1
|
Mendoza-Hoffmann F, Zarco-Zavala M, Ortega R, Celis-Sandoval H, Torres-Larios A, García-Trejo JJ. Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF 1 Subunits of the F 1F O-ATPase as Related to the Endosymbiotic Origin of Mitochondria. Microorganisms 2022; 10:microorganisms10071372. [PMID: 35889091 PMCID: PMC9317440 DOI: 10.3390/microorganisms10071372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
The F1FO-ATP synthase nanomotor synthesizes >90% of the cellular ATP of almost all living beings by rotating in the “forward” direction, but it can also consume the same ATP pools by rotating in “reverse.” To prevent futile F1FO-ATPase activity, several different inhibitory proteins or domains in bacteria (ε and ζ subunits), mitochondria (IF1), and chloroplasts (ε and γ disulfide) emerged to block the F1FO-ATPase activity selectively. In this study, we analyze how these F1FO-ATPase inhibitory proteins have evolved. The phylogeny of the α-proteobacterial ε showed that it diverged in its C-terminal side, thus losing both the inhibitory function and the ATP-binding/sensor motif that controls this inhibition. The losses of inhibitory function and the ATP-binding site correlate with an evolutionary divergence of non-inhibitory α-proteobacterial ε and mitochondrial δ subunits from inhibitory bacterial and chloroplastidic ε subunits. Here, we confirm the lack of inhibitory function of wild-type and C-terminal truncated ε subunits of P. denitrificans. Taken together, the data show that ζ evolved to replace ε as the primary inhibitor of the F1FO-ATPase of free-living α-proteobacteria. However, the ζ inhibitory function was also partially lost in some symbiotic α-proteobacteria and totally lost in some strictly parasitic α-proteobacteria such as the Rickettsiales order. Finally, we found that ζ and IF1 likely evolved independently via convergent evolution before and after the endosymbiotic origin mitochondria, respectively. This led us to propose the ε and ζ subunits as tracer genes of the pre-endosymbiont that evolved into the actual mitochondria.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC)—Campus Tijuana, Tijuana C.P. 22390, Baja California, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| | - Mariel Zarco-Zavala
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Heliodoro Celis-Sandoval
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Alfredo Torres-Larios
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - José J. García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| |
Collapse
|
2
|
Buchert F, Bailleul B, Joliot P. Disentangling chloroplast ATP synthase regulation by proton motive force and thiol modulation in Arabidopsis leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148434. [PMID: 33932368 DOI: 10.1016/j.bbabio.2021.148434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
The chloroplast ATP synthase (CF1Fo) contains a specific feature to the green lineage: a γ-subunit redox domain that contains a cysteine couple which interacts with the torque-transmitting βDELSEED-loop. This thiol modulation equips CF1Fo with an important environmental fine-tuning mechanism. In vitro, disulfide formation in the γ-redox domain slows down the activity of the CF1Fo at low transmembrane electrochemical proton gradient ( [Formula: see text] ), which agrees with its proposed role as chock based on recently solved structure. The γ-dithiol formation at the onset of light is crucial to maximize photosynthetic efficiency since it lowers the [Formula: see text] activation level for ATP synthesis in vitro. Here, we validate these findings in vivo by utilizing absorption spectroscopy in Arabidopsis thaliana. To do so, we monitored the [Formula: see text] present in darkness and identified its mitochondrial sources. By following the fate and components of light-induced extra [Formula: see text] , we estimated the ATP lifetime that lasted up to tens of minutes after long illuminations. Based on the relationship between [Formula: see text] and CF1Fo activity, we conclude that the dithiol configuration in vivo facilitates photosynthesis by driving the same ATP synthesis rate at a significative lower [Formula: see text] than in the γ-disulfide state. The presented in vivo findings are an additional proof of the importance of CF1Fo thiol modulation, reconciling biochemical in vitro studies and structural insights.
Collapse
Affiliation(s)
- Felix Buchert
- Laboratory of Chloroplast Biology and Light-Sensing in Microalgae - UMR7141, IBPC, CNRS-Sorbonne Université, Paris, France; Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light-Sensing in Microalgae - UMR7141, IBPC, CNRS-Sorbonne Université, Paris, France
| | - Pierre Joliot
- Laboratory of Chloroplast Biology and Light-Sensing in Microalgae - UMR7141, IBPC, CNRS-Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Essential Role of the ε Subunit for Reversible Chemo-Mechanical Coupling in F 1-ATPase. Biophys J 2019; 114:178-187. [PMID: 29320685 DOI: 10.1016/j.bpj.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 11/22/2022] Open
Abstract
F1-ATPase is a rotary motor protein driven by ATP hydrolysis. Among molecular motors, F1 exhibits unique high reversibility in chemo-mechanical coupling, synthesizing ATP from ADP and inorganic phosphate upon forcible rotor reversal. The ε subunit enhances ATP synthesis coupling efficiency to > 70% upon rotation reversal. However, the detailed mechanism has remained elusive. In this study, we performed stall-and-release experiments to elucidate how the ε subunit modulates ATP association/dissociation and hydrolysis/synthesis process kinetics and thermodynamics, key reaction steps for efficient ATP synthesis. The ε subunit significantly accelerated the rates of ATP dissociation and synthesis by two- to fivefold, whereas those of ATP binding and hydrolysis were not enhanced. Numerical analysis based on the determined kinetic parameters quantitatively reproduced previous findings of two- to fivefold coupling efficiency improvement by the ε subunit at the condition exhibiting the maximum ATP synthesis activity, a physiological role of F1-ATPase. Furthermore, fundamentally similar results were obtained upon ε subunit C-terminal domain truncation, suggesting that the N-terminal domain is responsible for the rate enhancement.
