1
|
Poulet A, Zhao M, Peng Y, Tham F, Jaudal M, Zhang L, van Wolfswinkel JC, Putterill J. Gene-edited Mtsoc1 triple mutant Medicago plants do not flower. FRONTIERS IN PLANT SCIENCE 2024; 15:1357924. [PMID: 38469328 PMCID: PMC10926907 DOI: 10.3389/fpls.2024.1357924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Optimized flowering time is an important trait that ensures successful plant adaptation and crop productivity. SOC1-like genes encode MADS transcription factors, which are known to play important roles in flowering control in many plants. This includes the best-characterized eudicot model Arabidopsis thaliana (Arabidopsis), where SOC1 promotes flowering and functions as a floral integrator gene integrating signals from different flowering-time regulatory pathways. Medicago truncatula (Medicago) is a temperate reference legume with strong genomic and genetic resources used to study flowering pathways in legumes. Interestingly, despite responding to similar floral-inductive cues of extended cold (vernalization) followed by warm long days (VLD), such as in winter annual Arabidopsis, Medicago lacks FLC and CO which are key regulators of flowering in Arabidopsis. Unlike Arabidopsis with one SOC1 gene, multiple gene duplication events have given rise to three MtSOC1 paralogs within the Medicago genus in legumes: one Fabaceae group A SOC1 gene, MtSOC1a, and two tandemly repeated Fabaceae group B SOC1 genes, MtSOC1b and MtSOC1c. Previously, we showed that MtSOC1a has unique functions in floral promotion in Medicago. The Mtsoc1a Tnt1 retroelement insertion single mutant showed moderately delayed flowering in long- and short-day photoperiods, with and without prior vernalization, compared to the wild-type. In contrast, Mtsoc1b Tnt1 single mutants did not have altered flowering time or flower development, indicating that it was redundant in an otherwise wild-type background. Here, we describe the generation of Mtsoc1a Mtsoc1b Mtsoc1c triple mutant lines using CRISPR-Cas9 gene editing. We studied two independent triple mutant lines that segregated plants that did not flower and were bushy under floral inductive VLD. Genotyping indicated that these non-flowering plants were homozygous for the predicted strong mutant alleles of the three MtSOC1 genes. Gene expression analyses using RNA-seq and RT-qPCR indicated that these plants remained vegetative. Overall, the non-flowering triple mutants were dramatically different from the single Mtsoc1a mutant and the Arabidopsis soc1 mutant; implicating multiple MtSOC1 genes in critical overlapping roles in the transition to flowering in Medicago.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, United States
| | - Min Zhao
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Yongyan Peng
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - FangFei Tham
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mauren Jaudal
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Lulu Zhang
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Josien C. van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, United States
| | - Joanna Putterill
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Jaudal M, Mayo‐Smith M, Poulet A, Whibley A, Peng Y, Zhang L, Thomson G, Trimborn L, Jacob Y, van Wolfswinkel JC, Goldstone DC, Wen J, Mysore KS, Putterill J. MtING2 encodes an ING domain PHD finger protein which affects Medicago growth, flowering, global patterns of H3K4me3, and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1029-1050. [PMID: 36178149 PMCID: PMC9828230 DOI: 10.1111/tpj.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.
Collapse
Affiliation(s)
- Mauren Jaudal
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Matthew Mayo‐Smith
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Axel Poulet
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Annabel Whibley
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Yongyan Peng
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Lulu Zhang
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Geoffrey Thomson
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Laura Trimborn
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Institute for Plant Sciences, BiocenterUniversity of CologneZülpicher Str. 47b50674CologneGermany
| | - Yannick Jacob
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Josien C. van Wolfswinkel
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - David C. Goldstone
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiangqi Wen
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Kirankumar S. Mysore
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Joanna Putterill
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
3
|
Adhikari KN, Khazaei H, Ghaouti L, Maalouf F, Vandenberg A, Link W, O'Sullivan DM. Conventional and Molecular Breeding Tools for Accelerating Genetic Gain in Faba Bean ( Vicia Faba L.). FRONTIERS IN PLANT SCIENCE 2021; 12:744259. [PMID: 34721470 PMCID: PMC8548637 DOI: 10.3389/fpls.2021.744259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 05/11/2023]
Abstract
Faba bean is a cool-season grain legume crop, which is grown worldwide for food and feed. Despite a decrease in area under faba bean in the past, the interest in growing faba bean is increasing globally due to its high seed protein content and its excellent ecological service. The crop is, however, exposed to diverse biotic and abiotic stresses causing unstable, low grain yield. Although, sources of resistance to main diseases, such as ascochyta blight (Ascochyta fabae Speg.), rust (Uromyces viciae-fabae (Pers.) Schroet.), chocolate spot (Botrytis fabae Sard.) and gall disease (Physioderma viciae), have been identified, their resistance is only partial and cannot prevent grain yield losses without agronomical practices. Tightly associated DNA markers for host plant resistance genes are needed to enhance the level of resistance. Less progress has been made for abiotic stresses. Different breeding methods are proposed, but until now line breeding, based on the pedigree method, is the dominant practice in breeding programs. Nonetheless, the low seed multiplication coefficient and the requirement for growing under insect-proof enclosures to avoid outcrossing hampers breeding, along with the lack of tools such as double haploid system and cytoplasmic male sterility. This reduces breeding population size and speed of breeding hence the chances of capturing rare combinations of favorable alleles. Availability and use of the DNA markers such as vicine-convicine (vc -) and herbicide tolerance in breeding programs have encouraged breeders and given confidence in marker assisted selection. Closely linked QTL for several biotic and abiotic stress tolerance are available and their verification and conversion in breeder friendly platform will enhance the selection process. Recently, genomic selection and speed breeding techniques together with genomics have come within reach to accelerate the genetic gains in faba bean. Advancements in genomic resources with other breeding tools, methods and platforms will enable to accelerate the breeding process for enhancing genetic gain in this species.
