1
|
Chen R, Meng S, Wang A, Jiang F, Yuan L, Lei L, Wang H, Fan W. The genomes of seven economic Caesalpinioideae trees provide insights into polyploidization history and secondary metabolite biosynthesis. PLANT COMMUNICATIONS 2024; 5:100944. [PMID: 38733080 DOI: 10.1016/j.xplc.2024.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The Caesalpinioideae subfamily contains many well-known trees that are important for economic sustainability and human health, but a lack of genomic resources has hindered their breeding and utilization. Here, we present chromosome-level reference genomes for the two food and industrial trees Gleditsia sinensis (921 Mb) and Biancaea sappan (872 Mb), the three shade and ornamental trees Albizia julibrissin (705 Mb), Delonix regia (580 Mb), and Acacia confusa (566 Mb), and the two pioneer and hedgerow trees Leucaena leucocephala (1338 Mb) and Mimosa bimucronata (641 Mb). Phylogenetic inference shows that the mimosoid clade has a much higher evolutionary rate than the other clades of Caesalpinioideae. Macrosynteny comparison suggests that the fusion and breakage of an unstable chromosome are responsible for the difference in basic chromosome number (13 or 14) for Caesalpinioideae. After an ancient whole-genome duplication (WGD) shared by all Caesalpinioideae species (CWGD, ∼72.0 million years ago [MYA]), there were two recent successive WGD events, LWGD-1 (16.2-19.5 MYA) and LWGD-2 (7.1-9.5 MYA), in L. leucocephala. Thereafter, ∼40% gene loss and genome-size contraction have occurred during the diploidization process in L. leucocephala. To investigate secondary metabolites, we identified all gene copies involved in mimosine metabolism in these species and found that the abundance of mimosine biosynthesis genes in L. leucocephala largely explains its high mimosine production. We also identified the set of all potential genes involved in triterpenoid saponin biosynthesis in G. sinensis, which is more complete than that based on previous transcriptome-derived unigenes. Our results and genomic resources will facilitate biological studies of Caesalpinioideae and promote the utilization of valuable secondary metabolites.
Collapse
Affiliation(s)
- Rong Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sihan Meng
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Lihua Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
2
|
Oogai S, Fukuta M, Inafuku M, Oku H. Isolation and characterization of mimosine degrading enzyme from Arthrobacter sp. Ryudai-S1. World J Microbiol Biotechnol 2022; 38:172. [PMID: 35908235 DOI: 10.1007/s11274-022-03344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Leucaena leucocephala growing in the tropics and subtropics serves as potential forage for livestock because its foliage is rich in protein, fiber, and minerals. However, its use for livestock feed has been hindered by toxic nonprotein amino acid mimosine. Therefore, it is necessary to develop a method to reduce or eliminate mimosine from foliage. A previous study found that the fermentation of L. leucocephala foliage reduced the mimosine content and prompted the authors to isolate potent mimosine degrading microorganisms and characterize the mimosinase for the complete elimination of mimosine in the L. leucocephala foliage. The soil screening of the L. leucocephala tree surroundings led to the isolation of Arthrobacter sp. Ryudai-S1, which can degrade and assimilate mimosine as a nitrogen and carbon source. Mimosinase in this strain was found to be thermostable and showed strong activity. Docking model's inspection and the interaction energy calculation between mimosine-pyridoxal-5'-phosphate (PLP) complex and the active site of this enzyme identified 11 important amino acid residues that stabilized the binding. Of these amino acid residues, mutation experiment suggested that Tyr-263' and Phe-34 stabilizes the substrate binding and play a critical role in guiding the substrate to proper positions to accomplish high catalytic efficacy and selectivity. These observations suggest that Arthrobacter sp. Ryudai-S1 could be potentially useful for the development of L. leucocephala feed with reduced mimosine content.
Collapse
Affiliation(s)
- Shigeki Oogai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Ko-rimoto, Kagoshima, 890-8580, Japan
| | - Masakazu Fukuta
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Ko-rimoto, Kagoshima, 890-8580, Japan.,Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Hirosuke Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Ko-rimoto, Kagoshima, 890-8580, Japan. .,Molecular Biotechnology Group, Center of Molecular Bioscience, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan.
