1
|
Nivya VM, Shah JM. Recalcitrance to transformation, a hindrance for genome editing of legumes. Front Genome Ed 2023; 5:1247815. [PMID: 37810593 PMCID: PMC10551638 DOI: 10.3389/fgeed.2023.1247815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Plant genome editing, a recently discovered method for targeted mutagenesis, has emerged as a promising tool for crop improvement and gene function research. Many genome-edited plants, such as rice, wheat, and tomato, have emerged over the last decade. As the preliminary steps in the procedure for genome editing involve genetic transformation, amenability to genome editing depends on the efficiency of genetic engineering. Hence, there are numerous reports on the aforementioned crops because they are transformed with relative ease. Legume crops are rich in protein and, thus, are a favored source of plant proteins for the human diet in most countries. However, legume cultivation often succumbs to various biotic/abiotic threats, thereby leading to high yield loss. Furthermore, certain legumes like peanuts possess allergens, and these need to be eliminated as these deprive many people from gaining the benefits of such crops. Further genetic variations are limited in certain legumes. Genome editing has the potential to offer solutions to not only combat biotic/abiotic stress but also generate desirable knock-outs and genetic variants. However, excluding soybean, alfalfa, and Lotus japonicus, reports obtained on genome editing of other legume crops are less. This is because, excluding the aforementioned three legume crops, the transformation efficiency of most legumes is found to be very low. Obtaining a higher number of genome-edited events is desirable as it offers the option to genotypically/phenotypically select the best candidate, without the baggage of off-target mutations. Eliminating the barriers to genetic engineering would directly help in increasing genome-editing rates. Thus, this review aims to compare various legumes for their transformation, editing, and regeneration efficiencies and discusses various solutions available for increasing transformation and genome-editing rates in legumes.
Collapse
Affiliation(s)
| | - Jasmine M. Shah
- Department of Plant Science, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
2
|
Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula. Proc Natl Acad Sci U S A 2022; 119:e2205920119. [PMID: 35972963 PMCID: PMC9407390 DOI: 10.1073/pnas.2205920119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.
Collapse
|
3
|
Zhu F, Deng J, Chen H, Liu P, Zheng L, Ye Q, Li R, Brault M, Wen J, Frugier F, Dong J, Wang T. A CEP Peptide Receptor-Like Kinase Regulates Auxin Biosynthesis and Ethylene Signaling to Coordinate Root Growth and Symbiotic Nodulation in Medicago truncatula. THE PLANT CELL 2020; 32:2855-2877. [PMID: 32887805 PMCID: PMC7474297 DOI: 10.1105/tpc.20.00248] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 05/06/2023]
Abstract
Because of the large amount of energy consumed during symbiotic nitrogen fixation, legumes must balance growth and symbiotic nodulation. Both lateral roots and nodules form on the root system, and the developmental coordination of these organs under conditions of reduced nitrogen (N) availability remains elusive. We show that the Medicago truncatula COMPACT ROOT ARCHITECTURE2 (MtCRA2) receptor-like kinase is essential to promote the initiation of early symbiotic nodulation and to inhibit root growth in response to low N. C-TERMINALLY ENCODED PEPTIDE (MtCEP1) peptides can activate MtCRA2 under N-starvation conditions, leading to a repression of YUCCA2 (MtYUC2) auxin biosynthesis gene expression, and therefore of auxin root responses. Accordingly, the compact root architecture phenotype of cra2 can be mimicked by an auxin treatment or by overexpressing MtYUC2, and conversely, a treatment with YUC inhibitors or an MtYUC2 knockout rescues the cra2 root phenotype. The MtCEP1-activated CRA2 can additionally interact with and phosphorylate the MtEIN2 ethylene signaling component at Ser643 and Ser924, preventing its cleavage and thereby repressing ethylene responses, thus locally promoting the root susceptibility to rhizobia. In agreement with this interaction, the cra2 low nodulation phenotype is rescued by an ein2 mutation. Overall, by reducing auxin biosynthesis and inhibiting ethylene signaling, the MtCEP1/MtCRA2 pathway balances root and nodule development under low-N conditions.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mathias Brault
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université de Paris, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, Oklahoma 73401