Collapse
|
4
|
Kohzuma K, Hikosaka K. Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochem Biophys Res Commun 2018; 498:52-57. [PMID: 29501490 DOI: 10.1016/j.bbrc.2018.02.192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/05/2023]
Abstract
Non-photochemical quenching (NPQ) is the most important photoprotective system in higher plants. NPQ can be divided into several steps according to the timescale of relaxation of chlorophyll fluorescence after reaching a steady state (i.e., the fast phase, qE; middle phase, qZ or qT; and slow phase, qI). The dissipation of excess energy as heat during the xanthophyll cycle, a large component of NPQ, is detectable during the fast to middle phase (sec to min). Although thermal dissipation is primarily investigated using indirect methods such as chlorophyll a fluorescence measurements, such analyses require dark adaptation or the application of a saturating pulse during measurement, making it difficult to continuously monitor this process. Here, we designed an unconventional technique for real-time monitoring of changes in thylakoid lumen pH (as reflected by changes in xanthophyll pigment content) based on the photochemical reflectance index (PRI), which we estimated by measuring light-driven leaf reflectance at 531 nm. We analyzed two Arabidopsis thaliana mutants, npq1 (unable to convert violaxanthin to zeaxanthin due to inhibited violaxanthin de-epoxidase [VDE] activity) and npq4 (lacking PsbS protein), to uncover the regulator of the PRI. The PRI was variable in wild-type and npq4 plants, but not in npq1, indicating that the PRI is related to xanthophyll cycle-dependent thermal energy quenching (qZ) rather than the linear electron transport rate or NPQ. In situ lumen pH substitution using a pH-controlled buffer solution caused a shift in PRI. These results suggest that the PRI reflects only xanthophyll cycle conversion and is therefore a useful parameter for monitoring thylakoid lumen pH (reflecting VDE activity) in vivo.
Collapse
Affiliation(s)
- Kaori Kohzuma
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
5
|
Rühle T, Leister D. Assembly of F1F0-ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:849-60. [PMID: 25667968 DOI: 10.1016/j.bbabio.2015.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit δ in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Heidarvand L, Maali-Amiri R. Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:459-469. [PMID: 23395538 DOI: 10.1016/j.jplph.2012.11.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
Intensive and short-term strategies can aid in more rapid screening with informative and reliable results for long-term investigations under cold stress (CS). The integration of cellular analysis of chickpea during 0, 2, 4, 8, and 12h CS supplied us with novel possible responsive components and the possible interactions embedded inside, still remaining a Maze. Seedlings showed a biphasic pattern of responses over time. The transitory phase happened after 8h, when cells are presumably experiencing a new stage of responses and setting the stage for long-term adjustments. Physio-biochemical analysis confirmed the direct effect of fatty acids composition, lipoxygenase activity and antioxidant systems in cell responses under CS. Also, proteome results using MALDI-TOF-TOF and/or LC-MS/MS were able to differentiate changes in early phases of CS. Two-dimensional gel analysis results showed the possible targets of CS as mitochondria, chloroplast, organelle-nucleus communications, storage resources, stress and defense, protein degradation and signal transduction that confirmed the cell intended to re-establish a new homeostasis, in energy and primary metabolites to adapt to long-term CS. Here we propose a time course dynamic assessing multi-dimensional approaches for CS studies as one of the first studies in short-term treatment to progressively fill in the gaps between physio-biochemical and molecular events and touch the cell architecture for a better comprehension of the nature of plant stress response.
Collapse
Affiliation(s)
- Leila Heidarvand
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran
| | | |
Collapse
|
7
|
Gillespie KM, Rogers A, Ainsworth EA. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2667-78. [PMID: 21282325 DOI: 10.1093/jxb/erq435] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO(2)]) or chronic elevated ozone concentration ([O(3)]; 90 ppb), and then exposed to an acute O(3) stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O(3) treatment. Growth at chronic elevated [O(3)] increased the total antioxidant capacity of plants, while growth at elevated [CO(2)] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O(3) stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O(3)]. Growth at elevated [CO(2)] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO(2)] and [O(3)] will differentially affect the antioxidant system.
Collapse
Affiliation(s)
- Kelly M Gillespie
- Physiological and Molecular Plant Biology Program, University of Illinois, Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | |
Collapse
|
8
|
Feniouk BA, Kato-Yamada Y, Yoshida M, Suzuki T. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3. Biophys J 2010; 98:434-42. [PMID: 20141757 PMCID: PMC2814204 DOI: 10.1016/j.bpj.2009.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022] Open
Abstract
Subunit epsilon of bacterial and chloroplast F(O)F(1)-ATP synthase is responsible for inhibition of ATPase activity. In Bacillus PS3 enzyme, subunit epsilon can adopt two conformations. In the "extended", inhibitory conformation, its two C-terminal alpha-helices are stretched along subunit gamma. In the "contracted", noninhibitory conformation, these helices form a hairpin. The transition of subunit epsilon from an extended to a contracted state was studied in ATP synthase incorporated in Bacillus PS3 membranes at 59 degrees C. Fluorescence energy resonance transfer between fluorophores introduced in the C-terminus of subunit epsilon and in the N-terminus of subunit gamma was used to follow the conformational transition in real time. It was found that ATP induced the conformational transition from the extended to the contracted state (half-maximum transition extent at 140 microM ATP). ADP could neither prevent nor reverse the ATP-induced conformational change, but it did slow it down. Acid residues in the DELSEED region of subunit beta were found to stabilize the extended conformation of epsilon. Binding of ATP directly to epsilon was not essential for the ATP-induced conformational change. The ATP concentration necessary for the half-maximal transition (140 microM) suggests that subunit epsilon probably adopts the extended state and strongly inhibits ATP hydrolysis only when the intracellular ATP level drops significantly below the normal value.