| |
Collapse
|
3
|
Bageel AM, Kam A, Borthakur D. Transcriptional Analyses of Genes Related to Fodder Qualities in Giant Leucaena Under Different Stress Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:885366. [PMID: 35783950 PMCID: PMC9243426 DOI: 10.3389/fpls.2022.885366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Leucaena leucocephala subsp. glabrata (giant leucaena) is a tree legume, whose foliage is used as a fodder for animals because of its high protein content. In spite of being a highly nutritious fodder, giant leucaena foliage has two undesirable secondary metabolites, mimosine and tannin. The amounts of mimosine and tannin in giant leucaena foliage are known to vary under different environmental conditions. Giant leucaena was grown under different salinity, pH and nitrogen availability conditions. It produced the highest amounts of mimosine at pH 6.0-7.0, whereas, variation in soil pH did not affect tannin concentrations. Salinity stress had negative effects on both mimosine and tannin concentrations, while nitrogen abundance promoted both mimosine and tannin production. Seven genes for mimosine and tannin metabolism were isolated from a transcriptome library of giant leucaena. These were mimosine synthase, mimosinase, chalcone synthase, flavanone 3β-hydroxylase, dihydroflavonol reductase, leucoanthocyanidin reductase, and anthocyanidin reductase. The highest level of mimosine synthase activity was observed in the absence of salt in the soils. Mimosine synthase activities had strong positive correlation with mimosine concentrations in the foliage (R2 = 0.78) whereas mimosinase expression did not appear to have a direct relationship with salt concentrations. The expression of mimosine synthase was significantly higher in the leucaena foliage under nitrogen abundant condition than in nitrogen deficiency conditions, while mimosinase expression was significantly higher under nitrogen deficiency condition than in nitrogen abundance conditions. Mimosine concentrations in the foliage were positively correlated with the expression levels of mimosine synthase but not mimosinase. Similarly, the concentrations of tannin were positively correlated with expression levels of dihydroflavonol reductase, leucoanthocyanidin reductase, and anthocyanidin reductase. Understanding of the environmental conditions that promote or inhibit transcription of the genes for mimosine and tannin biosynthesis should help to design environmental conditions that inhibit transcription of these genes, resulting in reduced levels of these compounds in the leucaena foliage.
Collapse
|
4
|
Widaad A, Zulkipli IN, Petalcorin MIR. Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061875. [PMID: 35335240 PMCID: PMC8950933 DOI: 10.3390/molecules27061875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
Helminth infections continue to be a neglected global threat in tropical regions, and there have been growing cases of anthelmintic resistance reported towards the existing anthelmintic drugs. Thus, the search for a novel anthelmintic agent has been increasing, especially those derived from plants. Leucaena leucocephala (LL) is a leguminous plant that is known to have several pharmacological activities, including anthelmintic activity. It is widely known to contain a toxic compound called mimosine, which we believed could be a potential lead candidate that could exert a potent anthelmintic effect. Hence, this study aimed to validate the presence of mimosine in LL extract and to investigate the anthelmintic effect of LL extract and mimosine on head thrashing, egg-laying, and pharyngeal pumping activities using the animal model Caenorhabditis elegans (C. elegans). Mimosine content in LL extract was confirmed through an HPLC analysis of spiking LL extract with different mimosine concentrations, whereby an increasing trend in peak heights was observed at a retention time of 0.9 min. LL extract and mimosine caused a significant dose-dependent increase in the percentage of worm mortality, which produced LC50s of 73 mg/mL and 6.39 mg/mL, respectively. Exposure of C. elegans to different concentrations of LL extract and mimosine significantly decreased the head thrashing, egg-laying, and mean pump amplitude of pharyngeal pumping activity. We speculated that these behavioral changes are due to the inhibitory effect of LL extract and mimosine on an L-type calcium channel called EGL-19. Our findings provide evidential support for the potential of LL extract and its active compound, mimosine, as novel anthelmintic candidates. However, the underlying mechanism of the anthelmintic action has yet to be elucidated.
Collapse
|
5
|
Biochemistry of plants N-heterocyclic non-protein amino acids. Amino Acids 2021; 53:801-812. [PMID: 33950299 DOI: 10.1007/s00726-021-02990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Plants catalyze the biosynthesis of a large number of non-protein amino acids, which are usually toxic for other organisms. In this review, the chemistry and metabolism of N-heterocyclic non-protein amino acids from plants are described. These N-heterocyclic non-protein amino acids are composed of β-substituted alanines and include mimosine, β-pyrazol-1-yl-L-alanine, willardiine, isowillardiine, and lathyrine. These β-substituted alanines consisted of an N-heterocyclic moiety and an alanyl side chain. This review explains how these individual moieties are derived from their precursors and how they are used as the substrate for biosynthesizing the respective N-heterocyclic non-protein amino acids. In addition, known catabolism and possible role of these non-protein amino acids in the actual host is explained.
