1
|
Yao H, Li T, Ma Z, Wang X, Xu L, Zhang Y, Cai Y, Tang Z. Codon usage pattern of the ancestor of green plants revealed through Rhodophyta. BMC Genomics 2023; 24:538. [PMID: 37697255 PMCID: PMC10496412 DOI: 10.1186/s12864-023-09586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.
Collapse
Affiliation(s)
- Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiyuan Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lixiao Xu
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yuxin Zhang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yi Cai
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zizhong Tang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Shemi A, Ben-Dor S, Rotkopf R, Dym O, Vardi A. Phylogeny and biogeography of the algal DMS-releasing enzyme in the global ocean. ISME COMMUNICATIONS 2023; 3:72. [PMID: 37452148 PMCID: PMC10349084 DOI: 10.1038/s43705-023-00280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Phytoplankton produce the volatile dimethyl sulfide (DMS), an important infochemical mediating microbial interactions, which is also emitted to the atmosphere and affecting the global climate. Albeit the enzymatic source for DMS in eukaryotes was elucidated, namely a DMSP lyase (DL) called Alma1, we still lack basic knowledge regarding its taxonomic distribution. We defined unique sequence motifs which enable the identification of DL homologs (DLHs) in model systems and environmental populations. We used these motifs to predict DLHs in diverse algae by analyzing hundreds of genomic and transcriptomic sequences from model systems under stress conditions and from environmental samples. Our findings show that the DL enzyme is more taxonomically widespread than previously thought, as it is encoded by known algal taxa as haptophytes and dinoflagellates, but also by chlorophytes, pelagophytes and diatoms, which were conventionally considered to lack the DL enzyme. By exploring the Tara Oceans database, we showed that DLHs are widespread across the oceans and are predominantly expressed by dinoflagellates. Certain dinoflagellate DLHs were differentially expressed between the euphotic and mesopelagic zones, suggesting a functional specialization and an involvement in the metabolic plasticity of mixotrophic dinoflagellates. In specific regions as the Southern Ocean, DLH expression by haptophytes and diatoms was correlated with environmental drivers such as nutrient availability. The expanded repertoire of putative DL enzymes from diverse microbial origins and geographic niches suggests new potential players in the marine sulfur cycle and provides a foundation to study the cellular function of the DL enzyme in marine microbes.
Collapse
Affiliation(s)
- Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orly Dym
- Structural Proteomics Unit, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
3
|
Bi YH, Feng B, Xie WY, Ouyang LL, Ye RX, Zhou ZG. Nuclear-encoded CbbX located in chloroplast is essential for the activity of red-type Rubisco in Saccharina japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:236-245. [PMID: 36731285 DOI: 10.1016/j.plaphy.2023.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Saccharina japonica (Laminariales, Phaeophyta) is a brown alga and the major component of algae beds on the northwest coast of the Pacific Ocean. Rubisco, the key enzyme of CO2 fixation in photosynthesis, is inhibited by nonproductive binding of its substrate RuBP and other sugar phosphates. The inhibited Rubisco in eukaryotic phytoplankton of the red plastid lineage was reactivated by CbbXs, the red-type Rubisco activases, through the process of ATP-hydrolysis-powered remodeling. As well documented, CbbXs had two types of subunits encoded by the plastid or nuclear genome respectively. In this study, both proteins of S. japonica (SjCbbX-n and SjCbbX-p) were localized in the chloroplast illustrated by immuno-electron microscopy technique. GST pull-down detection verified SjCbbX-n could interact with SjCbbX-p. Two-dimensional electrophoresis-based Western blot analysis illustrated that the endogenous SjCbbXs could form heterohexamer in the ratio of 1:1. Activase activity assays showed that although both the recombinant proteins of SjCbbXs were functional, SjCbbX-n illustrated the significantly higher activase activity than SjCbbX-p. Notably, when the two proteins were mixed, the highest specific efficiencies of Rubisco were obtained. These results implied SjCbbX-n may be essential for Rubisco activation. Molecular evolutionary analysis of cbbx genes revealed that cbbx-n originated from the duplication of cbbx-p and then evolved independently under the positive selection pressure. This is the first report about the functional relationship between the two types of CbbXs in macroalge with the red-type Rubisco and provides useful information for revealing the mechanism of high photosynthetic efficiency of this important kelp.