Collapse
Affiliation(s)
- Boris A. Feniouk
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
| | | | - Masasuke Yoshida
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
- Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiharu Suzuki
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
| |
Collapse
|
9
|
Buchert F, Forreiter C. Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo. FEBS Lett 2010; 584:147-52. [PMID: 19925794 DOI: 10.1016/j.febslet.2009.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/30/2009] [Accepted: 11/12/2009] [Indexed: 11/26/2022]
Abstract
Singlet oxygen ((1)O(2)) produced in plants during photosynthesis has a strong damaging effect not only on both photosystems but also on the whole photosynthetic machinery. This is also applicable for the adenosine triphosphate (ATP) synthase. Here we describe the impact of (1)O(2) generated by the photosensitizer Rose Bengal on the ATP hydrolysis and ATP-driven proton translocation activity of CF1CFo. Both activities were reduced dramatically within 1min of exposure. Interestingly, it is shown that oxidized thylakoid ATP synthase is more susceptible to (1)O(2) than CF1CFo in its reduced state, a new insight on the mechanism of (1)O(2) interaction with the gamma subunit.
Collapse
Affiliation(s)
- Felix Buchert
- Pflanzenphysiologie, Justus-Liebig Universität, Zeughaus, Giessen, Germany
| | | |
Collapse
|
10
|
Using yeast two-hybrid system to detect interactions of ATP synthase subunits from Spinacia oleracea. ACTA ACUST UNITED AC 2009; 43:169-75. [PMID: 18726369 DOI: 10.1007/bf02879125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1999] [Indexed: 10/22/2022]
Abstract
Subunit interactions among the chloroplast ATP synthase subunits were studied using the yeast two-hybrid system. Various pairwise combinations of genes encoding alpha, beta, gamma, delta and epsilon subunits of Spinach ATP synthase fused to the binding domain or activation domain of GAL4 DNA were introduced into yeast and then expression of a reporter gene encoding beta-galactosidase was detected. Of all the combinations, that of gamma and epsilon subunit genes showed the highest level of reporter gene expression, while those of alpha and beta, a and epsilon, beta and epsilon and beta and delta induced stable and significant reporter gene expression. The combination of delta and epsilon as well as that of delta and gamma induced weak and unstable reporter gene expression. However, combinations of alpha and gamma, beta and gamma and alpha and delta did not induce reporter gene expression. These results suggested that specific and strong interactions between gamma and epsilon, alpha and beta, alpha and epsilon, beta and epsilon and beta and delta subunits, and weak and transient interactions between delta and epsilon and delta and gamma subunits occurred in the yeast cell in the two-hybrid system. These results give a new look into the structural change of ATP synthase during catalysis.
Collapse
|
11
|
Evron Y, Johnson EA, McCarty RE. Regulation of proton flow and ATP synthesis in chloroplasts. J Bioenerg Biomembr 2009; 32:501-6. [PMID: 15254385 DOI: 10.1023/a:1005669008974] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chloroplast ATP synthase is strictly regulated so that it is very active in the light (rates of ATP synthesis can be higher than 5 micromol/min/mg protein), but virtually inactive in the dark. The subunits of the catalytic portion of the ATP synthase involved in activation, as well as the effects of nucleotides are discussed. The relation of activation to proton flux through the ATP synthase and to changes in the structure of enzyme induced by the proton electrochemical gradient are also presented. It is concluded that the gamma and epsilon subunits of CF(1) play key roles in both regulation of activity and proton translocation.
Collapse
Affiliation(s)
- Y Evron
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
12
|
Johnson EA. Altered expression of the chloroplast ATP synthase through site-directed mutagenesis in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2008; 96:153-62. [PMID: 18365763 DOI: 10.1007/s11120-008-9296-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 03/05/2008] [Indexed: 05/13/2023]
Abstract
The chloroplast ATP synthase gates the flow of protons out of the thylakoid lumen. In Chlamydomonas reinhardtii deletion of any of the genes for the ATP synthase subunits, or misfolding of the peptides results in photosynthetic membranes devoid of the enzyme (Lemaire and Wollman, J Biol Chem 264:675-685, 1989). This work examines the physiologic response of an algal strain in which the epsilon subunit of the chloroplast ATP synthase has been truncated. Removal of 10 amino acids from the C-terminus of the peptide results in a sharp decrease in the content of the enzyme, but does not result in its exclusion from the thylakoid membranes. The ATP synthase of this mutant strain has a higher rate of ATP hydrolysis than the wild-type enzyme. This strain of C. reinhardtii exhibits reduced growth in the light, dependence on acetate, and a low threshold for the onset of photoinhibition. The role of the ATP synthase in regulating the proton concentration of the lumen is discussed.
Collapse
Affiliation(s)
- Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
13
|
Samra HS, He F, Degner NR, Richter ML. The role of specific beta-gamma subunit interactions in oxyanion stimulation of the MgATP hydrolysis of a hybrid photosynthetic F1-ATPase. J Bioenerg Biomembr 2008; 40:69-76. [PMID: 18415008 DOI: 10.1007/s10863-008-9131-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 01/09/2008] [Indexed: 11/25/2022]
Abstract
Pairs of cysteine residues were introduced into the twisted N- and C-terminal helices of the gamma subunit of the chloroplast F1-ATPase to test, via disulfide cross-linking, potential inter-helical movements involved in catalysis of ATP hydrolysis. The extent of disulfide cross-linking was determined by estimating the amount of free sulfhydryl available for labeling with fluoresceinyl maleimide before and after cross-linking. Significant disulfide formation (50-75%) was observed between cysteines introduced at positions 30 and 31 in the N-terminal helix and 276 and 278 in the C-terminal helix. Cross-linking had no apparent effect on catalysis, therefore eliminating the involvement of large-scale inter-helical movements within this region of the gamma subunit in cooperative ATP hydrolysis. However, the presence of the two cysteines together in the gammaV31C/A276C double mutant, irrespective of whether or not they were cross-linked together, lowered the MgATPase activity by more than 70% and completely eliminated the well-known activating effect of the oxyanion sulfite. The CaATPase activity was unaffected. Similar but less pronounced effects were seen with the gammaK30C/A276C double mutant. The results indicate that residues at or near positions 31 and 276 within the twisted helical pair of the gamma subunit are required to overcome Mg2+ inhibition of ATP hydrolysis. These residues are likely to be involved in forming a point of contact between the gamma and beta subunits that is responsible for this effect.
