1
|
Liu P, Sun L, Zhang Y, Tan Y, Zhu Y, Peng C, Wang J, Yan H, Mao D, Liang G, Liang G, Li X, Liang Y, Wang F, He Z, Tang W, Huang D, Chen C. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. MOLECULAR PLANT 2024; 17:1733-1752. [PMID: 39354718 DOI: 10.1016/j.molp.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024]
Abstract
Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuxing Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy ofAgricultural Sciences, Nanning 530007, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Shao X, Xu H, Pimpl P. Nanobody-based VSR7 tracing shows clathrin-dependent TGN to Golgi recycling. Nat Commun 2023; 14:6926. [PMID: 37903761 PMCID: PMC10616157 DOI: 10.1038/s41467-023-42331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Receptor-mediated transport of soluble proteins is nature's key to empowering eukaryotic cells to access a plethora of macromolecules, either by direct accumulation or as products from resulting biochemical pathways. The transport efficiency of these mechanisms results from the receptor's capability to capture, transport, and release ligands on the one hand and the cycling ability that allows for performing multiple rounds of ligand transport on the other. However, the plant VACUOLAR SORTING RECEPTOR (VSR) protein family is diverse, and their ligand-specificity and bidirectional trafficking routes and transport mechanisms remain highly controversial. Here we employ nanobody-epitope interaction-based molecular tools to assess the function of the VSR 7 in vivo. We demonstrate the specificity of the VSR7 for sequence-specific vacuolar sorting signals, and we trace its anterograde transport and retrograde recycling route. VSR7 localizes at the cis-Golgi apparatus at steady state conditions and transports ligands downstream to release them in the trans-Golgi network/early endosome (TGN/EE) before undergoing clathrin-dependent recycling from the TGN/EE back to the cis-Golgi.
Collapse
Affiliation(s)
- Xiaoyu Shao
- Harbin Institute of Technology, Harbin, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Hao Xu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Peter Pimpl
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
4
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
5
|
Wang J, Li L, Li C, Yang X, Xue Y, Zhu Z, Mao X, Jing R. A transposon in the vacuolar sorting receptor gene TaVSR1-B promoter region is associated with wheat root depth at booting stage. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1456-1467. [PMID: 33555662 PMCID: PMC8313126 DOI: 10.1111/pbi.13564] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 05/14/2023]
Abstract
Root depth, as an important component of root architecture, plays a significant role in growth, grain yield determination and abiotic stress tolerance in crop plants, but its genetic basis remains poorly elucidated. In this study, a panel composed of 323 wheat (Triticum aestivum L.) accessions was assessed for variation in root depth and genotyped with the Wheat 660K SNP Array. GWAS (genome-wide association study) detected significant association between a 125 bp miniature inverted-repeat transposable element (MITE) in the promoter of the TaVSR1-B gene with root depth at the booting stage. We showed that the MITE repressed TaVSR1-B expression by DNA methylation and H3K27 tri-methylation. The roles of TaVSR1-B in root growth were verified by altered expression of the gene in transgenic wheat, rice and a tavsr1 TILLING mutant. Increased TaVSR1-B expression made the root elongation zone shorter and the differentiation zone longer, leading to deeper root. This work provides novel insight into the genetic basis of variation in root depth and a promising target for genetic improvement of root architecture in wheat.
Collapse
Affiliation(s)
- Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xi Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yinghong Xue
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhi Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
6
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
7
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
8
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
9
|
Früholz S, Fäßler F, Kolukisaoglu Ü, Pimpl P. Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nat Commun 2018; 9:643. [PMID: 29440677 PMCID: PMC5811495 DOI: 10.1038/s41467-018-02909-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
Abstract
Protein degradation in lytic compartments is crucial for eukaryotic cells. At the heart of this process, vacuolar sorting receptors (VSRs) bind soluble hydrolases in the secretory pathway and release them into the vacuolar route. Sorting efficiency is suggested to result from receptor recycling. However, how and to where plant VSRs recycle remains controversial. Here we present a nanobody-epitope interaction-based protein labeling and tracking approach to dissect their anterograde and retrograde transport routes in vivo. We simultaneously employ two different nanobody-epitope pairs: one for the location-specific post-translational fluorescence labeling of receptors and the other pair to trigger their compartment-specific lockdown via an endocytosed dual-epitope linker protein. We demonstrate VSR recycling from the TGN/EE, thereby identifying the cis-Golgi as the recycling target and show that recycled VSRs reload ligands. This is evidence that bidirectional VSR-mediated sorting of vacuolar proteins exists and occurs between the Golgi and the TGN/EE.