Collapse
|
6
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 499] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
7
|
Honda MDH, Borthakur D. Mimosine facilitates metallic cation uptake by plants through formation of mimosine-cation complexes. PLANT MOLECULAR BIOLOGY 2020; 102:431-445. [PMID: 31907707 DOI: 10.1007/s11103-019-00956-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Iron deficiency conditions as well as iron supplied as a Fe(III)-mimosine complex induced a number of strategy I and strategy II genes for iron uptake in leucaena. Leucaena leucocephala (leucaena) is a tree-legume that can grow in alkaline soils, where metal-cofactors like Fe(III) are sparingly available. Mimosine, a known chelator of Fe(III), may facilitate Fe(III) uptake in leucaena by serving as a phytosiderophore. To test if mimosine can serve as a phytosiderophore, three sets of experiments were carried out. First, the binding properties and solubility of metal-mimosine complexes were assessed through spectrophotometry. Second, to study mimosine uptake in plants, pole bean, common bean, and tomato plants were supplied with mimosine alone and metal-mimosine complexes. Third, the expression of strategy I (S1) and strategy II (S2) genes for iron uptake from the soil was studied in leucaena plants exposed to different Fe(III) complexes. The results of this study show that (i) mimosine has high binding affinity for metallic cations at alkaline pH, Fe(III)-mimosine complexes are water soluble at alkaline pH, and that mimosine can bind soil iron under alkaline pH; (ii) pole bean, common bean, and tomato plants can uptake mimosine and transport it throughout the plant; and (iii) a number of S1 and S2 genes were upregulated in leucaena under iron-deficiency condition or when Fe(III) was supplied as a Fe(III)-mimosine complex. These findings suggest that leucaena may utilize both S1 and S2 strategies for iron uptake; and mimosine may play an important role in both strategies.
Collapse
Affiliation(s)
- Michael D H Honda
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
8
|
Meier K, Ehbrecht MD, Wittstock U. Glucosinolate Content in Dormant and Germinating Arabidopsis thaliana Seeds Is Affected by Non-Functional Alleles of Classical Myrosinase and Nitrile-Specifier Protein Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1549. [PMID: 31850033 PMCID: PMC6901928 DOI: 10.3389/fpls.2019.01549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/06/2019] [Indexed: 05/05/2023]
Abstract
While the defensive function of glucosinolates is well established, their possible role as a nutrient reservoir is poorly understood and glucosinolate turnover pathways have not been elucidated. Previous research showed that glucosinolate content in germinating seeds of Arabidopsis thaliana Columbia-0 (Col-0) increases within the first two to four days on culture medium and then decreases below the level at day 0. In this study we used previously characterized T-DNA mutants to investigate if enzymes known to be involved in glucosinolate breakdown upon tissue damage affect the time course of glucosinolate content in germinating seeds. Besides dormant seeds, we analyzed seeds subjected to stratification in water for up to 72 h or germination on plates for up to ten days. Although seeds of tgg1 tgg2 (deficient in above-ground classical myrosinases) had higher glucosinolate levels than Col-0, the changes during germination were not different to those in seeds of Col-0. This demonstrates that TGG1/TGG2 are not responsible for the decline in glucosinolate content upon germination and suggests the involvement of other enzymes. Expression data extracted from publically available databases show a number of β-glucosidases of the BGLU18-BGLU33 clade to be expressed at specific time points of seed maturation and germination identifying them as good candidates for a role in glucosinolate turnover. Although nitrile-specifier proteins (NSPs) act downstream of myrosinases upon glucosinolate breakdown in tissue homogenates, mutants deficient in either seed-expressed NSP2 or seedling-expressed NSP1 were affected in glucosinolate content in seeds and during stratification or germination when compared to Col-0 indicating a direct role in turnover. The mutant lines nsp1-1, nsp2-1 and nsp2-2 had significantly higher glucosinolate levels in dry seeds than Col-0. After 24 h of stratification in water, nsp2-2 seeds contained 2.3 fold higher levels of glucosinolate than Col-0 seeds. This might indicate downregulation of hydrolytic enzymes when nitrile formation following glucosinolate hydrolysis is impaired. The time course of total glucosinolate content during ten days of germination depended on functional NSP1. Based on the present data, we propose a number of experiments that might aid in establishing the pathway(s) of glucosinolate turnover in germinating A. thaliana seeds.