Collapse
Affiliation(s)
- Hardeep S Samra
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
14
|
McCallum JR, McCarty RE. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:974-9. [PMID: 17559799 DOI: 10.1016/j.bbabio.2007.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/02/2007] [Accepted: 04/23/2007] [Indexed: 11/21/2022]
Abstract
Electron transport, the proton gradient and ATP synthesis were determined in thylakoids that had been briefly exposed to a low concentration of trypsin during illumination. This treatment cleaves the gamma subunit of the ATP synthase into two large fragments that remain associated with the enzyme. Higher rates of electron transport are required to generate a given value of the proton gradient in the trypsin-treated membranes than in control membranes, indicating that the treated membranes are proton leaky. Since venturicidin restores electron transport and the proton gradient to control levels, the proton leak is through the ATP synthase. Remarkably, the synthesis of ATP by the trypsin-treated membranes at saturating light intensities is only slightly inhibited even though the proton gradient is significantly lower in the treated thylakoids. ATP synthesis and the proton gradient were determined as a function of light intensity in control and trypsin-treated thylakoids. The trypsin-treated membranes synthesized ATP at lower values of the proton gradient than the control membranes. Cleavage of the gamma subunit abrogates inhibition of the activity of the chloroplast ATP synthase by the epsilon subunit. Our results suggest that overcoming inhibition by the epsilon subunit costs energy.
Collapse
Affiliation(s)
- Jeremy R McCallum
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
15
|
Samra HS, Gao F, He F, Hoang E, Chen Z, Gegenheimer PA, Berrie CL, Richter ML. Structural Analysis of the Regulatory Dithiol-containing Domain of the Chloroplast ATP Synthase γ Subunit. J Biol Chem 2006; 281:31041-9. [PMID: 16895914 DOI: 10.1074/jbc.m603315200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma subunit of the F1 portion of the chloroplast ATP synthase contains a critically placed dithiol that provides a redox switch converting the enzyme from a latent to an active ATPase. The switch prevents depletion of intracellular ATP pools in the dark when photophosphorylation is inactive. The dithiol is located in a special regulatory segment of about 40 amino acids that is absent from the gamma subunits of the eubacterial and mitochondrial enzymes. Site-directed mutagenesis was used to probe the relationship between the structure of the gamma regulatory segment and its function in ATPase regulation via its interaction with the inhibitory epsilon subunit. Mutations were designed using a homology model of the chloroplast gamma subunit based on the analogous structures of the bacterial and mitochondrial homologues. The mutations included (a) substituting both of the disulfide-forming cysteines (Cys199 and Cys205) for alanines, (b) deleting nine residues containing the dithiol, (c) deleting the region distal to the dithiol (residues 224-240), and (d) deleting the entire segment between residues 196 and 241 with the exception of a small spacer element, and (e) deleting pieces from a small loop segment predicted by the model to interact with the dithiol domain. Deletions within the dithiol domain and within parts of the loop segment resulted in loss of redox control of the ATPase activity of the F1 enzyme. Deleting the distal segment, the whole regulatory domain, or parts of the loop segment had the additional effect of reducing the maximum extent of inhibition obtained upon adding the epsilon subunit but did not abolish epsilon binding. The results suggest a mechanism by which the gamma and epsilon subunits interact with each other to induce the latent state of the enzyme.
Collapse
Affiliation(s)
- Hardeep S Samra
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Richter ML, Samra HS, He F, Giessel AJ, Kuczera KK. Coupling proton movement to ATP synthesis in the chloroplast ATP synthase. J Bioenerg Biomembr 2006; 37:467-73. [PMID: 16691485 DOI: 10.1007/s10863-005-9493-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chloroplast F(0)F(1)-ATP synthase-ATPase is a tiny rotary motor responsible for coupling ATP synthesis and hydrolysis to the light-driven electrochemical proton gradient. Reversible oxidation/reduction of a dithiol, located within a special regulatory domain of the gamma subunit of the chloroplast F(1) enzyme, switches the enzyme between an inactive and an active state. This regulatory mechanism is unique to the ATP synthases of higher plants and its physiological significance lies in preventing nonproductive depletion of essential ATP pools in the dark. The three-dimensional structure of the chloroplast F(1) gamma subunit has not yet been solved. To examine the mechanism of dithiol regulation, a model of the chloroplast gamma subunit was obtained through segmental homology modeling based on the known structures of the mitochondrial and bacterial gamma subunits, together with de novo construction of the unknown regulatory domain. The model has provided considerable insight into how the dithiol might modulate catalytic function. This has, in turn, suggested a mechanism by which rotation of subunits in F(0), the transmembrane proton channel portion of the enzyme, can be coupled, via the epsilon subunit, to rotation of the gamma subunit of F(1) to achieve the 120 degrees (or 90 degrees +30 degrees) stepping action that is characteristic of F(1) gamma subunit rotation.