Collapse
Affiliation(s)
- Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Bing Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Wei-Yi Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Long-Ling Ouyang
- Chinese Academy of Fishery Science East China Sea Fisheries Research Institute, No. 300 Jungong Road, Shanghai, 200090, China
| | - Rong-Xue Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred By Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
4
|
Hao J, Liang Y, Ping J, Li J, Shi W, Su Y, Wang T. Chloroplast gene expression level is negatively correlated with evolutionary rates and selective pressure while positively with codon usage bias in Ophioglossum vulgatum L. BMC PLANT BIOLOGY 2022; 22:580. [PMID: 36510137 PMCID: PMC9746204 DOI: 10.1186/s12870-022-03960-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/24/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Characterization of the key factors determining gene expression level has been of significant interest. Previous studies on the relationship among evolutionary rates, codon usage bias, and expression level mostly focused on either nuclear genes or unicellular/multicellular organisms but few in chloroplast (cp) genes. Ophioglossum vulgatum is a unique fern and has important scientific and medicinal values. In this study, we sequenced its cp genome and transcriptome to estimate the evolutionary rates (dN and dS), selective pressure (dN/dS), gene expression level, codon usage bias, and their correlations. RESULTS The correlation coefficients between dN, dS, and dN/dS, and Transcripts Per Million (TPM) average values were -0.278 (P = 0.027 < 0.05), -0.331 (P = 0.008 < 0.05), and -0.311 (P = 0.013 < 0.05), respectively. The codon adaptation index (CAI) and tRNA adaptation index (tAI) were significantly positively correlated with TPM average values (P < 0.05). CONCLUSIONS Our results indicated that when the gene expression level was higher, the evolutionary rates and selective pressure were lower, but the codon usage bias was stronger. We provided evidence from cp gene data which supported the E-R (E stands for gene expression level and R stands for evolutionary rate) anti-correlation.
Collapse
Affiliation(s)
- Jing Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingyi Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingyao Ping
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinye Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanxin Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Chen Y, Shah S, Dougan KE, van Oppen MJH, Bhattacharya D, Chan CX. Improved Cladocopium goreaui Genome Assembly Reveals Features of a Facultative Coral Symbiont and the Complex Evolutionary History of Dinoflagellate Genes. Microorganisms 2022; 10:microorganisms10081662. [PMID: 36014080 PMCID: PMC9412976 DOI: 10.3390/microorganisms10081662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dinoflagellates of the family Symbiodiniaceae are crucial photosymbionts in corals and other marine organisms. Of these, Cladocopium goreaui is one of the most dominant symbiont species in the Indo-Pacific. Here, we present an improved genome assembly of C. goreaui combining new long-read sequence data with previously generated short-read data. Incorporating new full-length transcripts to guide gene prediction, the C. goreaui genome (1.2 Gb) exhibits a high extent of completeness (82.4% based on BUSCO protein recovery) and better resolution of repetitive sequence regions; 45,322 gene models were predicted, and 327 putative, topologically associated domains of the chromosomes were identified. Comparison with other Symbiodiniaceae genomes revealed a prevalence of repeats and duplicated genes in C. goreaui, and lineage-specific genes indicating functional innovation. Incorporating 2,841,408 protein sequences from 96 taxonomically diverse eukaryotes and representative prokaryotes in a phylogenomic approach, we assessed the evolutionary history of C. goreaui genes. Of the 5246 phylogenetic trees inferred from homologous protein sets containing two or more phyla, 35–36% have putatively originated via horizontal gene transfer (HGT), predominantly (19–23%) via an ancestral Archaeplastida lineage implicated in the endosymbiotic origin of plastids: 10–11% are of green algal origin, including genes encoding photosynthetic functions. Our results demonstrate the utility of long-read sequence data in resolving structural features of a dinoflagellate genome, and highlight how genetic transfer has shaped genome evolution of a facultative symbiont, and more broadly of dinoflagellates.
