1
|
Gandikota M, Krishnakanth Yadav T, Maram RR, Kalluru S, Sena MB, Siddiq EA, Kalinati Narasimhan Y, Vemireddy LR, Ghanta A. Development of activation-tagged gain-of-functional mutants in indica rice line (BPT 5204) for sheath blight resistance. Mol Biol Rep 2024; 51:381. [PMID: 38430361 DOI: 10.1007/s11033-023-09194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND The development of sheath blight (ShB) resistance varieties has been a challenge for scientists for long time in rice. Activation tagging is an efficient gain-of-function mutation approach to create novel phenotypes and to identify their underlying genes. In this study, a mutant population was developed employing activation tagging in the recalcitrant indica rice (Oryza sativa L.) cv. BPT 5204 (Samba Mahsuri) through activation tagging. METHODS AND RESULTS In this study, we have generated more than 1000 activation tagged lines in indica rice, from these mutant population 38 (GFP- RFP+) stable Ds plants were generated through germinal transposition at T2 generation based on molecular analysis and seeds selected on hygromycin (50 mg/L) containing medium segregation analyses confirmed that the transgene inherited as mendelian segregation ratio of 3:1 (3 resistant: 1 susceptible). Of them, five stable activation tagged Ds lines (M-Ds-1, M-Ds-2, M-Ds-3, M-Ds-4 and M-Ds-5) were selected based on phenotypic observation through screening for sheath blight (ShB) resistance caused by fungal pathogen Rhizoctonia solani (R. solani),. Among them, M-Ds-3 and M-Ds-5 lines showed significant resistance for ShB over other tagged lines and wild type (WT) plants. Furthermore, analysed for launch pad insertion through TAIL-PCR results and mapped on corresponding rice chromosomes. Flanking sequence and gene expression analysis revealed that the upregulation of glycoside hydrolase-OsGH or similar to Class III chitinase homologue (LOC_Os08g40680) in M-Ds-3 and a hypothetical protein gene (LOC_Os01g55000) in M-Ds-5 are potential candidate genes for sheath blight resistance in rice. CONCLUSION In the present study, we developed Ac-Ds based ShB resistance gain-of-functional mutants through activation tagging in rice. These activation tagged mutant lines can be excellent sources for the development of ShB resistant cultivars in rice.
Collapse
Affiliation(s)
- Mahendranath Gandikota
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - T Krishnakanth Yadav
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
| | | | - Sudhamani Kalluru
- Department of Genetics and Plant Breeding, S.V. Agricultural College, Acharya N.G. Ranaga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - M Balachandran Sena
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - E A Siddiq
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
| | - Yamini Kalinati Narasimhan
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
| | - Lakshminarayana R Vemireddy
- Department of Molecular Biology and Biotechnology, S.V. Agricultural College, Acharya N.G. Ranaga Agricultural University (ANGRAU), Tirupati, 517502, India.
| | - Anuradha Ghanta
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India.
| |
Collapse
|
2
|
Bi M, Wang Z, Cheng K, Cui Y, He Y, Ma J, Qi M. Construction of transcription factor mutagenesis population in tomato using a pooled CRISPR/Cas9 plasmid library. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108094. [PMID: 37995578 DOI: 10.1016/j.plaphy.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Adequate mutant materials are the prerequisite for conducting gene function research or screening novel functional genes in plants. The strategy of constructing a large-scale mutant population using the pooled CRISPR/Cas9-sgRNA library has been implemented in several crops. However, the effective application of this CRISPR/Cas9 large-scale screening strategy to tomato remains to be attempted. Here, we identified 990 transcription factors in the tomato genome, designed and synthesized a CRISPR/Cas9 plasmid library containing 4379 sgRNAs. Using this pooled library, 487 T0 positive plants were obtained, among which 92 plants harbored a single sgRNA sequence, targeting 65 different transcription factors, with a mutation rate of 23%. In the T0 mutant population, the occurrence of homozygous and biallelic mutations was observed at higher frequencies. Additionally, the utilization of a small-scale CRISPR/Cas9 library targeting 30 transcription factors could enhance the efficacy of single sgRNA recognition in positive plants, increasing it from 19% to 42%. Phenotypic characterization of several mutants identified from the mutant population demonstrated the utility of our CRISPR/Cas9 mutant library. Taken together, our study offers insights into the implementation and optimization of CRISPR/Cas9-mediated large-scale knockout library in tomato.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Yiqing Cui
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Yi He
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Jian Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China.