Collapse
Affiliation(s)
- Mark L Richter
- Departments of Chemistry and Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | |
Collapse
|
17
|
Dong H, Ni ZL, Wei JM. Substitutions of the conserved Gly47 affect the CF1 inhibitor and proton gate functions of the chloroplast ATP synthase epsilon subunit. Acta Biochim Biophys Sin (Shanghai) 2005; 37:453-62. [PMID: 15999206 DOI: 10.1111/j.1745-7270.2005.00070.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The conserved residue Gly47 of the chloroplast ATP synthase beta subunit was substituted with Leu, Arg, Ala and Glu by site-directed mutagenesis. This process generated the mutants epsilon G47L, epsilon G47R, epsilon G47A and epsilon G47E, respectively. All the beta variants showed lower inhibitory effects on the soluble CF1(-epsilon) Ca2+-ATPase compared with wild-type epsilon. In reduced conditions, epsilon G47E and epsilon G47R had a lower inhibitory effect on the oxidized CF1(-epsilon) Ca2+-ATPase compared with wild-type epsilon. In contrast, epsilon G47L and epsilon G47A increased the Ca2+-ATPase activity of soluble oxidized CF1(-epsilon). The replacement of Gly47 significantly impaired the interaction between the subunit epsilon and gamma in an in vitro binding assay? Further study showed that all epsilon variants were more effective in blocking proton leakage from the thylakoid membranes. This enhanced ATP synthesis of the chloroplast and restored ATP synthesis activity of the reconstituted membranes to a level that was more efficient than that achieved by wild-type epsilon. These results indicate that the conserved Gly47 residue of the epsilon subunit is very important for maintaining the structure and function of the epsilon subunit and may affect the interaction between the epsilon subunit, beta subunit of CF1 and subunit III of CFo, thereby regulating the ATP hydrolysis and synthesis, as well as the proton translocation role of the subunit III of CFo.
Collapse
Affiliation(s)
- Hui Dong
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
18
|
Zeng X, Ni Z, Shi X, Wei J, Shen Y. Effects of site-directed mutation on the function of the chloroplast ATP synthase epsilon subunit. PHOTOSYNTHESIS RESEARCH 2005; 83:307-15. [PMID: 16143920 DOI: 10.1007/s11120-004-6554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/22/2004] [Indexed: 05/04/2023]
Abstract
The previous work in our lab showed that the spinach chloroplast ATP synthase epsilon mutant with 3 amino acid residues deleted from the N-terminus had much lower ability to inhibit ATP hydrolysis and block proton leakage in comparison to a mutant with 1 or 2 residues deleted from the N-terminus. The present study aimed at determining whether there is special importance in the structure and function of the N-terminal third residue of the chloroplast epsilon subunit. The leucine residue at the N-terminal third site (Leu3) of the spinach chloroplast epsilon subunit was replaced with Ile, Phe, Thr, Arg, Glu or Pro by site-directed mutagenesis, forming mutants epsilonL3I, epsilonL3F, epsilonL3T, epsilonL3R, epsilonL3E and epsilonL3P, respectively. These epsilon variants all showed lower abilities to inhibit ATP hydrolysis and to block proton leakage, as compared to the wild type epsilon subunit (epsilonWT). The abilities of mutants epsilonL3I and epsilonL3F to restore the ATP synthesis activity of reconstituted membranes were higher than those of epsilonWT, but the abilities of the other epsilon variants were lower than that of epsilonWT. These results indicate that the hydrophobic and neutral characteristics of Leu3 of the chloroplast epsilon subunit are very important for its ability to inhibit ATP hydrolysis and block proton leakage, and for the ATP synthesis ability of ATP synthase.
Collapse
Affiliation(s)
- Xiaomei Zeng
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences
| | | | | | | | | |
Collapse
|
19
|
Zeng X, Shi X, Shen Y. Effects of truncated mutants of the ε subunit of chloroplast ATP synthase on the fast phase of millisecond delayed light emission of chloroplast and its ATP synthesis ability. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03182809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Richter ML. Gamma-epsilon Interactions Regulate the Chloroplast ATP Synthase. PHOTOSYNTHESIS RESEARCH 2004; 79:319-29. [PMID: 16328798 DOI: 10.1023/b:pres.0000017157.08098.36] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Current literature on the structure and function of the chloroplast ATP synthase is reviewed with an emphasis on the roles of the gamma and epsilon subunits. Together these two subunits are thought to couple, via rotation, the proton motive force to nucleotide synthesis and hydrolysis by the catalytic F(1) segment of the enzyme. These two subunits are also responsible for inducing the latent state of the enzyme that is necessary to prevent futile hydrolysis of ATP in the dark when electron transfer and ATP synthesis are inactive. A model is presented to explain how gamma and epsilon interact to achieve the transition between the active and latent states.
Collapse
Affiliation(s)
- Mark L Richter
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, 66045, USA,
| |
Collapse
|
21
|
Johnson E, Anastasios M. Functional characterization of Chlamydomonas reinhardtii with alterations in the atpE gene. PHOTOSYNTHESIS RESEARCH 2004; 82:131-40. [PMID: 16151869 DOI: 10.1007/s11120-004-6567-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The FUD17 strain of Chlamydomonas reinhardtii is a photosynthesis-deficient, acetate-requiring mutant with a defect in the chloroplast atpE gene, which codes for the epsilon subunit of the chloroplast ATP synthase. In this work, the FUD17 mutant was examined in relation to other known ATP synthase mutants as an initial step toward using this strain to generate altered versions of the atpE gene for site-directed mutagenesis of the epsilon subunit. The FUD17 strain grows well and is normally pigmented in the dark (heterotrophic conditions), but cannot grow autotrophically in the light, even when media are supplemented with acetate. Under heterotrophic conditions, it shows no accumulation of the epsilon subunit, and much lower levels of the alpha and beta subunits of the chloroplast ATP synthase. FUD17 shows no light-dependent oxygen evolution and shows a strong, light-dependent alteration in its chlorophyll fluorescence. These results show that FUD17 possesses similar characteristics to other ATP synthase mutants and fails to express an assembled ATP synthase complex on its thylakoid membrane. A preliminary attempt at site-directed mutagenesis is described which produced a slightly truncated form of the epsilon subunit, which is expressed normally in the cell.