Collapse
Affiliation(s)
- Kedar N. Adhikari
- The University of Sydney, School of Life and Environmental Science, Plant Breeding Institute, Narrabri, NSW, Australia
| | | | - Lamiae Ghaouti
- Institute of Agronomy and Veterinary Medicine Hassan II, Department of Plant Production, Protection and Biotechnology, Rabat, Morocco
| | - Fouad Maalouf
- International Center for Agricultural Research in Dry Areas, Beirut, Lebanon
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang Link
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | - Donal M. O'Sullivan
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| |
Collapse
|
4
|
Malik A, Gul A, Munir F, Amir R, Alipour H, Babar MM, Bakhtiar SM, Paracha RZ, Khalid Z, Hayat MQ. Evaluating the cleavage efficacy of CRISPR-Cas9 sgRNAs targeting ineffective regions of Arabidopsis thaliana genome. PeerJ 2021; 9:e11409. [PMID: 34055482 PMCID: PMC8142926 DOI: 10.7717/peerj.11409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas9 system has recently evolved as a powerful mutagenic tool for targeted genome editing. The impeccable functioning of the system depends on the optimal design of single guide RNAs (sgRNAs) that mainly involves sgRNA specificity and on-target cleavage efficacy. Several research groups have designed algorithms and models, trained on mammalian genomes, for predicting sgRNAs cleavage efficacy. These models are also implemented in most plant sgRNA design tools due to the lack of on-target cleavage efficacy studies in plants. However, one of the major drawbacks is that almost all of these models are biased for considering only coding regions of the DNA while excluding ineffective regions, which are of immense importance in functional genomics studies especially for plants, thus making prediction less reliable. In the present study, we evaluate the on-target cleavage efficacy of experimentally validated sgRNAs designed against diverse ineffective regions of Arabidopsis thaliana genome using various statistical tests. We show that nucleotide preference in protospacer adjacent motif (PAM) proximal region, GC content in the PAM proximal seed region, intact RAR and 3rd stem loop structures, and free accessibility of nucleotides in seed and tracrRNA regions of sgRNAs are important determinants associated with their high on-target cleavage efficacy. Thus, our study describes the features important for plant sgRNAs high on-target cleavage efficacy against ineffective genomic regions previously shown to give rise to ineffective sgRNAs. Moreover, it suggests the need of developing an elaborative plant-specific sgRNA design model considering the entire genomic landscape including ineffective regions for enabling highly efficient genome editing without wasting time and experimental resources.
Collapse
Affiliation(s)
- Afsheen Malik
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zoya Khalid
- Computational Biology Research Lab, Department of Computer Science, National University of Computer and Emerging Sciences-FAST, Islamabad, Pakistan
| | - Muhammad Qasim Hayat
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Jaudal M, Wen J, Mysore KS, Putterill J. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days. BMC PLANT BIOLOGY 2020; 20:329. [PMID: 32652925 PMCID: PMC7353751 DOI: 10.1186/s12870-020-02540-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/05/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Flowering time is an important trait for productivity in legumes, which include many food and fodder plants. Medicago truncatula (Medicago) is a model temperate legume used to study flowering time pathways. Like Arabidopsis thaliana (Arabidopsis), its flowering is promoted by extended periods of cold (vernalization, V), followed by warm long day (LD) photoperiods. However, Arabidopsis flowering-time genes such as the FLOWERING LOCUS C (FLC)/ MADS AFFECTING FLOWERING (MAF) clade are missing and CONSTANS-LIKE (CO-LIKE) genes do not appear to have a role in Medicago or Pisum sativum (pea). Another photoperiodic regulator, the red/far red photoreceptor PHYTOCHROME A (PHYA), promotes Arabidopsis flowering by stabilizing the CO protein in LD. Interestingly, despite the absence of CO-LIKE function in pea, PsPHYA plays a key role in promoting LD photoperiodic flowering and plant architecture. Medicago has one homolog of PHYA, MtPHYA, but its function is not known. RESULTS Genetic analysis of two MtPHYA Tnt1 insertion mutant alleles indicates that MtPHYA has an important role in promoting Medicago flowering and primary stem elongation in VLD and LD and in perception of far-red wavelengths in seedlings. MtPHYA positively regulates the expression of MtE1-like (MtE1L), a homologue of an important legume-specific flowering time gene, E1 in soybean and other Medicago LD-regulated flowering-time gene homologues, including the three FLOWERING LOCUS T-LIKE (FT-LIKE) genes, MtFTa1, MtFTb1 and MtFTb2 and the two FRUITFULL-LIKE (FUL-LIKE) genes MtFULa and MtFULb. MtPHYA also modulates the expression of the circadian clock genes, GIGANTEA (GI) and TIMING OF CAB EXPRESSION 1a (TOC1a). Genetic analyses indicate that Mtphya-1 Mte1l double mutants flowered at the same time as the single mutants. However, Mtphya-1 Mtfta1 double mutants had a weak additive effect in delaying flowering and in reduction of primary axis lengths beyond what was conferred by either of the single mutants. CONCLUSION MtPHYA has an important role in LD photoperiodic control of flowering, plant architecture and seedling de-etiolation under far-red wavelengths in Medicago. It promotes the expression of LD-induced flowering time genes and modulates clock-related genes. In addition to MtFTa1, MtPHYA likely regulates other targets during LD floral induction in Medicago.
Collapse
Affiliation(s)
- Mauren Jaudal
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK73401, USA
| | | | - Joanna Putterill
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Management of Fusarium udum Causing Wilt of Pigeon Pea. Fungal Biol 2020. [DOI: 10.1007/978-3-030-35947-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Kumawat S, Rana N, Bansal R, Vishwakarma G, Mehetre ST, Das BK, Kumar M, Kumar Yadav S, Sonah H, Sharma TR, Deshmukh R. Expanding Avenue of Fast Neutron Mediated Mutagenesis for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2019; 8:E164. [PMID: 31185678 PMCID: PMC6631465 DOI: 10.3390/plants8060164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
: Fast neutron (FN) radiation mediated mutagenesis is a unique approach among the several induced mutagenesis methods being used in plant science in terms of impacted mutations. The FN mutagenesis usually creates deletions from few bases to several million bases (Mb). A library of random deletion generated using FN mutagenesis lines can provide indispensable resources for the reverse genetic approaches. In this review, information from several efforts made using FN mutagenesis has been compiled to understand the type of induced mutations, frequency, and genetic stability. Concerns regarding the utilization of FN mutagenesis technique for a plant with different level of ploidy and genome complexity are discussed. We have highlighted the utility of next-generation sequencing techniques that can be efficiently utilized for the characterization of mutant lines as well as for the mapping of causal mutations. Pros and cons of mapping by mutation (MutMap), mutant chromosome sequencing (MutChromSeq), exon capture, whole genome sequencing, MutRen-Seq, and different tilling approaches that can be used for the detection of FN-induced mutation has also been discussed. Genomic resources developed using the FN mutagenesis have been catalogued wooing to meaningful utilization of the available resources. The information provided here will be helpful for the efficient exploration for the crop improvement programs and for better understanding of genetic regulations.
