1
|
Genome-Wide Analysis of Terpene Synthase Gene Family in Mentha longifolia and Catalytic Activity Analysis of a Single Terpene Synthase. Genes (Basel) 2021; 12:genes12040518. [PMID: 33918244 PMCID: PMC8066702 DOI: 10.3390/genes12040518] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Terpenoids are a wide variety of natural products and terpene synthase (TPS) plays a key role in the biosynthesis of terpenoids. Mentha plants are rich in essential oils, whose main components are terpenoids, and their biosynthetic pathways have been basically elucidated. However, there is a lack of systematic identification and study of TPS in Mentha plants. In this work, we genome-widely identified and analyzed the TPS gene family in Mentha longifolia, a model plant for functional genomic research in the genus Mentha. A total of 63 TPS genes were identified in the M. longifolia genome sequence assembly, which could be divided into six subfamilies. The TPS-b subfamily had the largest number of genes, which might be related to the abundant monoterpenoids in Mentha plants. The TPS-e subfamily had 18 members and showed a significant species-specific expansion compared with other sequenced Lamiaceae plant species. The 63 TPS genes could be mapped to nine scaffolds of the M. longifolia genome sequence assembly and the distribution of these genes is uneven. Tandem duplicates and fragment duplicates contributed greatly to the increase in the number of TPS genes in M. longifolia. The conserved motifs (RR(X)8W, NSE/DTE, RXR, and DDXXD) were analyzed in M. longifolia TPSs, and significant differentiation was found between different subfamilies. Adaptive evolution analysis showed that M. longifolia TPSs were subjected to purifying selection after the species-specific expansion, and some amino acid residues under positive selection were identified. Furthermore, we also cloned and analyzed the catalytic activity of a single terpene synthase, MlongTPS29, which belongs to the TPS-b subfamily. MlongTPS29 could encode a limonene synthase and catalyze the biosynthesis of limonene, an important precursor of essential oils from the genus Mentha. This study provides useful information for the biosynthesis of terpenoids in the genus Mentha.
Collapse
|
2
|
Jiang SY, Jin J, Sarojam R, Ramachandran S. A Comprehensive Survey on the Terpene Synthase Gene Family Provides New Insight into Its Evolutionary Patterns. Genome Biol Evol 2020; 11:2078-2098. [PMID: 31304957 PMCID: PMC6681836 DOI: 10.1093/gbe/evz142] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
Terpenes are organic compounds and play important roles in plant growth and development as well as in mediating interactions of plants with the environment. Terpene synthases (TPSs) are the key enzymes responsible for the biosynthesis of terpenes. Although some species were employed for the genome-wide identification and characterization of the TPS family, limited information is available regarding the evolution, expansion, and retention mechanisms occurring in this gene family. We performed a genome-wide identification of the TPS family members in 50 sequenced genomes. Additionally, we also characterized the TPS family from aromatic spearmint and basil plants using RNA-Seq data. No TPSs were identified in algae genomes but the remaining plant species encoded various numbers of the family members ranging from 2 to 79 full-length TPSs. Some species showed lineage-specific expansion of certain subfamilies, which might have contributed toward species or ecotype divergence or environmental adaptation. A large-scale family expansion was observed mainly in dicot and monocot plants, which was accompanied by frequent domain loss. Both tandem and segmental duplication significantly contributed toward family expansion and expression divergence and played important roles in the survival of these expanded genes. Our data provide new insight into the TPS family expansion and evolution and suggest that TPSs might have originated from isoprenyl diphosphate synthase genes.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Jingjing Jin
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore.,School of Computing, National University of Singapore, Singapore.,China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Rajani Sarojam
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Srinivasan Ramachandran
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| |
Collapse
|
3
|
ORCAE-AOCC: A Centralized Portal for the Annotation of African Orphan Crop Genomes. Genes (Basel) 2019; 10:genes10120950. [PMID: 31757073 PMCID: PMC6969924 DOI: 10.3390/genes10120950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
ORCAE (Online Resource for Community Annotation of Eukaryotes) is a public genome annotation curation resource. ORCAE-AOCC is a branch that is dedicated to the genomes published as part of the African Orphan Crops Consortium (AOCC). The motivation behind the development of the ORCAE platform was to create a knowledge-based website where the research-community can make contributions to improve genome annotations. All changes to any given gene-model or gene description are stored, and the entire annotation history can be retrieved. Genomes can either be set to “public” or “restricted” mode; anonymous users can browse public genomes but cannot make any changes. Aside from providing a user- friendly interface to view genome annotations, the platform also includes tools and information (such as gene expression evidence) that enables authorized users to edit and validate genome annotations. The ORCAE-AOCC platform will enable various stakeholders from around the world to coordinate their efforts to annotate and study underutilized crops.