Collapse
Affiliation(s)
- Eric Johnson
- Department of Biology, Johns Hopkins University, Mudd, Hall 3400 N. Charles St, MD, USA
| | | |
Collapse
|
22
|
Hisabori T, Ueoka-Nakanishi H, Konno H, Koyama F. Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation. FEBS Lett 2003; 545:71-5. [PMID: 12788494 DOI: 10.1016/s0014-5793(03)00395-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chloroplast ATP synthase synthesizes ATP by utilizing a proton gradient as an energy supply, which is generated by photosynthetic electron transport. The activity of the chloroplast ATP synthase is regulated in several specific ways to avoid futile hydrolysis of ATP under various physiological conditions. Several regulatory signals such as Delta mu H(+), tight binding of ADP and its release, thiol modulation, and inhibition by the intrinsic inhibitory subunit epsilon are sensed by this complex. In this review, we describe the function of two regulatory subunits, gamma and epsilon, of ATP synthase based on their possible conformational changes and discuss the evolutionary origin of these regulation systems.
Collapse
Affiliation(s)
- Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, and ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Yokohama, Japan.
| | | | | | | |
Collapse
|
23
|
Tucker WC, Du Z, Gromet-Elhanan Z, Richter ML. Formation and properties of hybrid photosynthetic F1-ATPases. Demonstration of different structural requirements for stimulation and inhibition by tentoxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2179-86. [PMID: 11277942 DOI: 10.1046/j.1432-1327.2001.02110.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A hybrid ATPase composed of cloned chloroplast ATP synthase beta and gamma subunits (betaC and gammaC) and the cloned alpha subunit from the Rhodospirillum rubrum ATP synthase (alphaR) was assembled using solubilized inclusion bodies and a simple single-step folding procedure. The catalytic properties of the assembled alpha3Rbeta3CgammaC were compared to those of the core alpha3Cbeta3CgammaC complex of the native chloroplast coupling factor 1 (CF1) and to another recently described hybrid enzyme containing R. rubrum alpha and beta subunits and the CF1 gamma subunit (alpha3Rbeta3RgammaC). All three enzymes were similarly stimulated by dithiothreitol and inhibited by copper chloride in response to reduction and oxidation, respectively, of the disulfide bond in the chloroplast gamma subunit. In addition, all three enzymes exhibited the same concentration dependence for inhibition by the CF1 epsilon subunit. Thus the CF1 gamma subunit conferred full redox regulation and normal epsilon binding to the two hybrid enzymes. Only the native CF1 alpha3Cbeta3CgammaC complex was inhibited by tentoxin, confirming the requirement for both CF1 alpha and beta subunits for tentoxin inhibition. However, the alpha3Rbeta3CgammaC complex, like the alpha3Cbeta3CgammaC complex, was stimulated by tentoxin at concentrations in excess of 10 microm. In addition, replacement of the aspartate at position 83 in betaC with leucine resulted in the loss of stimulation in the alpha3Rbeta3CgammaC hybrid. The results indicate that both inhibition and stimulation by tentoxin require a similar structural contribution from the beta subunit, but differ in their requirements for alpha subunit structure.
Collapse
Affiliation(s)
- W C Tucker
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045, USA
| | | | | | | |
Collapse
|
24
|
Bald D, Noji H, Stumpp MT, Yoshida M, Hisabori T. ATPase activity of a highly stable alpha(3)beta(3)gamma subcomplex of thermophilic F(1) can be regulated by the introduced regulatory region of gamma subunit of chloroplast F(1). J Biol Chem 2000; 275:12757-62. [PMID: 10777572 DOI: 10.1074/jbc.275.17.12757] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutant F(1)-ATPase alpha(3)beta(3)gamma subcomplex from the thermophilic Bacillus PS3 was constructed, in which 111 amino acid residues (Val(92) to Phe(202)) from the central region of the gamma subunit were replaced by the 148 amino acid residues of the homologous region from spinach chloroplast F(1)-ATPase gamma subunit, including the regulatory stretch, and were designated as alpha(3)beta(3)gamma((TCT)) (Thermophilic-Chloroplast-Thermophilic). By the insertion of this regulatory region into the gamma subunit of thermophilic F(1), we could confer the thiol modulation property to the thermophilic alpha(3)beta(3)gamma subcomplex. The overexpressed alpha(3)beta(3)gamma((TCT)) was easily purified in large scale, and the ATP hydrolyzing activity of the obtained complex was shown to increase up to 3-fold upon treatment with chloroplast thioredoxin-f and dithiothreitol. No loss of thermostability compared with the wild type subcomplex was found, and activation by dithiothreitol was functional at temperatures up to 80 degrees C. alpha(3)beta(3)gamma((TCT)) was inhibited by the epsilon subunit from chloroplast F(1)-ATPase but not by the one from the thermophilic F(1)-ATPase, indicating that the introduced amino acid residues from chloroplast F(1)-gamma subunit are important for functional interaction with the epsilon subunit.
Collapse
Affiliation(s)
- D Bald
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
25
|
Kato-Yamada Y, Bald D, Koike M, Motohashi K, Hisabori T, Yoshida M. Epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, also inhibits F(0)F(1)-ATPase. J Biol Chem 1999; 274:33991-4. [PMID: 10567363 DOI: 10.1074/jbc.274.48.33991] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the report by Sternweis and Smith (Sternweis, P. C., and Smith, J. B. (1980) Biochemistry 19, 526-531), the epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, has long been thought not to inhibit activity of the holo-enzyme, F(0)F(1)-ATPase. However, we report here that the epsilon subunit is exerting inhibition in F(0)F(1)-ATPase. We prepared a C-terminal half-truncated epsilon subunit (epsilon(DeltaC)) of the thermophilic Bacillus PS3 F(0)F(1)-ATPase and reconstituted F(1)- and F(0)F(1)-ATPase containing epsilon(DeltaC). Compared with F(1)- and F(0)F(1)-ATPase containing intact epsilon, those containing epsilon(DeltaC) showed uninhibited activity; severalfold higher rate of ATP hydrolysis at low ATP concentration and the start of ATP hydrolysis without an initial lag at high ATP concentration. The F(0)F(1)-ATPase containing epsilon(DeltaC) was capable of ATP-driven H(+) pumping. The time-course of pumping at low ATP concentration was faster than that by the F(0)F(1)-ATPase containing intact epsilon. Thus, the comparison with noninhibitory epsilon(DeltaC) mutant shed light on the inhibitory role of the intact epsilon subunit in F(0)F(1)-ATPase.