Collapse
Affiliation(s)
- Surbhi Kumawat
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Nitika Rana
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Ruchi Bansal
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Gautam Vishwakarma
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Sayaji T Mehetre
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Bikram Kishore Das
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Manish Kumar
- Department of Seed Science and Technology, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh 173230, India.
| | | | - Humira Sonah
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Tilak Raj Sharma
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Rupesh Deshmukh
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| |
Collapse
|
8
|
Jaudal M, Zhang L, Che C, Li G, Tang Y, Wen J, Mysore KS, Putterill J. A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4867-4880. [PMID: 30295903 PMCID: PMC6137972 DOI: 10.1093/jxb/ery284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/10/2018] [Indexed: 05/19/2023]
Abstract
Medicago flowering, like that of Arabidopsis, is promoted by vernalization and long days, but alternative mechanisms are predicted because Medicago lacks the key regulators CO and FLC. Three Medicago SOC1-like genes, including MtSOC1a, were previously implicated in flowering control, but no legume soc1 mutants with altered flowering were reported. Here, reverse transciption-quantitative PCR (RT-qPCR) indicated that the timing and magnitude of MtSOC1a expression was regulated by the flowering promoter FTa1, while in situ hybridization indicated that MtSOC1a expression increased in the shoot apical meristem during the floral transition. A Mtsoc1a mutant showed delayed flowering and short primary stems. Overexpression of MtSOC1a partially rescued the flowering of Mtsoc1a, but caused a dramatic increase in primary stem height, well before the transition to flowering. Internode cell length correlated with stem height, indicating that MtSOC1a promotes cell elongation in the primary stem. However, application of gibberellin (GA3) caused stem elongation in both the wild type and Mtsoc1a, indicating that the mutant was not defective in gibberellin responsiveness. These results indicate that MtSOC1a may function as a floral integrator gene and promotes primary stem elongation. Overall, this study suggests that apart from some conservation with the Arabidopsis flowering network, MtSOC1a has a novel role in regulating aspects of shoot architecture.
Collapse
Affiliation(s)
- Mauren Jaudal
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lulu Zhang
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chong Che
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Guifen Li
- Noble Research Institute, LLC, Ardmore, OK, USA
| | - Yuhong Tang
- Noble Research Institute, LLC, Ardmore, OK, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, OK, USA
| | | | - Joanna Putterill
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Garmier M, Gentzbittel L, Wen J, Mysore KS, Ratet P. Medicago truncatula: Genetic and Genomic Resources. ACTA ACUST UNITED AC 2017; 2:318-349. [PMID: 33383982 DOI: 10.1002/cppb.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Garmier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
10
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
11
|
Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. THE NEW PHYTOLOGIST 2016; 210:905-21. [PMID: 26725247 DOI: 10.1111/nph.13816] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/22/2015] [Indexed: 05/20/2023]
Abstract
The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula.
Collapse
Affiliation(s)
- Penghui Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Longxiang Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Qiang Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Jiangqi Wen
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| |
Collapse
|
12
|
Jaudal M, Zhang L, Che C, Hurley DG, Thomson G, Wen J, Mysore KS, Putterill J. MtVRN2 is a Polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:145-60. [PMID: 26947149 DOI: 10.1111/tpj.13156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 05/02/2023]
Abstract
Optimising the timing of flowering contributes to successful sexual reproduction and yield in agricultural plants. FLOWERING LOCUS T (FT) genes, first identified in Arabidopsis thaliana (Arabidopsis), promote flowering universally, but the upstream flowering regulatory pathways can differ markedly among plants. Flowering in the model legume, Medicago truncatula (Medicago) is accelerated by winter cold (vernalisation) followed by long day (LD) photoperiods leading to elevated expression of the floral activator, FT-like gene FTa1. However, Medicago, like some other plants, lacks the activator CONSTANS (CO) and the repressor FLOWERING LOCUS C (FLC) genes which directly regulate FT and are key to LD and vernalisation responses in Arabidopsis. Conversely, Medicago has a VERNALISATION2-LIKE VEFS-box gene (MtVRN2). In Arabidopsis AtVRN2 is a key member of a Polycomb complex involved in stable repression of Arabidopsis FLC after vernalisation. VRN2-like genes have been identified in other eudicot plants, but their function has never been reported. We show that Mtvrn2 mutants bypass the need for vernalisation for early flowering in LD conditions in Medicago. Investigation of the underlying mechanism by transcriptome analysis reveals that Mtvrn2 mutants precociously express FTa1 and other suites of genes including floral homeotic genes. Double-mutant analysis indicates that early flowering is dependent on functional FTa1. The broad significance of our study is that we have demonstrated a function for a VRN2-like VEFS gene beyond the Brassicaceae. In particular, MtVRN2 represses the transition to flowering in Medicago by regulating the onset of expression of the potent floral activator, FTa1.
Collapse
Affiliation(s)
- Mauren Jaudal
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lulu Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chong Che
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Daniel G Hurley
- Systems Biology Laboratory, Electrical and Electronic Engineering, Melbourne School of Engineering, Melbourne, Australia
- Centre for Systems Genomics, University of Melbourne, Melbourne, Australia
| | - Geoffrey Thomson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jiangqi Wen
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | | | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis 2016. [DOI: 10.1007/s13199-016-0382-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Thatcher LF, Gao LL, Singh KB. Jasmonate Signalling and Defence Responses in the Model Legume Medicago truncatula-A Focus on Responses to Fusarium Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2016; 5:E11. [PMID: 27135231 PMCID: PMC4844425 DOI: 10.3390/plants5010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/05/2022]
Abstract
Jasmonate (JA)-mediated defences play important roles in host responses to pathogen attack, in particular to necrotrophic fungal pathogens that kill host cells in order to extract nutrients and live off the dead plant tissue. The root-infecting fungal pathogen Fusarium oxysporum initiates a necrotrophic growth phase towards the later stages of its lifecycle and is responsible for devastating Fusarium wilt disease on numerous legume crops worldwide. Here we describe the use of the model legume Medicago truncatula to study legume-F. oxysporum interactions and compare and contrast this against knowledge from other model pathosystems, in particular Arabidopsis thaliana-F. oxysporum interactions. We describe publically-available genomic, transcriptomic and genetic (mutant) resources developed in M. truncatula that enable dissection of host jasmonate responses and apply aspects of these herein during the M. truncatula--F. oxysporum interaction. Our initial results suggest not all components of JA-responses observed in M. truncatula are shared with Arabidopsis in response to F. oxysporum infection.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Ling-Ling Gao