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université de Paris, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Jogawat A, Meena MK, Kundu A, Varma M, Vadassery J. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2752-2768. [PMID: 31957790 PMCID: PMC7210775 DOI: 10.1093/jxb/eraa028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
The activation of calcium signaling is a crucial event for perceiving environmental stress. Colonization by Piriformospora indica, a growth-promoting root endosymbiont, activates cytosolic Ca2+ in Arabidopsis roots. In this study, we examined the role and functional relevance of calcium channels responsible for Ca2+ fluxes. Expression profiling revealed that CYCLIC NUCLEOTIDE GATED CHANNEL 19 (CNGC19) is an early-activated gene, induced by unidentified components in P. indica cell-wall extract. Functional analysis showed that loss-of-function of CNGC19 resulted in growth inhibition by P.indica, due to increased colonization and loss of controlled fungal growth. The cngc19 mutant showed reduced elevation of cytosolic Ca2+ in response to P. indica cell-wall extract in comparison to the wild-type. Microbe-associated molecular pattern-triggered immunity was compromised in the cngc19 lines, as evidenced by unaltered callose deposition, reduced cis-(+)-12-oxo-phytodienoic acid, jasmonate, and jasmonoyl isoleucine levels, and down-regulation of jasmonate and other defense-related genes, which contributed to a shift towards a pathogenic response. Loss-of-function of CNGC19 resulted in an inability to modulate indole glucosinolate content during P. indica colonization. CNGC19-mediated basal immunity was dependent on the AtPep receptor, PEPR. CNGC19 was also crucial for P. indica-mediated suppression of AtPep-induced immunity. Our results thus demonstrate that Arabidopsis CNGC19 is an important Ca2+ channel that maintains a robust innate immunity and is crucial for growth-promotion signaling upon colonization by P. indica.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anish Kundu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mahendra Varma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyothilakshmi Vadassery
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
5
|
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. THE PLANT CELL 2020; 32:15-41. [PMID: 31649123 PMCID: PMC6961631 DOI: 10.1105/tpc.19.00279] [Citation(s) in RCA: 346] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 05/13/2023]
Abstract
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Collapse
Affiliation(s)
- Sonali Roy
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Wei Liu
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Ashley Crook
- College of Science, Clemson University, Clemson, South Carolina 29634
| | | | | | - Julia Frugoli
- College of Science, Clemson University, Clemson, South Carolina 29634
| | - Rebecca Dickstein
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton Texas 76203
| | | |
Collapse
|
6
|
Girardin A, Wang T, Ding Y, Keller J, Buendia L, Gaston M, Ribeyre C, Gasciolli V, Auriac MC, Vernié T, Bendahmane A, Ried MK, Parniske M, Morel P, Vandenbussche M, Schorderet M, Reinhardt D, Delaux PM, Bono JJ, Lefebvre B. LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. Curr Biol 2019; 29:4249-4259.e5. [PMID: 31813608 PMCID: PMC6926482 DOI: 10.1016/j.cub.2019.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/09/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Bacterial lipo-chitooligosaccharides (LCOs) are key mediators of the nitrogen-fixing root nodule symbiosis (RNS) in legumes. The isolation of LCOs from arbuscular mycorrhizal fungi suggested that LCOs are also signaling molecules in arbuscular mycorrhiza (AM). However, the corresponding plant receptors have remained uncharacterized. Here we show that petunia and tomato mutants in the LysM receptor-like kinases LYK10 are impaired in AM formation. Petunia and tomato LYK10 proteins have a high affinity for LCOs (Kd in the nM range) comparable to that previously reported for a legume LCO receptor essential for the RNS. Interestingly, the tomato and petunia LYK10 promoters, when introduced into a legume, were active in nodules similarly to the promoter of the legume orthologous gene. Moreover, tomato and petunia LYK10 coding sequences restored nodulation in legumes mutated in their orthologs. This combination of genetic and biochemical data clearly pinpoints Solanaceous LYK10 as part of an ancestral LCO perception system involved in AM establishment, which has been directly recruited during evolution of the RNS in legumes.