Collapse
Affiliation(s)
- Simone Früholz
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Florian Fäßler
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Üner Kolukisaoglu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Peter Pimpl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
- SUSTech-PKU Institute of Plant and Food Science (IPFS), Department of Biology, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Rd, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Früholz S, Fäßler F, Kolukisaoglu Ü, Pimpl P. Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nat Commun 2018. [PMID: 29440677 DOI: 10.1038/s41467-018-02909-2906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Protein degradation in lytic compartments is crucial for eukaryotic cells. At the heart of this process, vacuolar sorting receptors (VSRs) bind soluble hydrolases in the secretory pathway and release them into the vacuolar route. Sorting efficiency is suggested to result from receptor recycling. However, how and to where plant VSRs recycle remains controversial. Here we present a nanobody-epitope interaction-based protein labeling and tracking approach to dissect their anterograde and retrograde transport routes in vivo. We simultaneously employ two different nanobody-epitope pairs: one for the location-specific post-translational fluorescence labeling of receptors and the other pair to trigger their compartment-specific lockdown via an endocytosed dual-epitope linker protein. We demonstrate VSR recycling from the TGN/EE, thereby identifying the cis-Golgi as the recycling target and show that recycled VSRs reload ligands. This is evidence that bidirectional VSR-mediated sorting of vacuolar proteins exists and occurs between the Golgi and the TGN/EE.
Collapse
Affiliation(s)
- Simone Früholz
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Florian Fäßler
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Üner Kolukisaoglu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Peter Pimpl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
- SUSTech-PKU Institute of Plant and Food Science (IPFS), Department of Biology, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Rd, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Maruyama N, Matsuoka Y, Yokoyama K, Takagi K, Yamada T, Hasegawa H, Terakawa T, Ishimoto M. A vacuolar sorting receptor-independent sorting mechanism for storage vacuoles in soybean seeds. Sci Rep 2018; 8:1108. [PMID: 29348620 PMCID: PMC5773536 DOI: 10.1038/s41598-017-18697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/15/2017] [Indexed: 01/03/2023] Open
Abstract
The seed storage proteins of soybean (Glycine max) are composed mainly of glycinin (11S globulin) and β-conglycinin (7S globulin). The subunits of glycinin (A1aB1b, A1bB2, A2B1a, A3B4, and A5A4B3) are synthesized as a single polypeptide precursor. These precursors are assembled into trimers with a random combination of subunits in the endoplasmic reticulum, and are sorted to the protein storage vacuoles. Proteins destined for transport to protein storage vacuoles possess a vacuolar sorting determinant, and in this regard, the A1aB1b subunit contains a C-terminal peptide that is sufficient for its sorting to protein storage vacuoles. The A3B4 subunit, however, lacks a corresponding C-terminal sorting determinant. In this study, we found that, unlike the A1aB1b subunit, the A3B4 subunit does not bind to previously reported vacuolar sorting receptors. Despite this difference, we observed that the A3B4 subunit is sorted to protein storage vacuoles in a transgenic soybean line expressing the A3B4 subunit of glycinin. These results indicate that a protein storage vacuolar sorting mechanism that functions independently of the known vacuolar sorting receptors in seeds might be present in soybean seeds.