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Karam B Singh
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
15
|
Ishiga Y, Rao Uppalapati S, Gill US, Huhman D, Tang Y, Mysore KS. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust. Sci Rep 2015; 5:13061. [PMID: 26267598 PMCID: PMC4533520 DOI: 10.1038/srep13061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/13/2015] [Indexed: 01/05/2023] Open
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a devastating foliar disease affecting soybean production worldwide. Understanding nonhost resistance against ASR may provide an avenue to engineer soybean to confer durable resistance against ASR. We characterized a Medicago truncatula-ASR pathosystem to study molecular mechanisms of nonhost resistance. Although urediniospores formed appressoria and penetrated into epidermal cells of M. truncatula, P. pachyrhizi failed to sporulate. Transcriptomic analysis revealed the induction of phenylpropanoid, flavonoid and isoflavonoid metabolic pathway genes involved in the production of phytoalexin medicarpin in M. truncatula upon infection with P. pachyrhizi. Furthermore, genes involved in chlorophyll catabolism were induced during nonhost resistance. We further characterized one of the chlorophyll catabolism genes, Stay-green (SGR), and demonstrated that the M. truncatula sgr mutant and alfalfa SGR-RNAi lines showed hypersensitive-response-like enhanced cell death upon inoculation with P. pachyrhizi. Consistent with transcriptomic analysis, metabolomic analysis also revealed the accumulation of medicarpin and its intermediate metabolites. In vitro assay showed that medicarpin inhibited urediniospore germination and differentiation. In addition, several triterpenoid saponin glycosides accumulated in M. truncatula upon inoculation with P. pachyrhizi. In summary, using multi-omic approaches, we identified a correlation between phytoalexin production and M. truncatula defense responses against ASR.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | - Upinder S. Gill
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - David Huhman
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
16
|
Berrabah F, Ratet P, Gourion B. Multiple steps control immunity during the intracellular accommodation of rhizobia. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1977-85. [PMID: 25682610 PMCID: PMC4378630 DOI: 10.1093/jxb/eru545] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of these organs. Some factors influencing rhizobium maintenance within the plant cells have been previously identified, such as the M. truncatula NCR peptides whose toxic effects are reduced by the bacterial protein BacA. In addition, DNF2, SymCRK, and RSD are M. truncatula genes required to avoid rhizobial death within the symbiotic cells. DNF2 and SymCRK are essential to prevent defence-like reactions in nodules after bacteria internalization into the symbiotic cells. Herein, we used a combination of genetics, histology and molecular biology approaches to investigate the relationship between the factors preventing bacterial death in the nodule cells. We show that the RSD gene is also required to repress plant defences in nodules. Upon inoculation with the bacA mutant, defence responses are observed only in the dnf2 mutant and not in the symCRK and rsd mutants. In addition, our data suggest that lack of nitrogen fixation by the bacterial partner triggers bacterial death in nodule cells after bacteroid differentiation. Together our data indicate that, after internalization, at least four independent mechanisms prevent bacterial death in the plant cell. These mechanisms involve successively: DNF2, BacA, SymCRK/RSD and bacterial ability to fix nitrogen.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
17
|
Jaudal M, Zhang L, Che C, Putterill J. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis. Front Genet 2015; 6:50. [PMID: 25745430 PMCID: PMC4333866 DOI: 10.3389/fgene.2015.00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/02/2015] [Indexed: 11/13/2022] Open
Abstract
The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an important plant group, but less is known about the regulation of their flowering time. In the model legume Medicago truncatula (Medicago), a temperate annual plant like Arabidopsis, flowering is induced by prolonged cold (vernalization) followed by long day lengths (LD). Recent molecular-genetic experiments have revealed that a FT-like gene, MtFTa1, is a central regulator of flowering time in Medicago. Here, we characterize the three Medicago FRUITFULL (FUL) MADS transcription factors, MtFULa, MtFULb, and MtFULc using phylogenetic analyses, gene expression profiling through developmental time courses, and functional analyses in transgenic plants. MtFULa and MtFULb have similarity in sequence and expression profiles under inductive environmental conditions during both vegetative and reproductive development while MtFULc is only up regulated in the apex after flowering in LD conditions. Sustained up regulation of MtFULs requires functional MtFTa1 but their transcript levels are not affected during cold treatment. Overexpression of MtFULa and MtFULb promotes flowering in transgenic Arabidopsis plants with an additional terminal flower phenotype on some 35S:MtFULb plants. An increase in transcript levels of the MtFULs was also observed in Medicago plants overexpressing MtFTa1. Our results suggest that the MtFULs are targets of MtFTa1. Overall, this work highlights the conserved functions of FUL-like genes in promoting flowering and other roles in plant development and thus contributes to our understanding of the genetic control of the flowering process in Medicago.
Collapse
Affiliation(s)
| | | | | | - Joanna Putterill
- The Flowering Lab, School of Biological Sciences, University of AucklandAuckland, New Zealand
| |
Collapse
|
18
|
Niu L, Lin H, Zhang F, Watira TW, Li G, Tang Y, Wen J, Ratet P, Mysore KS, Tadege M. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:480-92. [PMID: 25492397 DOI: 10.1111/tpj.12743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/03/2014] [Indexed: 05/09/2023]
Abstract
The Medicago truncatula WOX gene, STENOFOLIA (STF), and its orthologs in Petunia, pea, and Nicotiana sylvestris are required for leaf blade outgrowth and floral organ development as demonstrated by severe phenotypes in single mutants. But the Arabidopsis wox1 mutant displays a narrow leaf phenotype only when combined with the prs/wox3 mutant. In maize and rice, WOX3 homologs are major regulators of leaf blade development. Here we investigated the role of WOX3 in M. truncatula development by isolating the lfl/wox3 loss-of-function mutant and performing genetic crosses with the stf mutant. Lack of WOX3 function in M. truncatula leads to a loose-flower (lfl) phenotype, where defects are observed in sepal and petal development, but leaf blades are apparently normal. The stf lfl double mutant analysis revealed that STF and LFL act mainly independently with minor redundant functions in flower development, but LFL has no obvious role in leaf blade outgrowth in M. truncatula on its own or in combination with STF. Interestingly, LFL acts as a transcriptional repressor by recruiting TOPLESS in the same manner as STF does, and can substitute for STF function in leaf blade and flower development if expressed under the STF promoter. STF also complements the lfl mutant phenotype in the flower if expressed under the LFL promoter. Our data suggest that the STF/WOX1 and LFL/WOX3 genes of M. truncatula employ a similar mechanism of action in organizing cell proliferation for lateral outgrowth but may have evolved different cis elements to acquire distinct functions.