Collapse
|
4
|
Jiang SY, Sevugan M, Ramachandran S. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses. BMC Genomics 2018; 19:342. [PMID: 29743038 PMCID: PMC5941492 DOI: 10.1186/s12864-018-4733-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/26/2018] [Indexed: 11/22/2022] Open
Abstract
Background Valine-glutamine (VQ) motif containing proteins play important roles in abiotic and biotic stress responses in plants. However, little is known about the origin and evolution as well as comprehensive expression regulation of the VQ gene family. Results In this study, we systematically surveyed this gene family in 50 plant genomes from algae, moss, gymnosperm and angiosperm and explored their presence in other species from animals, bacteria, fungi and viruses. No VQs were detected in all tested algae genomes and all genomes from moss, gymnosperm and angiosperm encode varying numbers of VQs. Interestingly, some of fungi, lower animals and bacteria also encode single to a few VQs. Thus, they are not plant-specific and should be regarded as an ancient family. Their family expansion was mainly due to segmental duplication followed by tandem duplication and mobile elements. Limited contribution of gene conversion was detected to the family evolution. Generally, VQs were very much conserved in their motif coding region and were under purifying selection. However, positive selection was also observed during species divergence. Many VQs were up- or down-regulated by various abiotic / biotic stresses and phytohormones in rice and Arabidopsis. They were also co-expressed with some of other stress-related genes. All of the expression data suggest a comprehensive expression regulation of the VQ gene family. Conclusions We provide new insights into gene expansion, divergence, evolution and their expression regulation of this VQ family. VQs were detectable not only in plants but also in some of fungi, lower animals and bacteria, suggesting the evolutionary conservation and the ancient origin. Overall, VQs are non-plant-specific and play roles in abiotic / biotic responses or other biological processes through comprehensive expression regulation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4733-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mayalagu Sevugan
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Srinivasan Ramachandran
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
5
|
Jiang SY, Ramachandran S. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling. Genome Biol Evol 2016; 8:1165-84. [PMID: 27026054 PMCID: PMC4860697 DOI: 10.1093/gbe/evw067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3′-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix–hairpin–Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Genome Structural Biology Group, Temasek Life Science Laboratory, The National University of Singapore, Singapore
| | - Srinivasan Ramachandran
- Genome Structural Biology Group, Temasek Life Science Laboratory, The National University of Singapore, Singapore
| |
Collapse
|
6
|
Abstract
The Mutator system of transposable elements (TEs) is a highly mutagenic family of transposons in maize. Because they transpose at high rates and target genic regions, these transposons can rapidly generate large numbers of new mutants, which has made the Mutator system a favored tool for both forward and reverse mutagenesis in maize. Low copy number versions of this system have also proved to be excellent models for understanding the regulation and behavior of Class II transposons in plants. Notably, the availability of a naturally occurring locus that can heritably silence autonomous Mutator elements has provided insights into the means by which otherwise active transposons are recognized and silenced. This chapter will provide a review of the biology, regulation, evolution and uses of this remarkable transposon system, with an emphasis on recent developments in our understanding of the ways in which this TE system is recognized and epigenetically silenced as well as recent evidence that Mu-like elements (MULEs) have had a significant impact on the evolution of plant genomes.
Collapse
|
7
|
Sucrose metabolism gene families and their biological functions. Sci Rep 2015; 5:17583. [PMID: 26616172 PMCID: PMC4663468 DOI: 10.1038/srep17583] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 01/30/2023] Open
Abstract
Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.