Collapse
Affiliation(s)
| | | | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
9
|
Oogai S, Fukuta M, Watanabe K, Inafuku M, Oku H. Molecular characterization of mimosinase and cystathionine β-lyase in the Mimosoideae subfamily member Mimosa pudica. JOURNAL OF PLANT RESEARCH 2019; 132:667-680. [PMID: 31368041 DOI: 10.1007/s10265-019-01128-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Mimosinase degrades the non-protein amino acid mimosine and is thought to have evolved from cystathionine β-lyase (CBL) via gene duplication. However, no study has, to date, compared the molecular characteristics of mimosinase and CBL. We therefore cloned mimosinase and CBL from the Mimosoideae subfamily member Mimosa pudica (Mp) and explored the molecular relationship between mimosinase and CBL for the first time. The recombinant Mp mimosinase degraded both mimosine and cystathionine with a much higher turnover number (kcat) for mimosine compared with cystathionine, and Mp CBL utilized only cystathionine as a substrate. The critical residues implicated in the substrate binding of Arabidopsis thaliana CBL (Tyr-127, Arg-129, Tyr-181, and Arg-440) were highly conserved in both Mp mimosinase and CBL. However, homology modeling and molecular simulation of these enzymes predicted variations in the residues that interact with substrates. A mutation experiment on Mp mimosinase revealed that the disruption of a disulfide bond in the vicinity of the pyridoxal-5'-phosphate domain increased the enzyme's preference toward cystathionine. Treatment of Mp mimosinase with a disulfide-cleavage agent also decreased mimosinase activity. Furthermore, mutation near the conserved binding residue altered the substrate preference between mimosine and cystathionine. Molecular dynamics simulations of Mp mimosinase suggested a closer coordination of the residues that interact with mimosine at the active site compared with cystathionine, indicating a more compact pocket size for mimosine degradation. This study thus may provide new insights into the molecular diversification of CBL, a C-S lyase, into the C-N lyase mimosinase in the Mimosoideae subfamily.
Collapse
Affiliation(s)
- Shigeki Oogai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Ko-rimoto, Kagoshima, 890-8580, Japan
| | - Masakazu Fukuta
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Ko-rimoto, Kagoshima, 890-8580, Japan
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Keiichi Watanabe
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Ko-rimoto, Kagoshima, 890-8580, Japan
- Faculty of Agriculture, Saga University, 1, Honjo-machi, Saga, 840-8502, Japan
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Bioscience, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Hirosuke Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Ko-rimoto, Kagoshima, 890-8580, Japan.
- Molecular Biotechnology Group, Center of Molecular Bioscience, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
10
|
Lebedev VG, Krutovsky KV, Shestibratov KA. …Fell Upas Sits, the Hydra-Tree of Death †, or the Phytotoxicity of Trees. Molecules 2019; 24:E1636. [PMID: 31027270 PMCID: PMC6514861 DOI: 10.3390/molecules24081636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The use of natural products that can serve as natural herbicides and insecticides is a promising direction because of their greater safety for humans and environment. Secondary metabolites of plants that are toxic to plants and insects-allelochemicals-can be used as such products. Woody plants can produce allelochemicals, but they are studied much less than herbaceous species. Meanwhile, there is a problem of interaction of woody species with neighboring plants in the process of introduction or invasion, co-cultivation with agricultural crops (agroforestry) or in plantation forestry (multiclonal or multispecies plantations). This review describes woody plants with the greatest allelopathic potential, allelochemicals derived from them, and the prospects for their use as biopesticides. In addition, the achievement of and the prospects for the use of biotechnology methods in relation to the allelopathy of woody plants are presented and discussed.
Collapse
Affiliation(s)
- Vadim G Lebedev
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, Pushchino, 142290 Moscow, Russia.
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119991 Moscow, Russia.
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 50a/2 Akademgorodok, 660036 Krasnoyarsk, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, 495 Horticulture Rd, College Station, TX 77843-2138, USA.
| | - Konstantin A Shestibratov
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, Pushchino, 142290 Moscow, Russia.
| |
Collapse
|
11
|
Rodrigues-Corrêa KCDS, Honda MDH, Borthakur D, Fett-Neto AG. Mimosine accumulation in Leucaena leucocephala in response to stress signaling molecules and acute UV exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:432-440. [PMID: 30482504 DOI: 10.1016/j.plaphy.2018.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 05/14/2023]
Abstract
Mimosine is a non-protein amino acid of Fabaceae, such as Leucaena spp. and Mimosa spp. Several relevant biological activities have been described for this molecule, including cell cycle blocker, anticancer, antifungal, antimicrobial, herbivore deterrent and allelopathic activities, raising increased economic interest in its production. In addition, information on mimosine dynamics in planta remains limited. In order to address this topic and propose strategies to increase mimosine production aiming at economic uses, the effects of several stress-related elicitors of secondary metabolism and UV acute exposure were examined on mimosine accumulation in growth room-cultivated seedlings of Leucaena leucocephala spp. glabrata. Mimosine concentration was not significantly affected by 10 ppm salicylic acid (SA) treatment, but increased in roots and shoots of seedlings treated with 84 ppm jasmonic acid (JA) and 10 ppm Ethephon (an ethylene-releasing compound), and in shoots treated with UV-C radiation. Quantification of mimosine amidohydrolase (mimosinase) gene expression showed that ethephon yielded variable effect over time, whereas JA and UV-C did not show significant impact. Considering the strong induction of mimosine accumulation by acute UV-C exposure, additional in situ ROS localization, as well as in vitro antioxidant assays were performed, suggesting that, akin to several secondary metabolites, mimosine may be involved in general oxidative stress modulation, acting as a hydrogen peroxide and superoxide anion quencher.