Collapse
Affiliation(s)
- Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genet 2014; 10:e1004891. [PMID: 25521478 PMCID: PMC4270686 DOI: 10.1371/journal.pgen.1004891] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022] Open
Abstract
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions. Despite the essential functions of roots in plant access to water and nutrients, root system architecture has not been directly considered for crop breeding improvement, but it is now considered key for a “second green revolution.” In this study, we aimed to decipher integrated molecular mechanisms coordinating lateral organ development in legume roots: lateral roots and nitrogen-fixing symbiotic nodules. The compact root architecture 2 (cra2) mutant form an increased number of lateral roots and a reduced number of symbiotic nitrogen-fixing nodules. This mutant is affected in a CLAVATA1-like Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that has not previously been linked to root development. Grafting experiments showed that CRA2 negatively controls lateral root formation and positively controls nodule development through local and systemic pathways, respectively. Overall, our results can be integrated in the framework of regulatory pathways controlling the symbiotic nodule number, the so-called “Autoregulation of Nodulation” (AON), involving another LRR-RLK that also acts systemically from the shoots, SUNN (Super Numeric Nodules). A coordinated function of the CRA2 and SUNN LRR-RLKs may thereby permit the dynamic fine tuning of the nodule number depending on the environmental conditions.
Collapse
|
20
|
Tadege M, Mysore KS. Tnt1 retrotransposon tagging of STF in Medicago truncatula reveals tight coordination of metabolic, hormonal and developmental signals during leaf morphogenesis. Mob Genet Elements 2014; 1:301-303. [PMID: 22545243 PMCID: PMC3337141 DOI: 10.4161/mge.18686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tnt1 (transposable element if Nicotiana tabaccum cell type 1) is one of the very few active LTR retrotransposons used for gene tagging in plants. In the model legume Medicago truncatula, Tnt1 has been effectively used as a gene knock-out tool to generate several very useful mutants. stenofolia (stf) is such a mutant identified by Tnt1 insertion in a WUSCHEL-like homeobox transcription factor. STF is required for blade outgrowth, leaf vascular patterning and female reproductive organ development in barrel medic and woodland tobacco. Using transcript profiling and metabolite analysis, we uncovered that mutant leaves are compromised in steady-state levels of multiple phytohormones, sugar metabolites and derivatives including flavonoids and polyamines. In the lam1 mutant (caused by deletion of the STF ortholog in Nicotiana sylvestris), while glucose, fructose, mannose, galactose, myo-inositol and aromatic aminoacids are dramatically reduced, sucrose is comparable to wild-type levels, and glutamine, proline, putrescine, nicotine and sorbitol are highly increased. We demonstrated that both stf and lam1 mutants accumulate reduced levels of free auxin and ABA in their leaves, and ectopic expression of STF in tobacco leads to auxin and cytokinin overproduction phenotypes including formation of tumors on the roots and crown. These data suggest that STF mediated integration of metabolic and hormonal signals are required for lateral organ morphogenesis and elaboration.
Collapse
|
21
|
Bohra A, Jha UC, Kishor PBK, Pandey S, Singh NP. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 2014; 32:1410-28. [PMID: 25196916 DOI: 10.1016/j.biotechadv.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India.
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | | | - Narendra P Singh
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| |
Collapse
|
22
|
Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1263-91. [PMID: 24710822 PMCID: PMC4035543 DOI: 10.1007/s00122-014-2301-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
| | - Uday C. Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, 110012 India
| | - Indra P. Singh
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Dibendu Datta
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | | | - N. Nadarajan
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
- The University of Western Australia (UWA), Crawley, 6009 Australia
| |
Collapse
|
23
|
Kadam U, Moeller CA, Irudayaraj J, Schulz B. Effect of T-DNA insertions on mRNA transcript copy numbers upstream and downstream of the insertion site in Arabidopsis thaliana explored by surface enhanced Raman spectroscopy. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:568-77. [PMID: 24460907 DOI: 10.1111/pbi.12161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 05/23/2023]
Abstract
We report the effect of a T-DNA insertion on the expression level of mRNA transcripts of the TWISTED DWARF 1 (TWD1) gene upstream and downstream of the T-DNA insertion site in Arabidopsis. A novel approach based on surface-enhanced Raman spectroscopy (SERS) was developed to detect and quantify the effect of a T-DNA insertion on mRNA transcript accumulation at 5'- and 3'-ends of the TWD1 gene. A T-DNA insertion mutant in the TWD1 gene (twd1-2) was chosen to test the sensitivity and the feasibility of the approach. The null mutant of the FK506-like immunophilin protein TWD1 in Arabidopsis shows severe dwarfism and strong disoriented growth of plant organs. A spontaneous arising suppressor allele of twd1-2 called twd-sup displayed an intermediate phenotype between wild type and the knockout phenotype of twd1-2. Both twd1 mutant alleles have identical DNA sequences at the TWD1 locus including the T-DNA insertion in the fourth intron of the TWD1 gene but they show clear variability in the mutant phenotype. We present here the development and application of SERS-based mRNA detection and quantification using the expression of the TWD1 gene in wild type and both mutant alleles. The hallmarks of our SERS approach are a robust and fast assay to detect up to 0.10 fm of target molecules including the ability to omit in vitro transcription and amplification steps after RNA isolation. Instead we perform direct quantification of RNA molecules. This enables us to detect and quantify rare RNA molecules at high levels of precision and sensitivity.
Collapse
Affiliation(s)
- Ulhas Kadam
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA; Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
24
|
Veerappan V, Kadel K, Alexis N, Scott A, Kryvoruchko I, Sinharoy S, Taylor M, Udvardi M, Dickstein R. Keel petal incision: a simple and efficient method for genetic crossing in Medicago truncatula. PLANT METHODS 2014; 10:11. [PMID: 24966878 PMCID: PMC4070640 DOI: 10.1186/1746-4811-10-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/17/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Genetic crossing is an essential tool in both forward and reverse genetic approaches to understand the biological functions of genes. For Medicago truncatula (barrel medic) various crossing techniques have been used which differ in the methods used to dissect the female parent's unopened flower bud to remove immature anthers for prevention of self-pollination. Previously described methods including front, side or back incision methods may damage the flower bud, impeding successful fertilization and/or seed development because they may allow pollen to dislodge and floral organs to desiccate after crossing, all of which diminish the success rates of crossing. RESULTS We report the keel petal incision method for genetic crossing in M. truncatula ecotype R108 and demonstrate successful crosses with two other M. truncatula ecotypes, A17 and A20. In the method presented here, an incision is made along the central line of the keel petal from the bottom 1/3rd of the female parent's flower bud to its distal end. This allows easy removal of anthers from the flower bud and access for cross-pollination. After pollination, the stigma and the deposited pollen from the male donor are covered by the keel petal, wing petals and standard petal, forming a natural pouch. The pouch prevents dislodging of deposited pollen from the stigma and protects the internal floral organs from drying out, without using cling-film or water-containing chambers to maintain a humid environment. The keel petal incision method showed an approximate 80% success rate in the M. truncatula R108 ecotype and also in other ecotypes including Jemalong A17 and A20. CONCLUSIONS Our keel petal incision protocol shows marked improvement over existing methods with respect to the ease of crossing and the percentage of successful crosses. Developed for the M. truncatula R108 ecotype, the protocol has been demonstrated with A17 and A20 ecotypes and is expected to work with other ecotypes. Investigators of varying experience have achieved genetic crosses in M. truncatula using this method.
