1
|
Bhushan S, Singh AK, Thakur Y, Baskar R. Persistence of parental age effect on somatic mutation rates across generations in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:152. [PMID: 36944916 PMCID: PMC10031922 DOI: 10.1186/s12870-023-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the model plant Arabidopsis thaliana, parental age is known to affect somatic mutation rates in their immediate progeny and here we show that this age dependent effect persists across successive generations. Using a set of detector lines carrying the mutated uidA gene, we examined if a particular parental age maintained across five consecutive generations affected the rates of base substitution (BSR), intrachromosomal recombination (ICR), frameshift mutation (FS), and transposition. The frequency of functional GUS reversions were assessed in seedlings as a function of identical/different parental ages across generations. In the context of a fixed parental age, BSR/ICR rates were unaffected in the first three generations, then dropped significantly in the 4th and increased in most instances in the 5th generation (e.g. BSR (F1 38 = 0.9, F2 38 = 1.14, F3 38 = 1.02, F4 38 = 0.5, F5 38 = 0.76)). On the other hand, with advancing parental ages, BSR/ICR rates remained high in the first two/three generations, with a striking resemblance in the pattern of mutation rates (BSR (F1 38 = 0.9, F1 43 = 0.53, F1 48 = 0.79, F1 53 = 0.83 and F2 38 = 1.14, F2 43 = 0.57, F2 48 = 0.64, F2 53 = 0.94). We adopted a novel approach of identifying and tagging flowers pollinated on a particular day, thereby avoiding biases due to potential emasculation induced stress responses. Our results suggest a time component in counting the number of generations a plant has passed through self-fertilization at a particular age in determining the somatic mutation rates.
Collapse
Affiliation(s)
- Shashi Bhushan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| | - Yogendra Thakur
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India.
| |
Collapse
|
2
|
Shah JM, Ramakrishnan AM, Singh AK, Ramachandran S, Unniyampurath U, Jayshankar A, Balasundaram N, Dhanapal S, Hyde G, Baskar R. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains. BMC PLANT BIOLOGY 2015; 15:210. [PMID: 26307100 PMCID: PMC4549908 DOI: 10.1186/s12870-015-0595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional β-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. RESULTS For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently dropped below levels seen in uninfected controls, consistent with the results of the single time-point study. CONCLUSIONS The rates of various classes of mutations that result from Agrobacterium infection depend upon the duration of infection and the type of pathogen derived factors (such as Vir proteins, oncoproteins or T-DNA) possessed by the strain. Strains with vir genes, including the type used for plant transformation, suppressed selected classes of somatic mutations. Our study also provides evidence of a pathogen that can at least partly counter the induction of mutations in an infected plant.
Collapse
Affiliation(s)
- Jasmine M Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
- Department of Plant Science, Central University of Kerala, Kasaragod, 671328, India.
| | - Anantha Maharasi Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Amit Kumar Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Subalakshmi Ramachandran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | | | - Ajitha Jayshankar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Nithya Balasundaram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Shanmuhapreya Dhanapal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Geoff Hyde
- , 14 Randwick St, Sydney, 2031, Australia.
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| |
Collapse
|
3
|
Rahavi MR, Migicovsky Z, Titov V, Kovalchuk I. Transgenerational adaptation to heavy metal salts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2011; 2:91. [PMID: 22639617 PMCID: PMC3355606 DOI: 10.3389/fpls.2011.00091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 11/15/2011] [Indexed: 05/19/2023]
Abstract
Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni(2+), Cd(2+), and Cu(2+) salts leads to transgenerational changes in homologous recombination frequency and stress tolerance. We found that the immediate progeny of stressed plants exhibited an increased rate of recombination. However, when the progeny of stressed plants was propagated without stress, recombination reverted to normal levels. Exposure of plants to heavy metals for five consecutive generations (S1-S5) resulted in recombination frequency being maintained at a high level. Skipping stress following two to three generations of propagation with 50 mM Ni(2+) or Cd(2+) did not decrease the recombination frequency, suggesting plant acclimation to upregulated recombination. Analysis of the progeny of plants exposed to Cu(2+) and Ni(2+) indicated higher stress tolerance to the heavy metal parental plants were exposed to. Tolerance was higher in plants propagated with stress for three to five generations, which resulted in longer roots than plants propagated on heavy metals for only one to two generations. Tolerance was also more prominent upon exposure to a higher concentration of salts. The progeny of stressed plants were also more tolerant to NaCl and methyl methane sulfonate.
Collapse
Affiliation(s)
- Mohammad Reza Rahavi
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Zoë Migicovsky
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
- *Correspondence: Igor Kovalchuk, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4. e-mail:
| |
Collapse
|