Collapse
Affiliation(s)
- Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine E. Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Madeleine J. H. van Oppen
- School of Bioscience, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
6
|
Gabr A, Grossman AR, Bhattacharya D. Paulinella, a model for understanding plastid primary endosymbiosis. JOURNAL OF PHYCOLOGY 2020; 56:837-843. [PMID: 32289879 PMCID: PMC7734844 DOI: 10.1111/jpy.13003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2020] [Indexed: 05/07/2023]
Abstract
The uptake and conversion of a free-living cyanobacterium into a photosynthetic organelle by the single-celled Archaeplastida ancestor helped transform the biosphere from low to high oxygen. There are two documented, independent cases of plastid primary endosymbiosis. The first is the well-studied instance in Archaeplastida that occurred ca. 1.6 billion years ago, whereas the second occurred 90-140 million years ago, establishing a permanent photosynthetic compartment (the chromatophore) in amoebae in the genus Paulinella. Here, we briefly summarize knowledge about plastid origin in the Archaeplastida and then focus on Paulinella. In particular, we describe features of the Paulinella chromatophore that make it a model for examining earlier events in the evolution of photosynthetic organelles. Our review stresses recently gained insights into the evolution of chromatophore and nuclear encoded DNA sequences in Paulinella, metabolic connectivity between the endosymbiont and cytoplasm, and systems that target proteins into the chromatophore. We also describe future work with Paulinella, and the potential rewards and challenges associated with developing further this model system.
Collapse
Affiliation(s)
- Arwa Gabr
- School of Graduate Studies, Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, California 94305, USA
| | | |
Collapse
|
7
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Pedrola-Monfort J, Lázaro-Gimeno D, Boluda CG, Pedrola L, Garmendia A, Soler C, Soriano JM. Evolutionary Trends in the Mitochondrial Genome of Archaeplastida: How Does the GC Bias Affect the Transition from Water to Land? PLANTS 2020; 9:plants9030358. [PMID: 32178249 PMCID: PMC7154891 DOI: 10.3390/plants9030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
Among the most intriguing mysteries in the evolutionary biology of photosynthetic organisms are the genesis and consequences of the dramatic increase in the mitochondrial and nuclear genome sizes, together with the concomitant evolution of the three genetic compartments, particularly during the transition from water to land. To clarify the evolutionary trends in the mitochondrial genome of Archaeplastida, we analyzed the sequences from 37 complete genomes. Therefore, we utilized mitochondrial, plastidial and nuclear ribosomal DNA molecular markers on 100 species of Streptophyta for each subunit. Hierarchical models of sequence evolution were fitted to test the heterogeneity in the base composition. The best resulting phylogenies were used for reconstructing the ancestral Guanine-Cytosine (GC) content and equilibrium GC frequency (GC*) using non-homogeneous and non-stationary models fitted with a maximum likelihood approach. The mitochondrial genome length was strongly related to repetitive sequences across Archaeplastida evolution; however, the length seemed not to be linked to the other studied variables, as different lineages showed diverse evolutionary patterns. In contrast, Streptophyta exhibited a powerful positive relationship between the GC content, non-coding DNA, and repetitive sequences, while the evolution of Chlorophyta reflected a strong positive linear relationship between the genome length and the number of genes.
Collapse
Affiliation(s)
- Joan Pedrola-Monfort
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
| | - David Lázaro-Gimeno
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
| | - Carlos G. Boluda
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
- Unité de Phylogénie et Génetique Moléculaires, Conservatoire et Jardin Botaniques, Chambésy, 1292 Geneva, Switzerland
| | - Laia Pedrola
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
| | - Alfonso Garmendia
- Mediterranean Agroforestry Institute, Department of Agroforest Ecosystems, Polytechnic University of Valencia, 46022 Valencia, Spain;
| | - Carla Soler
- Biomaterials, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain;
| | - Jose M. Soriano
- Biomaterials, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain;
- Correspondence: ; Tel.: +34-963-543-056
| |
Collapse
|
9
|
Lee J, Kim D, Bhattacharya D, Yoon HS. Expansion of phycobilisome linker gene families in mesophilic red algae. Nat Commun 2019; 10:4823. [PMID: 31645564 PMCID: PMC6811547 DOI: 10.1038/s41467-019-12779-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/26/2019] [Indexed: 02/02/2023] Open
Abstract
The common ancestor of red algae (Rhodophyta) has undergone massive genome reduction, whereby 25% of the gene inventory has been lost, followed by its split into the species-poor extremophilic Cyanidiophytina and the broadly distributed mesophilic red algae. Success of the mesophile radiation is surprising given their highly reduced gene inventory. To address this latter issue, we combine an improved genome assembly from the unicellular red alga Porphyridium purpureum with a diverse collection of other algal genomes to reconstruct ancient endosymbiotic gene transfers (EGTs) and gene duplications. We find EGTs associated with the core photosynthetic machinery that may have played important roles in plastid establishment. More significant are the extensive duplications and diversification of nuclear gene families encoding phycobilisome linker proteins that stabilize light-harvesting functions. We speculate that the origin of these complex families in mesophilic red algae may have contributed to their adaptation to a diversity of light environments. Widely distributed red algae have experienced massive genome reduction during evolution. Here, using an improved genome assembly of Porphyridium purpureum, Lee et al. show the role of endosymbiotic gene transfer in plastid evolution and the correlation between phycobilisome linker diversification and the red algal radiation.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.,Department of Oceanography, Kyungpook National University, Daegu, 41566, Korea
| | - Dongseok Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
10
|
Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, Cooke I, Aranda M, Bourne DG, Forêt S, Miller DJ, van Oppen MJH, Voolstra CR, Ragan MA, Chan CX. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol 2018; 1:95. [PMID: 30271976 PMCID: PMC6123633 DOI: 10.1038/s42003-018-0098-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis. Huanle Liu et al. report draft genomes of two Symbiodinium species, one from the most dominant type of symbionts in reef-building corals. They find evidence of positive selection in genes related to stress response, meiosis and other traits required for forming successful symbiotic relationships.