| |
Collapse
|
3
|
A Tomato EMS-Mutagenized Population Provides New Valuable Resources for Gene Discovery and Breeding of Developmental Traits. PLANTS 2022; 11:plants11192453. [PMID: 36235319 PMCID: PMC9571841 DOI: 10.3390/plants11192453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Tomato (Solanum lycopersicum L.) is a major horticultural crop and a model species among eudicots, especially for traits related to reproductive development. Although considerable progress has been made since the tomato genome sequence project was completed, most of the genes identified remain predictions with an unknown or hypothetical function. This lack of functional characterization hampers the use of the huge amount of genomic information available to improve the quality and productivity of this crop. Reverse genetics strategies such as artificial mutagenesis and next-generation sequencing approaches build the perfect tandem for increasing knowledge on functional annotation of tomato genes. This work reports the phenotypic characterization of a tomato mutant collection generated from an EMS chemical mutagenesis program aimed to identify interesting agronomic mutants and novel gene functions. Tomato mutants were grouped into fourteen phenotypic classes, including vegetative and reproductive development traits, and the inheritance pattern of the identified mutations was studied. In addition, causal mutation of a selected mutant line was isolated through a mapping-by-sequencing approach as a proof of concept of this strategy’s successful implementation. Results support tomato mutagenesis as an essential tool for functional genomics in this fleshy-fruited model species and a highly valuable resource for future breeding programs of this crop species aimed at the development of more productive and resilient new varieties under challenging climatic and production scenarios.
Collapse
|
4
|
Ding X, Yin Z, Wang S, Liu H, Chu X, Liu J, Zhao H, Wang X, Li Y, Ding X. Different Fruit-Specific Promoters Drive AtMYB12 Expression to Improve Phenylpropanoid Accumulation in Tomato. Molecules 2022; 27:molecules27010317. [PMID: 35011551 PMCID: PMC8746655 DOI: 10.3390/molecules27010317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Tomato is an economically crucial vegetable/fruit crop globally. Tomato is rich in nutrition and plays an essential role in a healthy human diet. Phenylpropanoid, a critical compound in tomatoes, reduces common degenerative and chronic diseases risk caused by oxidative stress. As an MYB transcription factor, ATMYB12 can increase phenylpropanoid content by activating phenylpropanoid synthesis related genes, such as PAL, C4H, 4CL, CHS. However, the heterologous expression of AtMYB12 in tomatoes can be altered through transgenic technologies, such as unstable expression vectors and promoters with different efficiency. In the current study, the efficiency of other fruit-specific promoters, namely E8S, 2A12, E4, and PG, were compared and screened, and we determined that the expression efficiency of AtMYB12 was driven by the E8S promoter was the highest. As a result, the expression of phenylpropanoid synthesis related genes was regulated by AtMYB12, and the phenylpropanoid accumulation in transgenic tomato fruits increased 16 times. Additionally, the total antioxidant capacity of fruits was measured through Trolox equivalent antioxidant capacity (TEAC) assay, which was increased by 2.4 times in E8S transgenic lines. TEAC was positively correlated with phenylpropanoid content. Since phenylpropanoid plays a crucial role in the human diet, expressing AtMYB12 with stable and effective fruit-specific promoter E8S could improve tomato’s phenylpropanoid and nutrition content and quality. Our results can provide genetic resources for the subsequent improvement of tomato varieties and quality, which is significant for human health.