Collapse
|
8
|
|
9
|
Isolation and characterization of a dominant dwarf gene, d-h, in rice. PLoS One 2014; 9:e86210. [PMID: 24498271 PMCID: PMC3911911 DOI: 10.1371/journal.pone.0086210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Plant height is an important agronomic trait that affects grain yield. Previously, we reported a novel semi-dominant dwarfmutant, HD1, derived from chemical mutagenesis using N-methyl-N-nitrosourea (MNU) on a japonica rice cultivar, Hwacheong. In this study, we cloned the gene responsible for the dwarf mutant using a map-based approach. Fine mapping revealed that the mutant gene was located on the short arm of chromosome 1 in a 48 kb region. Sequencing of the candidate genes and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) analysis identified the gene, d-h, which encodes a protein of unknown function but whose sequence is conserved in other cereal crops. Real-time (RT)-PCR analysis and promoter activity assays showed that the d-h gene was primarily expressed in the nodes and the panicle. In the HD1 plant, the d-h gene was found to carry a 63-bp deletion in the ORF region that was subsequently confirmed by transgenic experiments to be directly responsible for the gain-of-function phenotype observed in the mutant. Since the mutant plants exhibit a defect in GA response, but not in the GA synthetic pathway, it appears that the d-h gene may be involved in a GA signaling pathway.
Collapse
|
10
|
Campbell MS, Law M, Holt C, Stein JC, Moghe GD, Hufnagel DE, Lei J, Achawanantakun R, Jiao D, Lawrence CJ, Ware D, Shiu SH, Childs KL, Sun Y, Jiang N, Yandell M. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. PLANT PHYSIOLOGY 2014; 164:513-24. [PMID: 24306534 PMCID: PMC3912085 DOI: 10.1104/pp.113.230144] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/26/2013] [Indexed: 05/18/2023]
Abstract
We have optimized and extended the widely used annotation engine MAKER in order to better support plant genome annotation efforts. New features include better parallelization for large repeat-rich plant genomes, noncoding RNA annotation capabilities, and support for pseudogene identification. We have benchmarked the resulting software tool kit, MAKER-P, using the Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) genomes. Here, we demonstrate the ability of the MAKER-P tool kit to automatically update, extend, and revise the Arabidopsis annotations in light of newly available data and to annotate pseudogenes and noncoding RNAs absent from The Arabidopsis Informatics Resource 10 build. Our results demonstrate that MAKER-P can be used to manage and improve the annotations of even Arabidopsis, perhaps the best-annotated plant genome. We have also installed and benchmarked MAKER-P on the Texas Advanced Computing Center. We show that this public resource can de novo annotate the entire Arabidopsis and maize genomes in less than 3 h and produce annotations of comparable quality to those of the current The Arabidopsis Information Resource 10 and maize V2 annotation builds.
Collapse
|
11
|
Jiang SY, Ramachandran S. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. PLoS One 2013; 8:e71118. [PMID: 23923055 PMCID: PMC3726574 DOI: 10.1371/journal.pone.0071118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023] Open
Abstract
Long terminal repeat (LTR) retrotransposons are the major class I mobile elements in plants. They play crucial roles in gene expansion, diversification and evolution. However, their captured genes are yet to be genome-widely identified and characterized in most of plants although many genomes have been completely sequenced. In this study, we have identified 7,043 and 23,915 full-length LTR retrotransposons in the rice and sorghum genomes, respectively. High percentages of rice full-length LTR retrotransposons were distributed near centromeric region in each of the chromosomes. In contrast, sorghum full-length LTR retrotransposons were not enriched in centromere regions. This dissimilarity could be due to the discrepant retrotransposition during and after divergence from their common ancestor thus might be contributing to species divergence. A total of 672 and 1,343 genes have been captured by these elements in rice and sorghum, respectively. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that no over-represented GO term was identified in LTR captured rice genes. For LTR captured sorghum genes, GO terms with functions in DNA/RNA metabolism and chromatin organization were over-represented. Only 36% of LTR captured rice genes were expressed and expression divergence was estimated as 11.9%. Higher percentage of LTR captured rice genes have evolved into pseudogenes under neutral selection. On the contrary, higher percentage of LTR captured sorghum genes were under purifying selection and 72.4% of them were expressed. Thus, higher percentage of LTR captured sorghum genes was functional. Small RNA analysis suggested that some of LTR captured genes in rice and sorghum might have been involved in negative regulation. On the other hand, positive selection has been observed in both rice and sorghum LTR captured genes and some of them were still expressed and functional. The data suggest that some of these LTR captured genes might have evolved into new gene functions.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | |
Collapse
|
12
|
Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. THE NEW PHYTOLOGIST 2012; 196:282-291. [PMID: 22849513 DOI: 10.1111/j.1469-8137.2012.04243.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Rht-D1c (Rht10) carried by Chinese wheat (Triticum aestivum) line Aibian 1 is an allele at the Rht-D1 locus. Among the Rht-1 alleles, little is known about Rht-D1c although it determines an extreme dwarf phenotype in wheat. • Here, we cloned and functionally characterized Rht-D1c using a combination of Southern blotting, target region sequencing, gene expression analysis and transgenic experiments. • We found that the Rht-D1c allele was generated through a tandem segmental duplication (TSD) of a > 1 Mb region, resulting in two copies of the Rht-D1b. Two copies of Rht-D1b in the TSD were three-fold more effective in reducing plant height than a single copy, and transformation with a segment containing the tandemly duplicated copy of Rht-D1b resulted in the same level of reduction of plant height as the original copy in Aibian 1. • Our results suggest that changes in gene copy number are one of the important sources of genetic diversity and some of these changes could be directly associated with important traits in crops.
Collapse
Affiliation(s)
- Yiyuan Li
- College of Biology Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100094, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhui Xiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajie Wu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Duan
- College of Biology Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100094, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongqiang Gu
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Lichao Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Sharma R, Agarwal P, Ray S, Deveshwar P, Sharma P, Sharma N, Nijhawan A, Jain M, Singh AK, Singh VP, Khurana JP, Tyagi AK, Kapoor S. Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 2012. [PMID: 22466020 DOI: 10.1007/s10142‐012‐0274‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carefully analyzed expression profiles can serve as a valuable reference for deciphering gene functions. We exploited the potential of whole genome microarrays to measure the spatial and temporal expression profiles of rice genes in 19 stages of vegetative and reproductive development. We could verify expression of 22,980 genes in at least one of the tissues. Differential expression analysis with respect to five vegetative tissues and preceding stages of development revealed reproductive stage-preferential/-specific genes. By using subtractive logic, we identified 354 and 456 genes expressing specifically during panicle and seed development, respectively. The metabolic/hormonal pathways and transcription factor families playing key role in reproductive development were elucidated after overlaying the expression data on the public databases and manually curated list of transcription factors, respectively. During floral meristem differentiation (P1) and male meiosis (P3), the genes involved in jasmonic acid and phenylpropanoid biosynthesis were significantly upregulated. P6 stage of panicle, containing mature gametophytes, exhibited enrichment of transcripts involved in homogalacturonon degradation. Genes regulating auxin biosynthesis were induced during early seed development. We validated the stage-specificity of regulatory regions of three panicle-specific genes, OsAGO3, OsSub42, and RTS, and an early seed-specific gene, XYH, in transgenic rice. The data generated here provides a snapshot of the underlying complexity of the gene networks regulating rice reproductive development.
Collapse
Affiliation(s)
- Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharma R, Agarwal P, Ray S, Deveshwar P, Sharma P, Sharma N, Nijhawan A, Jain M, Singh AK, Singh VP, Khurana JP, Tyagi AK, Kapoor S. Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 2012; 12:229-48. [PMID: 22466020 DOI: 10.1007/s10142-012-0274-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
Abstract
Carefully analyzed expression profiles can serve as a valuable reference for deciphering gene functions. We exploited the potential of whole genome microarrays to measure the spatial and temporal expression profiles of rice genes in 19 stages of vegetative and reproductive development. We could verify expression of 22,980 genes in at least one of the tissues. Differential expression analysis with respect to five vegetative tissues and preceding stages of development revealed reproductive stage-preferential/-specific genes. By using subtractive logic, we identified 354 and 456 genes expressing specifically during panicle and seed development, respectively. The metabolic/hormonal pathways and transcription factor families playing key role in reproductive development were elucidated after overlaying the expression data on the public databases and manually curated list of transcription factors, respectively. During floral meristem differentiation (P1) and male meiosis (P3), the genes involved in jasmonic acid and phenylpropanoid biosynthesis were significantly upregulated. P6 stage of panicle, containing mature gametophytes, exhibited enrichment of transcripts involved in homogalacturonon degradation. Genes regulating auxin biosynthesis were induced during early seed development. We validated the stage-specificity of regulatory regions of three panicle-specific genes, OsAGO3, OsSub42, and RTS, and an early seed-specific gene, XYH, in transgenic rice. The data generated here provides a snapshot of the underlying complexity of the gene networks regulating rice reproductive development.