Collapse
Affiliation(s)
- Huanle Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Victor H Beltran
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Bruno Lapeyre
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia.,Laboratoire d'excellence CORAIL, Centre de Recherches Insulaires et Observatoire de l'Environnement, Moorea, 98729, French Polynesia
| | - Pim Bongaerts
- Global Change Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.,Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia.,School of BioSciences, The University of Melbourne, VIC, 3010, Australia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
González A, Sáez CA, Morales B, Moenne A. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of antioxidant enzymes in Ectocarpus siliculosus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:106-116. [PMID: 29518656 DOI: 10.1016/j.plaphy.2018.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2023]
Abstract
The existence of functional Transient Receptor Potential (TRP) channels was analyzed in Ectocarpus siliculosus using agonists of human TRPs and specific antagonists of TRPA1, TRPC5, TRPM8 and TRPV; intracellular calcium was detected for 60 min. Increases in intracellular calcium were observed at 13, 29, 39 and 50-52 min, which appeared to be mediated by the activation of TRPM8/V1 at 13 min, TRPV1 at 29 min, TRPA1/V1 at 39 min and TRPA1/C5 at 50-52 min. In addition, intracellular calcium increases appear to be due to extracellular calcium entry, not requiring protein kinase activation. On the other hand, 2.5 μM copper exposure induced increased intracellular calcium at 13, 29, 39 and 51 min, likely due to the activation of a TRPA1/V1 at 13 min, TRPA1/C5/M8 at 29 min, TRPC5/M8 at 39 min, and a TRPC5/V1 at 51 min. The increases in intracellular calcium induced by copper were due to extracellular calcium entry and required protein kinase activation. Furthermore, from 3 to 24 h, copper exposure induced an increase in the level of transcripts encoding antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and peroxiredoxin. The described upregulation decreased with inhibitors of CaMK, PKA, PKC, PKG and CBLPK, as well as with a mixture of TRP inhibitors. Thus, copper induces the activation of TRP channels allowing extracellular calcium entry as well as the activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of genes encoding antioxidant enzymes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Claudio A Sáez
- Laboratory of Coastal Environmental Research, Center of Advanced Studies, University of Playa Ancha, Viña del mar, Chile
| | - Bernardo Morales
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| |
Collapse
|
12
|
Josts I, Stubenrauch CJ, Vadlamani G, Mosbahi K, Walker D, Lithgow T, Grinter R. The Structure of a Conserved Domain of TamB Reveals a Hydrophobic β Taco Fold. Structure 2017; 25:1898-1906.e5. [PMID: 29129383 PMCID: PMC5719984 DOI: 10.1016/j.str.2017.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/31/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022]
Abstract
The translocation and assembly module (TAM) plays a role in the transport and insertion of proteins into the bacterial outer membrane. TamB, a component of this system spans the periplasmic space to engage with its partner protein TamA. Despite efforts to characterize the TAM, the structure and mechanism of action of TamB remained enigmatic. Here we present the crystal structure of TamB amino acids 963–1,138. This region represents half of the conserved DUF490 domain, the defining feature of TamB. TamB963-1138 consists of a concave, taco-shaped β sheet with a hydrophobic interior. This β taco structure is of dimensions capable of accommodating and shielding the hydrophobic side of an amphipathic β strand, potentially allowing TamB to chaperone nascent membrane proteins from the aqueous environment. In addition, sequence analysis suggests that the structure of TamB963-1138 is shared by a large portion of TamB. This architecture could allow TamB to act as a conduit for membrane proteins. The structure of TamB963-1138 reveals a β taco fold with a hydrophobic interior The hydrophobic interior of TamB963-1138 could chaperone hydrophobic β strands Structural analysis suggests the majority of TamB forms a hydrophobic groove
Collapse
Affiliation(s)
- Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging (CUI), Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Christopher James Stubenrauch
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC 3804, Australia
| | - Grishma Vadlamani
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC 3804, Australia
| | - Khedidja Mosbahi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC 3804, Australia
| | - Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC 3804, Australia; Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
13
|
Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T. Chloroplasts: state of research and practical applications of plastome sequencing. PLANTA 2016; 244:517-27. [PMID: 27259501 PMCID: PMC4983300 DOI: 10.1007/s00425-016-2551-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/29/2016] [Indexed: 05/07/2023]