Collapse
Affiliation(s)
- Xiangyu Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Shaoli Wang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China;
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
- Correspondence: (Y.L.); (X.D.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
- Correspondence: (Y.L.); (X.D.)
| |
Collapse
|
5
|
Nandety RS, Serrani‐Yarce JC, Gill US, Oh S, Lee H, Zhang X, Dai X, Zhang W, Krom N, Wen J, Zhao PX, Mysore KS. Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1924-1936. [PMID: 32410353 PMCID: PMC7496502 DOI: 10.1111/tpj.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon-based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed-derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1-5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1-based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near-saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses.
Collapse
Affiliation(s)
| | - Juan C. Serrani‐Yarce
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
- Present address:
Department of Biological SciencesUniversity of North TexasDentonTX76203USA
| | - Upinder S. Gill
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
- Present address:
Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
| | - Sunhee Oh
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Hee‐Kyung Lee
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xinji Zhang
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xinbin Dai
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Wenchao Zhang
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Nick Krom
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Jiangqi Wen
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Patrick X. Zhao
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | | |
Collapse
|
6
|
Wang J, Lu N, Yi F, Xiao Y. Identification of Transposable Elements in Conifer and Their Potential Application in Breeding. Evol Bioinform Online 2020; 16:1176934320930263. [PMID: 32595272 PMCID: PMC7297469 DOI: 10.1177/1176934320930263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Transposable elements (TEs) are known to play a role in genome evolution, gene regulation, and epigenetics, representing potential tools for genetics research in and breeding of conifers. Recently, thanks to the development of high-throughput sequencing, more conifer genomes have been reported. Using bioinformatics tools, the TEs of 3 important conifers (Picea abies, Picea glauce, and Pinus taeda) were identified in our previous study, which provided a foundation for accelerating the use of TEs in conifer breeding and genetic study. Here, we review recent studies on the functional biology of TEs and discuss the potential applications for TEs in conifers.
Collapse
Affiliation(s)
- Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fei Yi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yao Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
7
|
Wu H, Xue X, Qin C, Xu Y, Guo Y, Li X, Lv W, Li Q, Mao C, Li L, Zhao S, Qi X, An H. An Efficient System for Ds Transposon Tagging in Brachypodium distachyon. PLANT PHYSIOLOGY 2019; 180:56-65. [PMID: 30867334 PMCID: PMC6501085 DOI: 10.1104/pp.18.00875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Transposon tagging is a powerful tool that has been widely applied in several species for insertional mutagenesis in plants. Several efforts have aimed to create transfer-DNA (T-DNA) insertional mutant populations in Brachypodium distachyon, a monocot plant used as a model system to study temperate cereals, but there has been a lack of research aimed at using transposon strategies. Here, we describe the application of a maize (Zea mays) Dissociation (Ds) transposon tagging system in B distachyon The 35S::AcTPase cassette and Ds element were constructed within the same T-DNA and transformed into B distachyon plants. The Ds element was readily transposed to other chromosomes or to the same chromosome under the function of Activator (Ac) transposase. Through homologous chromosome synapsis, recombination, and segregation, the Ds element separated from the Ac element. We selected stable Ds-only plants using G418 and GFP assays and analyzed 241 T0 lines, some of which were highly efficient at producing Ds-only progeny. Through thermal asymmetric interlaced PCR, we isolated 710 independent Ds flanking sequences from Ds-only plants. Furthermore, we identified a large collection of mutants with visible developmental phenotypes via this transposon tagging system. The system is relatively simple and rapid in comparison to traditional T-DNA insertion strategies, because once efficiency lines are obtained they can be reused to generate more lines from nontransposed plants without the use of time-consuming tissue culture steps.