Collapse
Affiliation(s)
- Vijaykumar Veerappan
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, Texas 76203, USA
| | - Khem Kadel
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, Texas 76203, USA
| | - Naudin Alexis
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, Texas 76203, USA
| | - Ashley Scott
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, Texas 76203, USA
| | - Igor Kryvoruchko
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Senjuti Sinharoy
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Mark Taylor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Michael Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, Texas 76203, USA
| |
Collapse
|
25
|
Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang WJ, Liang X, Kahl G, Edwards D, Varshney RK. Functional genomics to study stress responses in crop legumes: progress and prospects. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1221-1233. [PMID: 32481190 DOI: 10.1071/fp13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/22/2013] [Indexed: 06/11/2023]
Abstract
Legumes are important food crops worldwide, contributing to more than 33% of human dietary protein. The production of crop legumes is frequently impacted by abiotic and biotic stresses. It is therefore important to identify genes conferring resistance to biotic stresses and tolerance to abiotic stresses that can be used to both understand molecular mechanisms of plant response to the environment and to accelerate crop improvement. Recent advances in genomics offer a range of approaches such as the sequencing of genomes and transcriptomes, gene expression microarray as well as RNA-seq based gene expression profiling, and map-based cloning for the identification and isolation of biotic and abiotic stress-responsive genes in several crop legumes. These candidate stress associated genes should provide insights into the molecular mechanisms of stress tolerance and ultimately help to develop legume varieties with improved stress tolerance and productivity under adverse conditions. This review provides an overview on recent advances in the functional genomics of crop legumes that includes the discovery as well as validation of candidate genes.
Collapse
Affiliation(s)
- Himabindu Kudapa
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Abirami Ramalingam
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Swapna Nayakoti
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei-Jian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guenter Kahl
- Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, St Lucia, Qld 4072, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| |
Collapse
|
26
|
Putterill J, Zhang L, Yeoh CC, Balcerowicz M, Jaudal M, Gasic EV. FT genes and regulation of flowering in the legume Medicago truncatula. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1199-1207. [PMID: 32481188 DOI: 10.1071/fp13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/25/2013] [Indexed: 05/04/2023]
Abstract
Flowering time is an important contributor to plant productivity and yield. Plants integrate flowering signals from a range of different internal and external cues in order to flower and set seed under optimal conditions. Networks of genes controlling flowering time have been uncovered in the flowering models Arabidopsis, wheat, barley and rice. Investigations have revealed important commonalities such as FT genes that promote flowering in all of these plants, as well as regulators that are unique to some of them. FT genes also have functions beyond floral promotion, including acting as floral repressors and having a complex role in woody polycarpic plants such as vines and trees. However, much less is known overall about flowering control in other important groups of plants such as the legumes. This review discusses recent efforts to uncover flowering-time regulators using candidate gene approaches or forward screens for spring early flowering mutants in the legume Medicago truncatula. The results highlight the importance of a Medicago FT gene, FTa1, in flowering-time control. However, the mechanisms by which FTa1 is regulated by environmental signals such as long days (photoperiod) and vernalisation (winter cold) appear to differ from Arabidopsis.
Collapse
Affiliation(s)
- Joanna Putterill
- Flowering Lab, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lulu Zhang
- Flowering Lab, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Chin Chin Yeoh
- Flowering Lab, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Martin Balcerowicz
- Flowering Lab, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Mauren Jaudal
- Flowering Lab, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Jaudal M, Yeoh CC, Zhang L, Stockum C, Mysore KS, Ratet P, Putterill J. Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:580-91. [PMID: 23964816 DOI: 10.1111/tpj.12315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/13/2013] [Indexed: 05/02/2023]
Abstract
Molecular-genetic control of the flowering time of temperate-climate plants is best understood in Arabidopsis and the cereals wheat and barley. However, key regulators such as FLC and cereal VRN2 are not found in legumes. Therefore, we used forward genetics to identify flowering time genes in the model legume Medicago truncatula (Medicago) which is induced to flower by vernalisation and long-day photoperiods. A screen of a Tnt1 retroelement tagging population yielded two mutants, spring2 and spring3, with a dominant early flowering phenotype. These mutants overexpress the floral activator FTa1 and two candidate downstream flowering genes SOC1a and FULb, similar to the spring1 somaclonal variant that we identified previously. We demonstrate here that an increase in the expression of FTa1, SOC1a and FULb and early flowering does not occur in all conditions in the spring mutants. It depends on long-day photoperiods but not on vernalisation. Isolation of flanking sequence tags and linkage analysis identified retroelement insertions at FTa1 that co-segregated with the early flowering phenotype in all three spring mutants. These were Tnt1 insertions in the FTa1 third intron (spring3) or the 3' intergenic region (spring2) and an endogenous MERE1-4 retroelement in the 3' intergenic region in spring1. Thus the spring mutants form an allelic series of gain-of-function mutations in FTa1 which confer a spring growth habit. The spring retroelement insertions at FTa1 separate long-day input from vernalisation input into FTa1 regulation, but this is not due to large-scale changes in FTa1 DNA methylation or transcript processing in the mutants.
Collapse
Affiliation(s)
- Mauren Jaudal
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
| | | | | | | | | | | | | |
Collapse
|
28
|
Ben C, Debellé F, Berges H, Bellec A, Jardinaud MF, Anson P, Huguet T, Gentzbittel L, Vailleau F. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. THE NEW PHYTOLOGIST 2013; 199:758-72. [PMID: 23638965 DOI: 10.1111/nph.12299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/27/2013] [Indexed: 05/21/2023]
Abstract
Ralstonia solanacearum is a major soilborne pathogen that attacks > 200 plant species, including major crops. To characterize MtQRRS1, a major quantitative trait locus (QTL) for resistance towards this bacterium in the model legume Medicago truncatula, genetic and functional approaches were combined. QTL analyses together with disease scoring of heterogeneous inbred families were used to define the locus. The candidate region was studied by physical mapping using a bacterial artificial chromosome (BAC) library of the resistant line, and sequencing. In planta bacterial growth measurements, grafting experiments and gene expression analysis were performed to investigate the mechanisms by which this locus confers resistance to R. solanacearum. The MtQRRS1 locus was localized to the same position in two recombinant inbred line populations and was narrowed down to a 64 kb region. Comparison of parental line sequences revealed 15 candidate genes with sequence polymorphisms, but no evidence of differential gene expression upon infection. A role for the hypocotyl in resistance establishment was shown. These data indicate that the quantitative resistance to bacterial wilt conferred by MtQRRS1, which contains a cluster of seven R genes, is shared by different accessions and may act through intralocus interactions to promote resistance.