Abstract
This review presents origins, structure and expression of chloroplast genomes. It also describes their sequencing, analysis and modification, focusing on potential practical uses and biggest challenges of chloroplast genome modification. During the evolution of eukaryotes, cyanobacteria are believed to have merged with host heterotrophic cell. Afterward, most of cyanobacterial genes from cyanobacteria were transferred to cell nucleus or lost in the process of endosymbiosis. As a result of these changes, a primary plastid was established. Nowadays, plastid genome (plastome) is almost always circular, has a size of 100-200 kbp (120-160 in land plants), and harbors 100-120 highly conserved unique genes. Plastids have their own gene expression system, which is similar to one of their cyanobacterial ancestors. Two different polymerases, plastid-derived PEP and nucleus-derived NEP, participate in transcription. Translation is similar to the one observed in cyanobacteria, but it also utilizes protein translation factors and positive regulatory mRNA elements absent from bacteria. Plastoms play an important role in genetic transformation. Transgenes are introduced into them either via gene gun (in undamaged tissues) or polyethylene glycol treatment (when protoplasts are targeted). Antibiotic resistance markers are the most common tool used for selection of transformed plants. In recent years, plastome transformation emerged as a promising alternative to nuclear transformation because of (1) high yield of target protein, (2) removing the risk of outcrossing with weeds, (3) lack of silencing mechanisms, and (4) ability to engineer the entire metabolic pathways rather than single gene traits. Currently, the main directions of such research regard: developing efficient enzyme, vaccine antigen, and biopharmaceutical protein production methods in plant cells and improving crops by increasing their resistance to a wide array of biotic and abiotic stresses. Because of that, the detailed knowledge of plastome structure and mechanism of functioning started to play a major role.
Collapse
Affiliation(s)
- Szymon Adam Olejniczak
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Ewelina Łojewska
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| |
Collapse
|
14
|
Moenne A, González A, Sáez CA. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:30-37. [PMID: 27107242 DOI: 10.1016/j.aquatox.2016.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects.
Collapse
Affiliation(s)
- Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Claudio A Sáez
- Center of Advanced Studies, University of Playa Ancha, Viña del Mar, Chile.
| |
Collapse
|
15
|
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
16
|
Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, Lauersen KJ, Blifernez-Klassen O, Kalinowski J, Goesmann A, Mussgnug JH, Kruse O. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics 2013; 14:926. [PMID: 24373495 PMCID: PMC3890519 DOI: 10.1186/1471-2164-14-926] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/19/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Microalgae are gaining importance as sustainable production hosts in the fields of biotechnology and bioenergy. A robust biomass accumulating strain of the genus Monoraphidium (SAG 48.87) was investigated in this work as a potential feedstock for biofuel production. The genome was sequenced, annotated, and key enzymes for triacylglycerol formation were elucidated. RESULTS Monoraphidium neglectum was identified as an oleaginous species with favourable growth characteristics as well as a high potential for crude oil production, based on neutral lipid contents of approximately 21% (dry weight) under nitrogen starvation, composed of predominantly C18:1 and C16:0 fatty acids. Further characterization revealed growth in a relatively wide pH range and salt concentrations of up to 1.0% NaCl, in which the cells exhibited larger structures. This first full genome sequencing of a member of the Selenastraceae revealed a diploid, approximately 68 Mbp genome with a G + C content of 64.7%. The circular chloroplast genome was assembled to a 135,362 bp single contig, containing 67 protein-coding genes. The assembly of the mitochondrial genome resulted in two contigs with an approximate total size of 94 kb, the largest known mitochondrial genome within algae. 16,761 protein-coding genes were assigned to the nuclear genome. Comparison of gene sets with respect to functional categories revealed a higher gene number assigned to the category "carbohydrate metabolic process" and in "fatty acid biosynthetic process" in M. neglectum when compared to Chlamydomonas reinhardtii and Nannochloropsis gaditana, indicating a higher metabolic diversity for applications in carbohydrate conversions of biotechnological relevance. CONCLUSIONS The genome of M. neglectum, as well as the metabolic reconstruction of crucial lipid pathways, provides new insights into the diversity of the lipid metabolism in microalgae. The results of this work provide a platform to encourage the development of this strain for biotechnological applications and production concepts.