Collapse
Affiliation(s)
- Hongyu Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Xiaodong Xue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Caihua Qin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Yi Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Yuyu Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Xiang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Qinxia Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Chuangxue Mao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Luzhao Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Suzhen Zhao
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoquan Qi
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hailong An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| |
Collapse
|
8
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
9
|
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 2017; 7:9341. [PMID: 28839256 PMCID: PMC5570948 DOI: 10.1038/s41598-017-10022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel 'histone-like transcription factor' belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Collapse
Affiliation(s)
- P Manimaran
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| | - S Venkata Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - M Raghurami Reddy
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Poli Yugandhar
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S S Mohanraj
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - S M Balachandran
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| |
Collapse
|
10
|
Hsia MM, O'Malley R, Cartwright A, Nieu R, Gordon SP, Kelly S, Williams TG, Wood DF, Zhao Y, Bragg J, Jordan M, Pauly M, Ecker JR, Gu Y, Vogel JP. Sequencing and functional validation of the JGI Brachypodium distachyon T-DNA collection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:361-370. [PMID: 28432803 DOI: 10.1111/tpj.13582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 05/07/2023]
Abstract
Due to a large and growing collection of genomic and experimental resources, Brachypodium distachyon has emerged as a powerful experimental model for the grasses. To add to these resources we sequenced 21 165 T-DNA lines, 15 569 of which were produced in this study. This increased the number of unique insertion sites in the T-DNA collection by 21 078, bringing the overall total to 26 112. Thirty-seven per cent (9754) of these insertion sites are within genes (including untranslated regions and introns) and 28% (7217) are within 500 bp of a gene. Approximately 31% of the genes in the v.2.1 annotation have been tagged in this population. To demonstrate the utility of this collection, we phenotypically characterized six T-DNA lines with insertions in genes previously shown in other systems to be involved in cellulose biosynthesis, hemicellulose biosynthesis, secondary cell wall development, DNA damage repair, wax biosynthesis and chloroplast synthesis. In all cases, the phenotypes observed supported previous studies, demonstrating the utility of this collection for plant functional genomics. The Brachypodium T-DNA collection can be accessed at http://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/.
Collapse
Affiliation(s)
- Mon Mandy Hsia
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Ronan O'Malley
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies and the Howard Hughes Medical Institute, 10010 North Torrey Pines Rd., La Jolla, CA, 92037, USA
- DOE Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, CA, 94598, USA
| | - Amy Cartwright
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
- DOE Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, CA, 94598, USA
| | - Rita Nieu
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Sean P Gordon
- DOE Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, CA, 94598, USA
| | - Sandra Kelly
- Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Unit 100, Morden, MB, R6M 1Y5, Canada
| | - Tina G Williams
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Delilah F Wood
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Yunjun Zhao
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Jennifer Bragg
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Mark Jordan
- Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Unit 100, Morden, MB, R6M 1Y5, Canada
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies and the Howard Hughes Medical Institute, 10010 North Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Yong Gu
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - John P Vogel
- USDA ARS Western Regional Research Center, 800 Buchanan St., Albany, CA, 94710-1105, USA
- DOE Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Jacobs TB, Zhang N, Patel D, Martin GB. Generation of a Collection of Mutant Tomato Lines Using Pooled CRISPR Libraries. PLANT PHYSIOLOGY 2017; 174. [PMID: 28646085 PMCID: PMC5543939 DOI: 10.1104/pp.17.00489] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The high efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mutagenesis in plants enables the development of high-throughput mutagenesis strategies. By transforming pooled CRISPR libraries into tomato (Solanum lycopersicum), collections of mutant lines were generated with minimal transformation attempts and in a relatively short period of time. Identification of the targeted gene(s) was easily determined by sequencing the incorporated guide RNA(s) in the primary transgenic events. From a single transformation with a CRISPR library targeting the immunity-associated leucine-rich repeat subfamily XII genes, heritable mutations were recovered in 15 of the 54 genes targeted. To increase throughput, a second CRISPR library was made containing three guide RNAs per construct to target 18 putative transporter genes. This resulted in stable mutations in 15 of the 18 targeted genes, with some primary transgenic plants having as many as five mutated genes. Furthermore, the redundancy in this collection of plants allowed for the association of aberrant T0 phenotypes with the underlying targeted genes. Plants with mutations in a homolog of an Arabidopsis (Arabidopsis thaliana) boron efflux transporter displayed boron deficiency phenotypes. The strategy described here provides a technically simple yet high-throughput approach for generating a collection of lines with targeted mutations and should be applicable to any plant transformation system.