Collapse
Affiliation(s)
- Nobuyuki Maruyama
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| | - Yuki Matsuoka
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kazunori Yokoyama
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kyoko Takagi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- Tohoku Agricultural Research Center, NARO, Fukushima, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | | | - Teruhiko Terakawa
- Hokko Chemical Industry Co., LTD, Atsugi, Kanagawa, Japan
- INPLANTA INNOVATIONS INC, Yokohama, Kanagawa, Japan
| | - Masao Ishimoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Robinson DG, Neuhaus JM. Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4435-49. [PMID: 27262127 DOI: 10.1093/jxb/erw222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To prevent their being released to the cell exterior, acid hydrolases are recognized by receptors at some point in the secretory pathway and diverted towards the lytic compartment of the cell (lysosome or vacuole). In animal cells, the receptor is called the mannosyl 6-phosphate receptor (MPR) and it binds hydrolase ligands in the trans-Golgi network (TGN). These ligands are then sequestered into clathrin-coated vesicles (CCVs) because of motifs in the cytosolic tail of the MPR which interact first with monomeric adaptors (Golgi-localized, Gamma-ear-containing, ARF-binding proteins, GGAs) and then with tetrameric (adaptin) adaptor complexes. The CCVs then fuse with an early endosome, whose more acidic lumen causes the ligands to dissociate. The MPRs are then recycled back to the TGN via retromer-coated carriers. Plants have vacuolar sorting receptors (VSRs) which were originally identified in CCVs isolated from pea (Pisum sativum L.) cotyledons. It was therefore assumed that VSRs would have an analogous function in plants to MPRs in animals. Although this dogma has enjoyed wide support over the last 20 years there are many inconsistencies. Recently, results have been published which are quite contrary to it. It now emerges that VSRs and their ligands can interact very early in the secretory pathway, and dissociate in the TGN, which, in contrast to its mammalian counterpart, has a pH of 5.5. Multivesicular endosomes in plants lack proton pump complexes and consequently have an almost neutral internal pH, which discounts them as organelles of pH-dependent receptor-ligand dissociation. These data force a critical re-evaluation of the role of CCVs at the TGN, especially considering that vacuolar cargo ligands have never been identified in them. We propose that one population of TGN-derived CCVs participate in retrograde transport of VSRs from the TGN. We also present a new model to explain how secretory and vacuolar cargo proteins are effectively separated after entering the late Golgi/TGN compartments.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Jean-Marc Neuhaus
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchatel, Switzerland
| |
Collapse
|
13
|
Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of Plant Prevacuolar Multivesicular Bodies. MOLECULAR PLANT 2016; 9:774-86. [PMID: 26836198 DOI: 10.1016/j.molp.2016.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 05/20/2023]
Abstract
Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC was identified as an MVB more than 10 years ago, great progress has been made toward the understanding of PVC/MVB function and biogenesis in plants. In this review, we first summarize previous research into the identification and characterization of plant PVCs/MVBs, and then highlight recent advances on the mechanisms underlying intraluminal vesicle formation and maturation of plant PVCs/MVBs. In addition, we discuss the possible crosstalk that appears to occur between PVCs/MVBs and autophagosomes during autophagy in plants. Finally, we list some open questions and present future perspectives in this field.
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
14
|
Künzl F, Früholz S, Fäßler F, Li B, Pimpl P. Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. NATURE PLANTS 2016; 2:16017. [PMID: 27249560 DOI: 10.1038/nplants.2016.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
The sorting of soluble proteins for degradation in the vacuole is of vital importance in plant cells, and relies on the activity of vacuolar sorting receptors (VSRs). In the plant endomembrane system, VSRs bind vacuole-targeted proteins and facilitate their transport to the vacuole. Where exactly these interactions take place has remained controversial, however. Here, we examine the potential for VSR-ligand interactions in all compartments of the vacuolar transport system in tobacco mesophyll protoplasts. To do this, we developed compartment-specific VSR sensors that assemble as a result of a nanobody-epitope interaction, and monitored the degree of ligand binding by analysing Förster resonance energy transfer using fluorescence lifetime imaging microscopy (FRET-FLIM). We show that VSRs bind ligands in the endoplasmic reticulum (ER) and in the Golgi, but not in the trans-Golgi network/early endosome (TGN/EE) or multivesicular late endosomes, suggesting that the post-TGN/EE trafficking of ligands towards the vacuole is VSR independent. We verify this by showing that non-VSR-ligands are also delivered to the vacuole from the TGN/EE after endocytic uptake. We conclude that VSRs are required for the transport of ligands from the ER and the Golgi to the TGN/EE, and suggest that the onward transport to the vacuole occurs by default.