Collapse
Affiliation(s)
- Christian Bogen
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Arwa Al-Dilaimi
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Andreas Albersmeier
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Julian Wichmann
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Michael Grundmann
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Oliver Rupp
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Kyle J Lauersen
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Olga Blifernez-Klassen
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | | | - Alexander Goesmann
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Jan H Mussgnug
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| | - Olaf Kruse
- Department of Biology/Center for Biotechnology, Bielefeld University, Universitätsstrasse 27, Bielefeld 33615, Germany
| |
Collapse
|
17
|
Nair RR, Nandhini MB, Sethuraman T, Doss G. Mutational pressure dictates synonymous codon usage in freshwater unicellular α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301. SPRINGERPLUS 2013; 2:492. [PMID: 24255825 PMCID: PMC3825069 DOI: 10.1186/2193-1801-2-492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
Background Comparative study of synonymous codon usage variations and factors influencing its diversification in α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301 has not been reported so far. In the present study, we investigated various factors associated with synonymous codon usage in the genomes of P. chromatophora and S. elongatus PCC6301 and findings were discussed. Results Mutational pressure was identified as the major force behind codon usage variation in both genomes. However, correspondence analysis revealed that intensity of mutational pressure was higher in S. elongatus than in P. chromatophora. Living habitats were also found to determine synonymous codon usage variations across the genomes of P. chromatophora and S. elongatus. Conclusions Whole genome sequencing of α-cyanobacteria in the cyanobium clade would certainly facilitate the understanding of synonymous codon usage patterns and factors contributing its diversification in presumed ancestors of photosynthetic endosymbionts of P. chromatophora.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Department of Biotechnology, Vignan University, Vadlamudi, 522 213 Guntur, Andhra Pradesh India
| | | | | | | |
Collapse
|
18
|
Wang P, Zhang J, Su J, Wang P, Liu J, Liu B, Feng D, Wang J, Wang H. The chloroplast min system functions differentially in two specific nongreen plastids in Arabidopsis thaliana. PLoS One 2013; 8:e71190. [PMID: 23936263 PMCID: PMC3728212 DOI: 10.1371/journal.pone.0071190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/26/2013] [Indexed: 01/12/2023] Open
Abstract
The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In this study, we investigated the division site placement of nongreen plastids by examining the etioplasts as representative in Arabidopsis Min system mutants. Surprisingly, the shape and number of etioplasts in cotyledons of arc3, arc11 and mcd1 mutants were similar to that observed in wild-type plants, whereas arc12 and parc6 mutants exhibited enlarged etioplasts that were reduced in number. In order to examine nongreen plastids in true leaves, we silenced the ALB3 gene in these Min system mutant backgrounds to produce immature chloroplasts without the thylakoidal network using virus induced gene silencing (VIGS). Interestingly, consistent with our observations in etioplasts, enlarged and fewer nongreen plastids were only detected in leaves of parc6 (VIGS-ALB3) and arc12 (VIGS-ALB3) plants. Further, the FtsZ-ring assembled properly at the midpoint in nongreen plastids of arc3, arc11 and mcd1 (VIGS-ALB3) plants, but organized into multiple rings in parc6 (VIGS-ALB3) and presented fragmented filaments in arc12 (VIGS-ALB3) plants, suggesting that division site placement in nongreen plastids requires fewer components of the plant Min system. Taken together, these results suggest that division site placement in nongreen plastids is different from that in chloroplasts.
