule Lb status indicated the presence of some Lb3+ along with ferrous Lb and oxyferrous Lb. Nicotinate and fluoride were used as ligands to identify Lb3+. Computer-calculated difference spectra were used to demonstrate the changes in Lb spectra under different conditions. Some conditions that increased absorbance in the 626 nm region (indicating Lb3+ accumulation) were root-fed ascorbate and dehydroascorbate, plant exposure to darkness, and nodule water immersion.
Collapse
Affiliation(s)
- Kk. Lee
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP502324, India (K.-k.L)
| | | | | | | |
Collapse
|