Collapse
Affiliation(s)
- Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Okamoto A, Yamada K. Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome. BMC Microbiol 2011; 11:249. [PMID: 22070424 PMCID: PMC3224786 DOI: 10.1186/1471-2180-11-249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/10/2011] [Indexed: 12/02/2022] Open
Abstract
Background The genome data of Streptococcus pyogenes SF370 has been widely used by many researchers and provides a vast array of interesting findings. Nevertheless, approximately 40% of genes remain classified as hypothetical proteins, and several coding sequences (CDSs) have been unrecognized. In this study, we attempted a shotgun proteomic analysis with a six-frame database that was independent of genome annotation. Results Nine proteins encoded by novel ORFs were found by shotgun proteomic analysis, and their specific mRNAs were verified by reverse transcriptional PCR (RT-PCR). We also provided functional annotations for hypothetical genes using proteomic analysis from three different culture conditions that were separated into three fractions: supernatant, soluble, and insoluble. Consequently, we identified 567 proteins on re-evaluation of the proteomic data using an in-house database comprising 1,697 annotated and nine non-annotated CDSs. We provided functional annotations for 126 hypothetical proteins (18.9% out of the 668 hypothetical proteins) based on their cellular fractions and expression profiles under different culture conditions. Conclusions The list of amino acid sequences that were annotated by genome analysis contains outdated information and unrecognized protein-coding sequences. We suggest that the six-frame database derived from actual DNA sequences be used for reliable proteomic analysis. In addition, the experimental evidence from functional proteomic analysis is useful for the re-evaluation of previously sequenced genomes.
Collapse
Affiliation(s)
- Akira Okamoto
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | |
Collapse
|
16
|
Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:212-31. [PMID: 21205183 DOI: 10.1111/j.1744-7909.2010.01017.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant bZIP transcription factors play crucial roles in multiple biological processes. However, little is known about the sorghum bZIP gene family although the sorghum genome has been completely sequenced. In this study, we have carried out a genome-wide identification and characterization of this gene family in sorghum. Our data show that the genome encodes at least 92 bZIP transcription factors. These bZIP genes have been expanded mainly by segmental duplication. Such an expansion mechanism has also been observed in rice, arabidopsis and many other plant organisms, suggesting a common expansion mode of this gene family in plants. Further investigation shows that most of the bZIP members have been present in the most recent common ancestor of sorghum and rice and the major expansion would occur before the sorghum-rice split era. Although these bZIP genes have been duplicated with a long history, they exhibited limited functional divergence as shown by nonsynonymous substitutions (Ka)/synonymous substitutions (Ks) analyses. Their retention was mainly due to the high percentages of expression divergence. Our data also showed that this gene family might play a role in multiple developmental stages and tissues and might be regarded as important regulators of various abiotic stresses and sugar signaling.
Collapse
Affiliation(s)
- Jizhou Wang
- Institute of Botany and Temasek Life Sciences Laboratory Joint Research & Development Laboratory, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
17
|
Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang SY. Expansion mechanisms and functional divergence of the glutathione s-transferase family in sorghum and other higher plants. DNA Res 2010; 18:1-16. [PMID: 21169340 PMCID: PMC3041506 DOI: 10.1093/dnares/dsq031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glutathione S-transferases (GSTs) exist in various eukaryotes and function in detoxification of xenobiotics and in response to abiotic and biotic stresses. We have carried out a genome-wide survey of this gene family in 10 plant genomes. Our data show that tandem duplication has been regarded as the major expansion mechanism and both monocot and dicot plants may have practiced different expansion and evolutionary history. Non-synonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analyses showed that N- and C-terminal functional domains of GSTs (GST_N and GST_C) seem to have evolved under a strong purifying selection (Ka/Ks < 1) under different selective pressures. Differential evolutionary rates between GST_N and GST_C and high degree of expression divergence have been regarded as the major drivers for the retention of duplicated genes and the adaptability to various stresses. Expression profiling also indicated that the gene family plays a role not only in stress-related biological processes but also in the sugar-signalling pathway. Our survey provides additional annotation of the plant GST gene family and advance the understanding of plant GSTs in lineage-specific expansion and species diversification.