Collapse
Affiliation(s)
- Peng Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jie Zhang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianbin Su
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peng Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jun Liu
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bing Liu
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dongru Feng
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jinfa Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongbin Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
19
|
Duncan O, van der Merwe MJ, Daley DO, Whelan J. The outer mitochondrial membrane in higher plants. TRENDS IN PLANT SCIENCE 2013; 18:207-17. [PMID: 23291162 DOI: 10.1016/j.tplants.2012.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 05/11/2023]
Abstract
The acquisition and integration of intracellular organelles, such as mitochondria and plastids, were important steps in the emergence of complex multicellular life. Although the outer membranes of these organelles have lost many of the functions of their free-living bacterial ancestor, others were acquired during organellogenesis. To date, the biological roles of these proteins have not been systematically characterized. In this review, we discuss the evolutionary origins and functions of outer membrane mitochondrial (OMM) proteins in Arabidopsis thaliana. Our analysis, using phylogenetic inference, indicates that several OMM proteins either acquired novel functional roles or were recruited from other subcellular localizations during evolution in Arabidopsis. These observations suggest the existence of novel communication routes and functions between organelles within plant cells.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316, University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | |
Collapse
|
20
|
Basak I, Møller SG. Emerging facets of plastid division regulation. PLANTA 2013; 237:389-98. [PMID: 22965912 DOI: 10.1007/s00425-012-1743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/19/2012] [Indexed: 05/08/2023]
Abstract
Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process.
Collapse
Affiliation(s)
- Indranil Basak
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, NY 11439, USA
| | | |
Collapse
|
21
|
Kawagoe Y. The Characteristic Polyhedral, Sharp-edged Shape of Compound-type Starch Granules in Rice Endosperm is Achieved via the Septum-like Structure of the Amyloplast. J Appl Glycosci (1999) 2013. [DOI: 10.5458/jag.jag.jag-2012_013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 2012; 110:1053-8. [PMID: 23277585 DOI: 10.1073/pnas.1217107110] [Citation(s) in RCA: 538] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for "green" biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it.
Collapse
|
23
|
Abstract
Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.
Collapse
|
24
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
25
|
Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1531-52. [PMID: 22569643 PMCID: PMC3408858 DOI: 10.1016/j.bbamcr.2012.04.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
26
|
Xu Q, Xiong G, Li P, He F, Huang Y, Wang K, Li Z, Hua J. Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: origin and evolution of allotetraploids. PLoS One 2012; 7:e37128. [PMID: 22876273 PMCID: PMC3411646 DOI: 10.1371/journal.pone.0037128] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/16/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. METHODOLOGY/PRINCIPAL FINDINGS The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43-0.68 million years ago (MYA). CONCLUSION Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1-3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids.
Collapse
Affiliation(s)
- Qin Xu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Guanjun Xiong
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pengbo Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Fei He
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kunbo Wang
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaohu Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jinping Hua
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Duncan O, Murcha MW, Whelan J. Unique components of the plant mitochondrial protein import apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:304-13. [PMID: 22406071 DOI: 10.1016/j.bbamcr.2012.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
The basic mitochondrial protein import apparatus was established in the earliest eukaryotes. Over the subsequent course of evolution and the divergence of the plant, animal and fungal lineages, this basic import apparatus has been modified and expanded in order to meet the specific needs of protein import in each kingdom. In the plant kingdom, the arrival of the plastid complicated the process of protein trafficking and is thought to have given rise to the evolution of a number of unique components that allow specific and efficient targeting of mitochondrial proteins from their site of synthesis in the cytosol, to their final location in the organelle. This includes the evolution of two unique outer membrane import receptors, plant Translocase of outer membrane 20 kDa subunit (TOM20) and Outer membrane protein of 64 kDa (OM64), the loss of a receptor domain from an ancestral import component, Translocase of outer membrane 22 kDa subunit (TOM22), evolution of unique features in the disulfide relay system of the inter membrane space, and the addition of an extra membrane spanning domain to another ancestral component of the inner membrane, Translocase of inner membrane 17 kDa subunit (TIM17). Notably, many of these components are encoded by multi-gene families and exhibit differential sub-cellular localisation and functional specialisation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Frederick W. Spiegel
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
29
|
Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A. Marine protistan diversity. ANNUAL REVIEW OF MARINE SCIENCE 2012; 4:467-493. [PMID: 22457984 DOI: 10.1146/annurev-marine-120709-142802] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protists have fascinated microbiologists since their discovery nearly 350 years ago. These single-celled, eukaryotic species span an incredible range of sizes, forms, and functions and, despite their generally diminutive size, constitute much of the genetic diversity within the domain Eukarya. Protists in marine ecosystems play fundamental ecological roles as primary producers, consumers, decomposers, and trophic links in aquatic food webs. Much of our knowledge regarding the diversity and ecological activities of these species has been obtained during the past half century, and only within the past few decades have hypotheses depicting the evolutionary relationships among the major clades of protists attained some degree of consensus. This recent progress is attributable to the development of genetic approaches, which have revealed an unexpectedly large diversity of protists, including cryptic species and previously undescribed clades of protists. New genetic tools now exist for identifying protistan species of interest and for reexamining long-standing debates regarding the biogeography of protists. Studies of protistan diversity provide insight regarding how species richness and community composition contribute to ecosystem function. These activities support the development of predictive models that describe how microbial communities will respond to natural or anthropogenically mediated changes in environmental conditions.