Collapse
Affiliation(s)
- Y Kato-Yamada
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Schulenberg B, Capaldi RA. The epsilon subunit of the F(1)F(0) complex of Escherichia coli. cross-linking studies show the same structure in situ as when isolated. J Biol Chem 1999; 274:28351-5. [PMID: 10497194 DOI: 10.1074/jbc.274.40.28351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four double mutants in the epsilon subunit were generated, each containing two cysteines, which, based on the NMR structure of this subunit, should form internal disulfide bonds. Two of these were designed to generate interdomain cross-links that lock the C-terminal alpha-helical domain against the beta-sandwich (epsilonM49C/A126C and epsilonF61C/V130C). The second set should give cross-linking between the two C-terminal alpha-helices (epsilonA94C/L128C and epsilonA101C/L121C). All four mutants cross-linked with 90-100% efficiency upon CuCl(2) treatment in isolated Escherichia coli ATP synthase. This shows that the structure obtained for isolated epsilon is essentially the same as in the assembled complex. Functional studies revealed increased ATP hydrolysis after cross-linking between the two domains of the subunit but not after cross-linking between the C-terminal alpha-helices. None of the cross-links had any effect on proton pumping-coupled ATP hydrolysis, on DCCD sensitivity of this activity, or on ATP synthesis rates. Therefore, big conformational changes within epsilon can be ruled out as a part of the enzyme function. Protease digestion studies, however, showed that subtle changes do occur, since the epsilon subunit could be locked in an ADP or 5'-adenylyl-beta,gamma-imidodiphosphate conformation by the cross-linking with resulting differences in cleavage rates.
Collapse
Affiliation(s)
- B Schulenberg
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
27
|
Hisabori T, Motohashi K, Kroth P, Strotmann H, Amano T. The formation or the reduction of a disulfide bridge on the gamma subunit of chloroplast ATP synthase affects the inhibitory effect of the epsilon subunit. J Biol Chem 1998; 273:15901-5. [PMID: 9632635 DOI: 10.1074/jbc.273.26.15901] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the change of the catalytic activity of chimeric complexes that were formed by chloroplast coupling factor 1 (CF1) -gamma, alpha and beta subunits of thermophilic bacterial F1 after formation or reduction of the disulfide bridge of different gamma subunits modified by oligonucleotide-directed mutagenesis techniques. For this purpose, three mutant gamma subunits were produced: gamma Delta194-230, here 37 amino acids from Pro-194 to Ile-230 are deleted, gammaC199A, Cys-199 is changed to Ala, and gamma Delta200-204, amino acids from Asp-200 to Lys-204 are deleted. All of the chimeric subunit complexes produced from each of these mutant CF1-gamma subunits and alpha and beta subunits from thermophilic bacterial F1 lost the sensitivity against thiol reagents when compared with the complex containing wild-type CF1-gamma. The pH optimum (pH 8.5-9.0) and the concentration of methanol to stimulate ATPase activities were not affected by these mutations. These indicate that the introduction of the mutations did not change the main features of ATPase activity of the chimeric complex. However, the interaction between gamma subunit and epsilon subunit was strongly influenced by the type of gamma subunit itself. Although the ATPase activity of the chimeric complex that contained gamma Delta200-204 or gammaC199A was inhibited by the addition of recombinant epsilon subunit from CF1 similarly to complexes containing the reduced wild-type gamma subunit, the recombinant epsilon subunit did not inhibit the ATPase of the complex, which contained the oxidized form of gamma subunit. Therefore the affinity of the epsilon subunit to the gamma subunit may be dependent on the state of the gamma subunit or the epsilon subunit may bind to the oxidized form of gamma subunit in a mode that does not inhibit the activity. The ATPase activity of the complex that contains gamma Delta194-230 was not efficiently inhibited by epsilon subunit. These results show that the formation or reduction of the disulfide bond on the gamma subunit may induce a conformational change in the region that directly affects the interaction of this subunit with the adjacent epsilon subunit.
Collapse
Affiliation(s)
- T Hisabori
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|
28
|
McCarty RE, Cruz JA. [9] Delineation of critical regions of the ϵ subunit of the chloroplast ATP synthase through a combination of biochemical and site-directed mutagenesis approaches. Methods Enzymol 1998. [DOI: 10.1016/s0076-6879(98)97011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Schulenberg B, Wellmer F, Lill H, Junge W, Engelbrecht S. Cross-linking of chloroplast F0F1-ATPase subunit epsilon to gamma without effect on activity. Epsilon and gamma are parts of the rotor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:134-41. [PMID: 9363764 DOI: 10.1111/j.1432-1033.1997.t01-1-00134.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cys residues were directed into positions 17, 28, 41 and 85 of a Cys6-->Ser mutant of subunit epsilon of spinach chloroplast F0F1 ATP synthase. Wild-type and engineered epsilon were expressed in Escherichia coli, purified in the presence of urea, refolded and reassembled with spinach chloroplast F1 lacking the epsilon subunit [F1(-epsilon)]. Cys-containing epsilon variants were modified with a sulfhydryl-reactive photolabile cross-linker. Photocross-linking of epsilon to F1(-epsilon) yielded the same SDS gel pattern of cross-link products independent of the presence or absence of Mg2+ x ADP, phosphate and Mg2+ x ATP. Epsilon (wild type) [Ser6,Cys28]epsilon and [Ser6,Cys41]epsilon were cross-linked with subunit gamma. With chloroplast F0F1 the same cross-link pattern was obtained, except for one extra cross-link, probably between [Ser6,Cys28]epsilon and F0 subunit III. [Ser6,Cys17]epsilon and [Ser6,Cys85]epsilon did not produce cross-links. Cross-linking of epsilon, [Ser6,Cys28]epsilon, [Ser6,Cys41]epsilon to gamma in soluble chloroplast F1 impaired the ability of epsilon to inhibit Ca2+-ATPase activity. The Mg2+-ATPase activity of soluble F1 (measured in the presence of 30% MeOH) was not affected by cross-linking epsilon with gamma. Functional reconstitution of photophosphorylation in F1-depleted thylakoids was observed with F1 in which gamma was cross-linked to [Ser6,Cys28]epsilon or [Ser6,Cys41]epsilon but not with wild-type epsilon. In view of the intersubunit rotation of gamma relative to (alphabeta)3, which is driven by ATP hydrolysis, gamma and epsilon would seem to act concertedly as parts of the 'rotor' relative to the 'stator' (alphabeta)3.