Collapse
Affiliation(s)
- Ariane Girardin
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Tongming Wang
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Yi Ding
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | - Luis Buendia
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Mégane Gaston
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Camille Ribeyre
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Virginie Gasciolli
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Marie-Christine Auriac
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France; Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, 31326 Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | | | | | - Martin Parniske
- Genetics, Faculty of Biology, University of Munich (LMU), 82152 Martinsried, Germany
| | - Patrice Morel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Martine Schorderet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | - Jean-Jacques Bono
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Benoit Lefebvre
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
7
|
Chiasson DM, Haage K, Sollweck K, Brachmann A, Dietrich P, Parniske M. A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. eLife 2017; 6:25012. [PMID: 28933692 PMCID: PMC5716663 DOI: 10.7554/elife.25012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The coordinated control of Ca2+ signaling is essential for development in eukaryotes. Cyclic nucleotide-gated channel (CNGC) family members mediate Ca2+ influx from cellular stores in plants (Charpentier et al., 2016; Gao et al., 2016; Frietsch et al., 2007; Urquhart et al., 2007). Here, we report the unusual genetic behavior of a quantitative gain-of-function CNGC mutation (brush) in Lotus japonicus resulting in a leaky tetrameric channel. brush resides in a cluster of redundant CNGCs encoding subunits which resemble metazoan voltage-gated potassium (Kv1-Kv4) channels in assembly and gating properties. The recessive mongenic brush mutation impaired root development and infection by nitrogen-fixing rhizobia. The brush allele exhibited quantitative behavior since overexpression of the cluster subunits was required to suppress the brush phenotype. The results reveal a mechanism by which quantitative competition between channel subunits for tetramer assembly can impact the phenotype of the mutation carrier.
Collapse
Affiliation(s)
- David M Chiasson
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kristina Haage
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Sollweck
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Brachmann
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
8
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
9
|
Evangelisti E, Rey T, Schornack S. Cross-interference of plant development and plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:118-26. [PMID: 24922556 DOI: 10.1016/j.pbi.2014.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 05/03/2023]
Abstract
Plant roots are host to a multitude of filamentous microorganisms. Among these, arbuscular mycorrhizal fungi provide benefits to plants, while pathogens trigger diseases resulting in significant crop yield losses. It is therefore imperative to study processes which allow plants to discriminate detrimental and beneficial interactions in order to protect crops from diseases while retaining the ability for sustainable bio-fertilisation strategies. Accumulating evidence suggests that some symbiosis processes also affect plant-pathogen interactions. A large part of this overlap likely constitutes plant developmental processes. Moreover, microbes utilise effector proteins to interfere with plant development. Here we list relevant recent findings on how plant-microbe interactions intersect with plant development and highlight future research leads.
Collapse
Affiliation(s)
| | - Thomas Rey
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | |
Collapse
|
10
|
Groth M, Kosuta S, Gutjahr C, Haage K, Hardel SL, Schaub M, Brachmann A, Sato S, Tabata S, Findlay K, Wang TL, Parniske M. Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:117-129. [PMID: 23627596 DOI: 10.1111/tpj.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhiza (AM) fungi form nutrient-acquiring symbioses with the majority of higher plants. Nutrient exchange occurs via arbuscules, highly branched hyphal structures that are formed within root cortical cells. With a view to identifying host genes involved in AM development, we isolated Lotus japonicus AM-defective mutants via a microscopic screen of an ethyl methanesulfonate-mutagenized population. A standardized mapping procedure was developed that facilitated positioning of the defective loci on the genetic map of L. japonicus, and, in five cases, allowed identification of mutants of known symbiotic genes. Two additional mutants representing independent loci did not form mature arbuscules during symbiosis with two divergent AM fungal species, but exhibited signs of premature arbuscule arrest or senescence. Marker gene expression patterns indicated that the two mutants are affected in distinct steps of arbuscule development. Both mutants formed wild-type-like root nodules upon inoculation with Mesorhizobium loti, indicating that the mutated loci are essential during AM but not during root nodule symbiosis.