Collapse
Affiliation(s)
- Yunhua Chi
- IOB-TLL Joint R&D Laboratory, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis. Biotechnol Lett 2010; 32:1753-63. [PMID: 20703802 DOI: 10.1007/s10529-010-0377-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Rice is the first cereal genome to be completely sequenced. Since the completion of its genome sequencing, considerable progress has been made in multiple areas including the whole genome annotation, gene expression profiling, mutant collection, etc. Here, we summarize the current status of rice genome annotation and review the methodology of assigning biological functions to hundreds of thousands of rice genes as well as discuss the major limitations and the future perspective in rice functional genomics. Available data analysis shows that the rice genome encodes around 32,000 protein-coding genes. Expression analysis revealed at least 31,000 genes with expression evidence from full-length cDNA/EST collection or other transcript profiling. In addition, we have summarized various strategies to generate mutant population including natural, physical, chemical, T-DNA, transposon/retrotransposon or gene silencing based mutagenesis. Currently, more than 1 million of mutants have been generated and 27,551 of them have their flanking sequence tags. To assign biological functions to hundreds of thousands of rice genes, global co-operations are required, various genetic resources should be more easily accessible and diverse data from transcriptomics, proteomics, epigenetics, comparative genomics and bioinformatics should be integrated to better understand the functions of these genes and their regulatory mechanisms.
Collapse
|
19
|
Richardson CR, Luo QJ, Gontcharova V, Jiang YW, Samanta M, Youn E, Rock CD. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes. PLoS One 2010; 5:e10710. [PMID: 20520764 PMCID: PMC2877095 DOI: 10.1371/journal.pone.0010710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 04/26/2010] [Indexed: 11/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the “ancient” (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for “new” rapidly-evolving MIRNA genes. Conclusions Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription, miRNA evolution, and post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Casey R. Richardson
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Qing-Jun Luo
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Viktoria Gontcharova
- Department of Computer Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Ying-Wen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Manoj Samanta
- Systemix Institute, Redmond, Washington, United States of America
| | - Eunseog Youn
- Department of Computer Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Jiang SY, Ma Z, Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol 2010; 10:79. [PMID: 20236552 PMCID: PMC2846932 DOI: 10.1186/1471-2148-10-79] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/18/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Lectins are a class of carbohydrate-binding proteins. They play roles in various biological processes. However, little is known about their evolutionary history and their functions in plant stress regulation. The availability of full genome sequences from various plant species makes it possible to perform a whole-genome exploration for further understanding their biological functions. RESULTS Higher plant genomes encode large numbers of lectin proteins. Based on their domain structures and phylogenetic analyses, a new classification system has been proposed. In this system, 12 different families have been classified and four of them consist of recently identified plant lectin members. Further analyses show that some of lectin families exhibit species-specific expansion and rapid birth-and-death evolution. Tandem and segmental duplications have been regarded as the major mechanisms to drive lectin expansion although retrogenes also significantly contributed to the birth of new lectin genes in soybean and rice. Evidence shows that lectin genes have been involved in biotic/abiotic stress regulations and tandem/segmental duplications may be regarded as drivers for plants to adapt various environmental stresses through duplication followed by expression divergence. Each member of this gene superfamily may play specialized roles in a specific stress condition and function as a regulator of various environmental factors such as cold, drought and high salinity as well as biotic stresses. CONCLUSIONS Our studies provide a new outline of the plant lectin gene superfamily and advance the understanding of plant lectin genes in lineage-specific expansion and their functions in biotic/abiotic stress-related developmental processes.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore, Singapore 117604
| | - Zhigang Ma
- Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore, Singapore 117604
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore, Singapore 117604
| |
Collapse
|