Collapse
Affiliation(s)
- David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371, USA.
| | | | | | | | | |
Collapse
|
30
|
Stiller JW. Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer. BMC Evol Biol 2011; 11:259. [PMID: 21923904 PMCID: PMC3190393 DOI: 10.1186/1471-2148-11-259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
A growing number of phylogenomic investigations from diverse eukaryotes are examining conflicts among gene trees as evidence of horizontal gene transfer. If multiple foreign genes from the same eukaryotic lineage are found in a given genome, it is increasingly interpreted as concerted gene transfers during a cryptic endosymbiosis in the organism's evolutionary past, also known as "endosymbiotic gene transfer" or EGT. A number of provocative hypotheses of lost or serially replaced endosymbionts have been advanced; to date, however, these inferences largely have been post-hoc interpretations of genomic-wide conflicts among gene trees. With data sets as large and complex as eukaryotic genome sequences, it is critical to examine alternative explanations for intra-genome phylogenetic conflicts, particularly how much conflicting signal is expected from directional biases and statistical noise. The availability of genome-level data both permits and necessitates phylogenomics that test explicit, a priori predictions of horizontal gene transfer, using rigorous statistical methods and clearly defined experimental controls.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
31
|
Chan CX, Bhattacharya D. Non-random sharing of Plantae genes. Commun Integr Biol 2011; 4:361-3. [PMID: 21980581 DOI: 10.4161/cib.4.3.15700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022] Open
Abstract
The power of eukaryote genomics relies strongly on taxon sampling. This point was underlined in a recent analysis of red algal genome evolution in which we tested the Plantae hypothesis that posits the monophyly of red, green (including plants) and glaucophyte algae. The inclusion of novel genome data from two mesophilic red algae enabled us to robustly demonstrate the sisterhood of red and green algae in the tree of life. Perhaps more exciting was the finding that >1,800 putative genes in the unicellular red alga Porphyridium cruentum showed evidence of gene-sharing with diverse lineages of eukaryotes and prokaryotes. Here we assessed the correlation between the putative functions of these shared genes and their susceptibility to transfer. It turns out that genes involved in complex interactive networks such as biological regulation and transcription/translation are less susceptible to endosymbiotic or horizontal gene transfer, when compared to genes with metabolic and transporter functions.
Collapse
Affiliation(s)
- Cheong Xin Chan
- Department of Ecology, Evolution and Natural Resources; and Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick, NJ USA
| | | |
Collapse
|
32
|
Shevela D. Adventures with cyanobacteria: a personal perspective. FRONTIERS IN PLANT SCIENCE 2011; 2:28. [PMID: 22645530 PMCID: PMC3355777 DOI: 10.3389/fpls.2011.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/21/2011] [Indexed: 05/08/2023]
Abstract
Cyanobacteria, or the blue-green algae as they used to be called until 1974, are the oldest oxygenic photosynthesizers. We summarize here adventures with them since the early 1960s. This includes studies on light absorption by cyanobacteria, excitation energy transfer at room temperature down to liquid helium temperature, fluorescence (kinetics as well as spectra) and its relationship to photosynthesis, and afterglow (or thermoluminescence) from them. Further, we summarize experiments on their two-light reaction - two-pigment system, as well as the unique role of bicarbonate (hydrogen carbonate) on the electron-acceptor side of their photosystem II, PSII. This review, in addition, includes a discussion on the regulation of changes in phycobilins (mostly in PSII) and chlorophyll a (Chl a; mostly in photosystem I, PSI) under oscillating light, on the relationship of the slow fluorescence increase (the so-called S to M rise, especially in the presence of diuron) in minute time scale with the so-called state-changes, and on the possibility of limited oxygen evolution in mixotrophic PSI (minus) mutants, up to 30 min, in the presence of glucose. We end this review with a brief discussion on the position of cyanobacteria in the evolution of photosynthetic systems.
Collapse
|