Collapse
Affiliation(s)
- Kelly Cristine da Silva Rodrigues-Corrêa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box CP 15005, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil; Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Michael D H Honda
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box CP 15005, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Cytosolic Cysteine Synthase Switch Cysteine and Mimosine Production in Leucaena leucocephala. Appl Biochem Biotechnol 2018; 186:613-632. [PMID: 29691793 DOI: 10.1007/s12010-018-2745-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
In higher plants, multiple copies of the cysteine synthase gene are present for cysteine biosynthesis. Some of these genes also have the potential to produce various kinds of β-substitute alanine. In the present study, we cloned a 1275-bp cDNA for cytosolic O-acetylserine(thiol)lyase (cysteine synthase) (Cy-OASTL) from Leucaena leucocephala. The purified protein product showed a dual function of cysteine and mimosine synthesis. Kinetics studies showed pH optima of 7.5 and 8.0, while temperature optima of 40 and 35 °C, respectively, for cysteine and mimosine synthesis. The kinetic parameters such as apparent Km, kcat were determined for both cysteine and mimosine synthesis with substrates O-acetylserine (OAS) and Na2S or 3-hydroxy-4-pyridone (3H4P). From the in vitro results with the common substrate OAS, the apparent kcat for Cys production is over sixfold higher than mimosine synthesis and the apparent Km is 3.7 times lower, suggesting Cys synthesis is the favored pathway.
Collapse
|
13
|
Nguyen BCQ, Tawata S. The Chemistry and Biological Activities of Mimosine: A Review. Phytother Res 2016; 30:1230-42. [PMID: 27213712 DOI: 10.1002/ptr.5636] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
Abstract
Mimosine [β-[N-(3-hydroxy-4-oxypyridyl)]-α-aminopropionic acid] is a non-protein amino acid found in the members of Mimosoideae family. There are a considerable number of reports available on the chemistry, methods for estimation, biosynthesis, regulation, and degradation of this secondary metabolite. On the other hand, over the past years of active research, mimosine has been found to have various biological activities such as anti-cancer, antiinflammation, anti-fibrosis, anti-influenza, anti-virus, herbicidal and insecticidal activities, and others. Mimosine is a leading compound of interest for use in the development of RAC/CDC42-activated kinase 1 (PAK1)-specific inhibitors for the treatment of various diseases/disorders, because PAK1 is not essential for the growth of normal cells. Interestingly, the new roles of mimosine in malignant glioma treatment, regenerative dentistry, and phytoremediation are being emerged. These identified properties indicate an exciting future for this amino acid. The present review is focused on the chemistry and recognized biological activities of mimosine in an attempt to draw a link between these two characteristics. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Binh Cao Quan Nguyen
- Department of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan.,PAK Research Center, Okinawa, 903-0213, Japan
| | - Shinkichi Tawata
- PAK Research Center, Okinawa, 903-0213, Japan.,Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa, 903-0213, Japan
| |
Collapse
|
14
|
Negi VS, Borthakur D. Heterologous Expression and Characterization of Mimosinase from Leucaena leucocephala. Methods Mol Biol 2016; 1405:59-77. [PMID: 26843166 DOI: 10.1007/978-1-4939-3393-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Heterologous expression of eukaryotic genes in bacterial system is an important method in synthetic biology to characterize proteins. It is a widely used method, which can be sometimes quite challenging, as a number of factors that act along the path of expression of a transgene to mRNA, and mRNA to protein, can potentially affect the expression of a transgene in a heterologous system. Here, we describe a method for successful cloning and expression of mimosinase-encoding gene from Leucaena leucocephala (leucaena) in E. coli as the heterologous host. Mimosinase is an important enzyme especially in the context of metabolic engineering of plant secondary metabolite as it catalyzes the degradation of mimosine, which is a toxic secondary metabolite found in all Leucaena and Mimosa species. We also describe the methods used for characterization of the recombinant mimosinase.
Collapse
Affiliation(s)
- Vishal Singh Negi
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|