Collapse
Affiliation(s)
- Cécile Ben
- INP, UPS, Laboratoire d'Ecologie Fonctionnelle et Environnement (Ecolab), ENSAT, Université de Toulouse, Castanet Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yeoh CC, Balcerowicz M, Zhang L, Jaudal M, Brocard L, Ratet P, Putterill J. Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago. PLoS One 2013; 8:e53467. [PMID: 23308229 PMCID: PMC3538541 DOI: 10.1371/journal.pone.0053467] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022] Open
Abstract
To extend our understanding of flowering time control in eudicots, we screened for mutants in the model legume Medicago truncatula (Medicago). We identified an early flowering mutant, spring1, in a T-DNA mutant screen, but spring1 was not tagged and was deemed a somaclonal mutant. We backcrossed the mutant to wild type R108. The F1 plants and the majority of F2 plants were early flowering like spring1, strongly indicating that spring1 conferred monogenic, dominant early flowering. We hypothesized that the spring1 phenotype resulted from over expression of an activator of flowering. Previously, a major QTL for flowering time in different Medicago accessions was located to an interval on chromosome 7 with six candidate flowering-time activators, including a CONSTANS gene, MtCO, and three FLOWERING LOCUS T (FT) genes. Hence we embarked upon linkage mapping using 29 markers from the MtCO/FT region on chromosome 7 on two populations developed by crossing spring1 with Jester. Spring1 mapped to an interval of ∼0.5 Mb on chromosome 7 that excluded MtCO, but contained 78 genes, including the three FT genes. Of these FT genes, only FTa1 was up-regulated in spring1 plants. We then investigated global gene expression in spring1 and R108 by microarray analysis. Overall, they had highly similar gene expression and apart from FTa1, no genes in the mapping interval were differentially expressed. Two MADS transcription factor genes, FRUITFULLb (FULb) and SUPPRESSOR OF OVER EXPRESSION OF CONSTANS1a (SOC1a), that were up-regulated in spring1, were also up-regulated in transgenic Medicago over-expressing FTa1. This suggested that their differential expression in spring1 resulted from the increased abundance of FTa1. A 6255 bp genomic FTa1 fragment, including the complete 5' region, was sequenced, but no changes were observed indicating that the spring1 mutation is not a DNA sequence difference in the FTa1 promoter or introns.
Collapse
Affiliation(s)
- Chin Chin Yeoh
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Martin Balcerowicz
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lulu Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mauren Jaudal
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lysiane Brocard
- Institut des Sciences du Végétal, CNRS, Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Gif sur Yvette, France
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Abstract
Medicago truncatula is one of the model species for legume molecular genetics. In the last decade different types of mutant populations have been created in this species that can be screened by forward and reverse-genetic approaches to identify and functionally characterize genes of interest. TILLING is a reverse-genetic method combining random chemical mutagenesis and a PCR-based screen to identify point mutations in regions of interest. The different steps of the TILLING analysis are described in a mutant collection of ~2,300 M2 individuals for which genomic DNA and M3 seed were obtained. A two-dimensional DNA pooling strategy was adopted to reduce the number of PCR reactions necessary to screen the collection and to unambigously identify the individual M2 plant carrying the mutation. The genotypic and phenotypic analyses of the mutant M3 progeny provide the possibility to study the gene function. In spite of its reduced size, this mutant collection has proved valid in the study of the biosynthetic pathway of a class of secondary metabolites present in the genus Medicago, the triterpenic saponins.
Collapse
|
31
|
Abstract
A large population of Medicago truncatula insertion lines has been generated using the Tnt1 retrotransposon. More than 21,000 insertion lines have been generated, representing more than 500,000 insertion events. This mutant population is being used by the legume research community to screen for various different mutants using a forward genetics approach. Some of the phenotypes that have been screened using this population include developmentally abnormal phenotypes in leaves, stem, flowers, and roots. In addition to these, mutants with defects in symbiosis with Rhizobium and mycorrhiza, mutants with altered nonhost resistance against Asian Soybean Rust and switch grass rust pathogens, mutants with altered lignin content, mutants with altered cell wall structure, etc. have been identified. Here, we describe the high throughput methodology that is being used to identify these M. truncatula mutants.
Collapse
|
32
|
Couzigou JM, Zhukov V, Mondy S, Abu el Heba G, Cosson V, Ellis TN, Ambrose M, Wen J, Tadege M, Tikhonovich I, Mysore KS, Putterill J, Hofer J, Borisov AY, Ratet P. NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. THE PLANT CELL 2012; 24:4498-510. [PMID: 23136374 PMCID: PMC3531848 DOI: 10.1105/tpc.112.103747] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Genetics of Plant-Microbe Interactions, 196608 Pushkin, St Petersburg, Russia
| | - Samuel Mondy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France
| | - Ghada Abu el Heba
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France
| | - Viviane Cosson
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France
| | - T.H. Noel Ellis
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, United Kingdom
| | - Mike Ambrose
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Million Tadege
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Genetics of Plant-Microbe Interactions, 196608 Pushkin, St Petersburg, Russia
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Joanna Putterill
- Plant Molecular Sciences, School of Biological Sciences, University of Auckland, Private Bag 92019 Auckland, New Zealand
| | - Julie Hofer
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, United Kingdom
| | - Alexei Y. Borisov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Genetics of Plant-Microbe Interactions, 196608 Pushkin, St Petersburg, Russia
| | - Pascal Ratet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France
| |
Collapse
|
33
|
Abstract
Targeting induced local lesions in genomes (TILLING), initially a functional genomics tool in model plants, has been extended to many plant species and become of paramount importance to reverse genetics in crops species. Because it is readily applicable to most plants, it remains a dominant non-transgenic method for obtaining mutations in known genes. The process has seen many technological changes over the last 10 years; a major recent change has been the application of next-generation sequencing (NGS) to the process, which permits multiplexing of gene targets and genomes. NGS will ultimately lead to TILLING becoming an in silico procedure. We review here the history and technology in brief, but focus more importantly on recent developments in polyploids, vegetatively propagated crops and the future of TILLING for plant breeding.
Collapse
Affiliation(s)
- Trevor L Wang
- John Innes Centre, Norwich Research Park, Norwich, UK.
| | | | | | | |
Collapse
|
34
|
Pislariu CI, D. Murray J, Wen J, Cosson V, Muni RRD, Wang M, A. Benedito V, Andriankaja A, Cheng X, Jerez IT, Mondy S, Zhang S, Taylor ME, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. PLANT PHYSIOLOGY 2012; 159:1686-99. [PMID: 22679222 PMCID: PMC3425206 DOI: 10.1104/pp.112.197061] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/01/2012] [Indexed: 05/20/2023]
Abstract
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.