Collapse
Affiliation(s)
- Martin Groth
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Sonja Kosuta
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Kristina Haage
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Simone Liesel Hardel
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Miriam Schaub
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Andreas Brachmann
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kim Findlay
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Trevor L Wang
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
11
|
Desbrosses G, Stougaard J. Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host Microbe 2011; 10:348-58. [DOI: 10.1016/j.chom.2011.09.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Oldroyd GED, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 2011; 45:119-44. [PMID: 21838550 DOI: 10.1146/annurev-genet-110410-132549] [Citation(s) in RCA: 663] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rhizobial bacteria enter a symbiotic association with leguminous plants, resulting in differentiated bacteria enclosed in intracellular compartments called symbiosomes within nodules on the root. The nodules and associated symbiosomes are structured for efficient nitrogen fixation. Although the interaction is beneficial to both partners, it comes with rigid rules that are strictly enforced by the plant. Entry into root cells requires appropriate recognition of the rhizobial Nod factor signaling molecule, and this recognition activates a series of events, including polarized root-hair tip growth, invagination associated with bacterial infection, and the promotion of cell division in the cortex leading to the nodule meristem. The plant's command of the infection process has been highlighted by its enforcement of terminal differentiation upon the bacteria within nodules of some legumes, and this can result in a loss of bacterial viability while permitting effective nitrogen fixation. Here, we review the mechanisms by which the plant allows bacterial infection and promotes the formation of the nodule, as well as the details of how this intimate association plays out inside the cells of the nodule where a complex interchange of metabolites and regulatory peptides force the bacteria into a nitrogen-fixing organelle-like state.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- John Innes Center, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
13
|
Laffont C, Blanchet S, Lapierre C, Brocard L, Ratet P, Crespi M, Mathesius U, Frugier F. The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula. PLANT PHYSIOLOGY 2010; 153:1597-607. [PMID: 20522723 PMCID: PMC2923893 DOI: 10.1104/pp.110.156620] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/28/2010] [Indexed: 05/21/2023]
Abstract
The root system architecture is crucial to adapt plant growth to changing soil environmental conditions and consequently to maintain crop yield. In addition to root branching through lateral roots, legumes can develop another organ, the nitrogen-fixing nodule, upon a symbiotic bacterial interaction. A mutant, cra1, showing compact root architecture was identified in the model legume Medicago truncatula. cra1 roots were short and thick due to defects in cell elongation, whereas densities of lateral roots and symbiotic nodules were similar to the wild type. Grafting experiments showed that a lengthened life cycle in cra1 was due to the smaller root system and not to the pleiotropic shoot phenotypes observed in the mutant. Analysis of the cra1 transcriptome at a similar early developmental stage revealed few significant changes, mainly related to cell wall metabolism. The most down-regulated gene in the cra1 mutant encodes a Caffeic Acid O-Methyl Transferase, an enzyme involved in lignin biosynthesis; accordingly, whole lignin content was decreased in cra1 roots. This correlated with differential accumulation of specific flavonoids and decreased polar auxin transport in cra1 mutants. Exogenous application of the isoflavone formononetin to wild-type plants mimicked the cra1 root phenotype, whereas decreasing flavonoid content through silencing chalcone synthases restored the polar auxin transport capacity of the cra1 mutant. The CRA1 gene, therefore, may control legume root growth through the regulation of lignin and flavonoid profiles, leading to changes in polar auxin transport.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Florian Frugier
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette cedex, France (C. Laffont, S.B., L.B., P.R., M.C., F.F.); Unité de Chimie Biologique, UMR 1318, AgroParisTech-INRA, Centre de Grignon, 78850 Thiverval-Grignon, France (C. Lapierre); Division of Plant Science, Research School of Biology, Australian Research Council Centre of Excellence for Integrative Legume Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia (U.M.)
| |
Collapse
|
14
|
Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M. TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. PLANT PHYSIOLOGY 2009; 151:1281-91. [PMID: 19641028 PMCID: PMC2773058 DOI: 10.1104/pp.109.142190] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/21/2009] [Indexed: 05/18/2023]
Abstract
We have established tools for forward and reverse genetic analysis of the legume Lotus (Lotus japonicus). A structured population of M2 progeny of 4,904 ethyl methanesulfonate-mutagenized M1 embryos is available for single nucleotide polymorphism mutation detection, using a TILLING (for Targeting Induced Local Lesions IN Genomes) protocol. Scanning subsets of this population, we identified a mutation load of one per 502 kb of amplified fragment. Moreover, we observed a 1:10 ratio between homozygous and heterozygous mutations in the M2 progeny. This reveals a clear difference in germline genetics between Lotus and Arabidopsis (Arabidopsis thaliana). In addition, we assembled M2 siblings with obvious phenotypes in overall development, starch accumulation, or nitrogen-fixing root nodule symbiosis in three thematic subpopulations. By screening the nodulation-defective population of M2 individuals for mutations in a set of 12 genes known to be essential for nodule development, we identified large allelic series for each gene, generating a unique data set that combines genotypic and phenotypic information facilitating structure-function studies. This analysis revealed a significant bias for replacements of glycine (Gly) residues in functionally defective alleles, which may be explained by the exceptional structural features of Gly. Gly allows the peptide chain to adopt conformations that are no longer possible after amino acid replacement. This previously unrecognized vulnerability of proteins at Gly residues could be used for the improvement of algorithms that are designed to predict the deleterious nature of single nucleotide polymorphism mutations. Our results demonstrate the power, as well as the limitations, of ethyl methanesulfonate mutagenesis for forward and reverse genetic studies. (Original mutant phenotypes can be accessed at http://data.jic.bbsrc.ac.uk/cgi-bin/lotusjaponicus Access to the Lotus TILLING facility can be obtained through http://www.lotusjaponicus.org or http://revgenuk.jic.ac.uk).
Collapse
|