Collapse
Affiliation(s)
- Thomas B Jacobs
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Dhruv Patel
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
12
|
Okabe Y, Ariizumi T. Mutant Resources and TILLING Platforms in Tomato Research. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2016. [DOI: 10.1007/978-3-662-48535-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Liu F, Gong D, Zhang Q, Wang D, Cui M, Zhang Z, Liu G, Wu J, Wang Y. High-throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. PLANTA 2015; 241:629-40. [PMID: 25408504 DOI: 10.1007/s00425-014-2186-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is an ideal model system for molecular biological and genetic studies. In this study, activation tagging was used to generate approximately 100,000 transgenic tobacco plants. Southern blot analysis indicated that there were 1.6 T-DNA inserts per line on average in our transformed population. The phenotypes observed include abnormalities in leaf and flower morphology, plant height, flowering time, branching, and fertility. Among 6,000 plants in the T0 generation, 57 displayed obvious phenotypes. Among 4,105 lines in the T1 generation, 311 displayed abnormal phenotypes. Fusion primer and nested integrated PCR was used to identify 963 independent genomic loci of T-DNA insertion sites in 1,257 T1 lines. The distribution of T-DNA insertions was non-uniform and correlated well with the predicted gene density along each chromosome. The insertions were biased toward genic regions and noncoding regions within 5 kb of a gene. Fifteen plants that showed the same phenotype as their parent with a dominant pattern in the T2 generation were chosen randomly to detect the expression levels of genes adjacent to the T-DNA integration sites by semi-quantitative RT-PCR. Fifteen candidate genes were identified. Activation was observed in 7 out of the 15 adjacent genes, including one that was located 13.1 kb away from the enhancer sequence. The activation-tagged population described in this paper will be a highly valuable resource for tobacco functional genomics research using both forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Feng Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lu N, Carter JD, Boluarte Medina T, Holt SH, Manrique-Carpintero NC, Upham KT, Pereira A, Shulaev V, Veilleux RE. Transposon based activation tagging in diploid strawberry and monoploid derivatives of potato. PLANT CELL REPORTS 2014; 33:1203-1216. [PMID: 24728112 DOI: 10.1007/s00299-014-1610-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Diploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds. As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences. To study gene function, we examined transposon-tagged mutant strategies in model populations for both species, Fragaria vesca and Solanum tuberosum Group Phureja, using the same Activation/Dissociation (Ac/Ds) construct. Early somatic transposition during tissue culture occurred at a frequency of 18.5% in strawberry but not in potato transformants. Green fluorescent protein under a monocot promoter was a more reliable selectable marker in strawberry compared to potato. BASTA (gluphosinate herbicide) resistance served as an effective selectable marker for both species (80 and 85% reliable in strawberry and potato, respectively), although the effective concentration differed (0.5% for strawberry and 0.03% for potato). Transposons preferentially reinserted within genes (exons and introns) in both species. Real-time quantitative PCR revealed enhanced gene expression (670 and 298-fold expression compared to wild type in petiole and leaf tissue, respectively) for an activation tagged strawberry mutant with Ds inserted about 0.6 kb upstream from a gene coding for an epidermis-specific secreted glycoprotein EP1. Our data also suggested that endopolyploid (diploid) cells occurring in leaf explants of monoploid potato were the favored targets of T-DNA integration during transformation. Mutants obtained in these studies provide a useful resource for future genetic studies.
Collapse
Affiliation(s)
- Nan Lu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, Mao G, Li B, Qin J, Xia M, Zhou J, Liu J, Jiang S, Mo H, Cui J, Nagasawa N, Sivasankar S, Albertsen MC, Sakai H, Mazur BJ, Lassner MW, Broglie RM. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. PLANT CELL REPORTS 2014; 33:617-31. [PMID: 24682459 DOI: 10.1007/s00299-014-1586-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/26/2023]
Abstract
A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis. Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.
Collapse
Affiliation(s)
- Guihua Lu
- Beijing Kaituo DNA Biotech Research Center, Co., Ltd., Beijing, 102206, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|