Collapse
Affiliation(s)
| | | | - JiangQi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Viviane Cosson
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - RajaSekhara Reddy Duvvuru Muni
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Mingyi Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Vagner A. Benedito
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Andry Andriankaja
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Xiaofei Cheng
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Ivone Torres Jerez
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Samuel Mondy
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Shulan Zhang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Mark E. Taylor
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Million Tadege
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Pascal Ratet
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Kirankumar S. Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Rujin Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Michael K. Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| |
Collapse
|
35
|
Arrighi JF, Cartieaux F, Brown SC, Rodier-Goud M, Boursot M, Fardoux J, Patrel D, Gully D, Fabre S, Chaintreuil C, Giraud E. Aeschynomene evenia, a model plant for studying the molecular genetics of the nod-independent rhizobium-legume symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:851-861. [PMID: 22475377 DOI: 10.1094/mpmi-02-12-0045-ta] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Research on the nitrogen-fixing symbiosis has been focused, thus far, on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some Aeschynomene spp. are nodulated by photosynthetic Bradyrhizobium spp. that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium-legume symbiosis. To decipher the mechanisms of this Nod-independent process, we propose Aeschynomene evenia as a model legume because it presents all the characteristics required for genetic and molecular analysis. It is a short-perennial and autogamous species, with a diploid and relatively small genome (2n=20; 460 Mb/1C). A. evenia 'IRFL6945' is nodulated by the well-characterized photosynthetic Bradyrhizobium sp. strain ORS278 and is efficiently transformed by Agrobacterium rhizogenes. Aeschynomene evenia is genetically homozygous but polymorphic accessions were found. A manual hybridization procedure has been set up, allowing directed crosses. Therefore, it should be relatively straightforward to unravel the molecular determinants of the Nod-independent process in A. evenia. This should shed new light on the evolution of rhizobium-legume symbiosis and could have important agronomic implications.
Collapse
Affiliation(s)
- Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Revalska M, Vassileva V, Goormachtig S, Van Hautegem T, Ratet P, Iantcheva A. Recent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria. Curr Genomics 2011; 12:147-52. [PMID: 21966253 PMCID: PMC3129049 DOI: 10.2174/138920211795564313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 01/17/2023] Open
Abstract
Legumes, as protein-rich crops, are widely used for human food, animal feed and vegetable oil production. Over the past decade, two legume species, Medicago truncatula and Lotus japonicus, have been adopted as model legumes for genomics and physiological studies. The tobacco transposable element, Tnt1, is a powerful tool for insertional mutagenesis and gene inactivation in plants. A large collection of Tnt1-tagged lines of M. truncatula cv. Jemalong was generated during the course of the project 'GLIP': Grain Legumes Integrated Project, funded by the European Union (www.eugrainlegumes.org). In the project 'IFCOSMO': Integrated Functional and COmparative genomics Studies on the MOdel Legumes Medicago truncatula and Lotus japonicus, supported by a grant from the Ministry of Education, Youth and Science, Bulgaria, these lines are used for development of functional genomics platform of legumes in Bulgaria. This review presents recent advances in the evaluation of the M. truncatula Tnt1 mutant collection and outlines the steps that are taken in using the Tnt1-tagging for generation of a mutant collection of the second model legume L. japonicus. Both collections will provide a number of legume-specific mutants and serve as a resource for functional and comparative genomics research on legumes. Genomics technologies are expected to advance genetics and breeding of important legume crops (pea, faba bean, alfalfa and clover) in Bulgaria and worldwide.
Collapse
|
37
|
Tadege M, Lin H, Bedair M, Berbel A, Wen J, Rojas CM, Niu L, Tang Y, Sumner L, Ratet P, McHale NA, Madueño F, Mysore KS. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. THE PLANT CELL 2011; 23:2125-42. [PMID: 21719692 PMCID: PMC3160033 DOI: 10.1105/tpc.111.085340] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/06/2011] [Accepted: 06/14/2011] [Indexed: 05/18/2023]
Abstract
Dicot leaf primordia initiate at the flanks of the shoot apical meristem and extend laterally by cell division and cell expansion to form the flat lamina, but the molecular mechanism of lamina outgrowth remains unclear. Here, we report the identification of STENOFOLIA (STF), a WUSCHEL-like homeobox transcriptional regulator, in Medicago truncatula, which is required for blade outgrowth and leaf vascular patterning. STF belongs to the MAEWEST clade and its inactivation by the transposable element of Nicotiana tabacum cell type1 (Tnt1) retrotransposon insertion leads to abortion of blade expansion in the mediolateral axis and disruption of vein patterning. We also show that the classical lam1 mutant of Nicotiana sylvestris, which is blocked in lamina formation and stem elongation, is caused by deletion of the STF ortholog. STF is expressed at the adaxial-abaxial boundary layer of leaf primordia and governs organization and outgrowth of lamina, conferring morphogenetic competence. STF does not affect formation of lateral leaflets but is critical to their ability to generate a leaf blade. Our data suggest that STF functions by modulating phytohormone homeostasis and crosstalk directly linked to sugar metabolism, highlighting the importance of coordinating metabolic and developmental signals for leaf elaboration.
Collapse
Affiliation(s)
- Million Tadege
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Colditz F, Braun HP. Medicago truncatula proteomics. J Proteomics 2010; 73:1974-85. [PMID: 20621211 DOI: 10.1016/j.jprot.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990 th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.
Collapse
Affiliation(s)
- Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Dept. III, Plant Molecular Biology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|
39
|
Zhao J, Dixon RA. The 'ins' and 'outs' of flavonoid transport. TRENDS IN PLANT SCIENCE 2010; 15:72-80. [PMID: 20006535 DOI: 10.1016/j.tplants.2009.11.006] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/22/2009] [Indexed: 05/18/2023]
Abstract
The sites of plant flavonoid biosynthesis, storage and final function often differ at the subcellular, cell, and even tissue and organ levels. Efficient transport systems for flavonoids across endomembranes and the plasma membrane are therefore required. However, a clear picture of the dynamic trafficking of flavonoids is only now beginning to emerge and appears to have many players. Here, we review current hypotheses for flavonoid transport, discuss whether these are mutually exclusive, highlight the importance of flavonoid efflux from vacuoles to the cytosol and consider future efforts to catch flavonoids 'in the act' of moving within and between cells. An improved understanding of transport mechanisms will facilitate the successful metabolic engineering of flavonoids for plant protection and human health.
Collapse
Affiliation(s)
- Jian Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | |
Collapse
|