Collapse
Affiliation(s)
- B Schulenberg
- Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | | | |
Collapse
|
30
|
Hisabori T, Kato Y, Motohashi K, Kroth-Pancic P, Strotmann H, Amano T. The regulatory functions of the gamma and epsilon subunits from chloroplast CF1 are transferred to the core complex, alpha3beta3, from thermophilic bacterial F1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1158-65. [PMID: 9288943 DOI: 10.1111/j.1432-1033.1997.01158.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression plasmids for the subunit gamma (gamma(c)) and the subunit epsilon (epsilon(c)) of chloroplast coupling factor (CF1) from spinach were constructed, and the desired proteins were expressed in Escherichia coli. Both expressed subunits were obtained as inclusion bodies. When recombinant gamma(c) was mixed with recombinant alpha and beta subunits of F1 from thermophilic Bacillus PS3 (TF1), a chimeric subunit complex (alpha3beta3gamma(c)) was reconstituted and it showed significant ATP hydrolysis activity. The ATP hydrolysis activity of this complex was enhanced in the presence of dithiothreitol and suppressed by the addition of CuCl2, which induces formation of a disulfide bond between two cysteine residues in gamma(c). Hence, this complex has similar modulation characteristics as CF1. The effects of recombinant epsilon(c) and epsilon subunit from TF1 (epsilon(t)) on alpha3beta3gamma(c) were also investigated. Epsilon(c) strongly inhibited the ATP hydrolysis activity of chimeric alpha3beta3gamma(c) complex but epsilon(t) did not. The inhibition was abolished and the ATP hydrolysis activity was recovered when methanol was added to the assay medium. The addition of epsilon(c) or epsilon(t) to the alpha3beta3gamma(t) complex, which is the authentic subunit complex from TF1, resulted in weak stimulation of the ATP hydrolysis activity. These results suggest that (a) the specific regulatory function of gamma(c) can be transferred to the bacterial subunit complex; (b) the interaction between the gamma(c) subunit and epsilon(c) strongly affects the enzyme activity, which was catalyzed at the catalytic sites that reside on the alpha3beta3 core.
Collapse
Affiliation(s)
- T Hisabori
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Y Yang
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway 08855, USA
| | | | | |
Collapse
|
32
|
Cruz JA, Radkowski CA, McCarty RE. Functional Consequences of Deletions of the N Terminus of the [epsilon] Subunit of the Chloroplast ATP Synthase. PLANT PHYSIOLOGY 1997; 113:1185-1192. [PMID: 12223668 PMCID: PMC158241 DOI: 10.1104/pp.113.4.1185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The [epsilon] subunit of the chloroplast ATP synthase functions in part to prevent wasteful ATP hydrolysis by the enzyme. In addition, [epsilon] together with the remainder of the catalytic portion of the synthase (CF1) is required to block the nonproductive leak of protons through the membrane-embedded component of the synthase (CFO). Mutant [epsilon] subunits of the spinach (Spinacia oleracea) chloroplast ATP synthase that lack 5, 11, or 20 amino acids from their N termini ([epsilon]-[delta]5N, [epsilon]-[delta]11N, and [epsilon]-[delta]20N, respectively), were overexpressed as inclusion bodies. Using a procedure that resulted in the folding of full-length, recombinant [epsilon] in a biologically active form, none of these truncated forms resulted in [epsilon] that inhibited the ATPase activity of CF1 deficient in [epsilon], CF1(-[epsilon]). Yet, the [epsilon]-[delta]5N and [epsilon]-[delta]11N peptides significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO in NaBr-treated thylakoids. Although full-length [epsilon] rapidly inhibited the ATPase activity of CF1(-[epsilon]) in solution or bound to CFO, an extended period was required for the truncated forms to inhibit membrane-bound CF1(-[epsilon]). Despite the fact that [epsilon]-[delta]5N significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO, it did not block the proton conductance through CFO in NaBr-treated thylakoids reconstituted with CF1(-[epsilon]). Based on selective proteolysis and the binding of 8-anilino-1-naphthalene sulfonic acid, each of the truncated peptides gained significant secondary structure after folding. These results strongly suggest (a) that the N terminus of [epsilon] is important in its binding to CF1, (b) that CF0 stabilizes [epsilon] binding to the entire ATP synthase, and (c) that the N terminus may play some role in the regulation of proton flux through CFO.
Collapse
Affiliation(s)
- J. A. Cruz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2658
| | | | | |
Collapse
|
33
|
Abstract
An X-ray structure of the F1 portion of the mitochondrial ATP synthase shows asymmetry and differences in nucleotide binding of the catalytic beta subunits that support the binding change mechanism with an internal rotation of the gamma subunit. Other structural and mutational probes of the F1 and F0 portions of the ATP synthase are reviewed, together with kinetic and other evaluations of catalytic site occupancy and behavior during hydrolysis or synthesis of ATP. Subunit function as related to proton translocation and rotational catalysis is considered. Physical demonstrations of the gamma subunit rotation have been achieved. The findings have implications for other enzymatic catalyses.
Collapse
Affiliation(s)
- P D Boyer
- Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA
| |
Collapse
|