Collapse
Affiliation(s)
- Fabian Künzl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Simone Früholz
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Florian Fäßler
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Beibei Li
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Peter Pimpl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
15
|
Maruyama N, Goshi T, Sugiyama S, Niiyama M, Adachi H, Takano K, Murakami S, Inoue T, Mori Y, Matsumura H, Mikami B. Preliminary X-ray analysis of the binding domain of the soybean vacuolar sorting receptor complexed with a sorting determinant of a seed storage protein. Acta Crystallogr F Struct Biol Commun 2015; 71:132-5. [PMID: 25664783 PMCID: PMC4321463 DOI: 10.1107/s2053230x14027484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/17/2014] [Indexed: 11/10/2022] Open
Abstract
β-Conglycinin is a major seed storage protein in soybeans, which are an important source of protein. The major subunits (α, α' and β) of β-conglycinin are sorted to protein-storage vacuoles in seed cells. Vacuolar sorting receptor (VSR) is an integral membrane protein that recognizes the sorting determinant of vacuolar proteins, including β-conglycinin, and regulates their sorting process. Vacuolar sorting determinants of the α' and β subunits of β-conglycinin exist in their C-terminal peptides. Here, the preliminary X-ray diffraction analysis of the binding domain of soybean VSR crystallized with the peptide responsible for the sorting determinant in β-conglycinin is reported. X-ray diffraction data were collected to a resolution of 3.5 Å. The crystals belonged to space group P3121, with unit-cell parameters a = b = 116.4, c = 86.1 Å.
Collapse
Affiliation(s)
- Nobuyuki Maruyama
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Tomohiro Goshi
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Shigeru Sugiyama
- Graduate School of Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan
| | - Mayumi Niiyama
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Hiroaki Adachi
- SOSHO Inc., 313 Photonics Center Building, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- SOSHO Inc., 313 Photonics Center Building, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Satoshi Murakami
- SOSHO Inc., 313 Photonics Center Building, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuka 4259, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tsuyoshi Inoue
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- SOSHO Inc., 313 Photonics Center Building, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Yusuke Mori
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- SOSHO Inc., 313 Photonics Center Building, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Hiroyoshi Matsumura
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- SOSHO Inc., 313 Photonics Center Building, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
16
|
Bi FC, Liu Z, Wu JX, Liang H, Xi XL, Fang C, Sun TJ, Yin J, Dai GY, Rong C, Greenberg JT, Su WW, Yao N. Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2 bursts. THE PLANT CELL 2014; 26:3449-67. [PMID: 25149397 PMCID: PMC4176443 DOI: 10.1105/tpc.114.127050] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/12/2014] [Accepted: 08/04/2014] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana plants that lack ceramide kinase, encoded by ACCELERATED CELL DEATH5 (ACD5), display spontaneous programmed cell death late in development and accumulate substrates of ACD5. Here, we compared ceramide accumulation kinetics, defense responses, ultrastructural features, and sites of reactive oxygen species (ROS) production in wild-type and acd5 plants during development and/or Botrytis cinerea infection. Quantitative sphingolipid profiling indicated that ceramide accumulation in acd5 paralleled the appearance of spontaneous cell death, and it was accompanied by autophagy and mitochondrial ROS accumulation. Plants lacking ACD5 differed significantly from the wild type in their responses to B. cinerea, showing earlier and higher increases in ceramides, greater disease, smaller cell wall appositions (papillae), reduced callose deposition and apoplastic ROS, and increased mitochondrial ROS. Together, these data show that ceramide kinase greatly affects sphingolipid metabolism and the site of ROS accumulation during development and infection, which likely explains the developmental and infection-related cell death phenotypes. The acd5 plants also showed an early defect in restricting B. cinerea germination and growth, which occurred prior to the onset of cell death. This early defect in B. cinerea restriction in acd5 points to a role for ceramide phosphate and/or the balance of ceramides in mediating early antifungal responses that are independent of cell death.
Collapse
Affiliation(s)
- Fang-Cheng Bi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hua Liang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Xue-Li Xi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ce Fang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Tie-Jun Sun
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chan Rong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Wei-Wei Su
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
17
|
Stigliano E, Di Sansebastiano GP, Neuhaus JM. Contribution of chitinase A's C-terminal vacuolar sorting determinant to the study of soluble protein compartmentation. Int J Mol Sci 2014; 15:11030-9. [PMID: 24945312 PMCID: PMC4100196 DOI: 10.3390/ijms150611030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 12/01/2022] Open
Abstract
Plant chitinases have been studied for their importance in the defense of crop plants from pathogen attacks and for their peculiar vacuolar sorting determinants. A peculiarity of the sequence of many family 19 chitinases is the presence of a C-terminal extension that seems to be important for their correct recognition by the vacuole sorting machinery. The 7 amino acids long C-terminal vacuolar sorting determinant (CtVSD) of tobacco chitinase A is necessary and sufficient for the transport to the vacuole. This VSD shares no homology with other CtVSDs such as the phaseolin’s tetrapeptide AFVY (AlaPheValTyr) and it is also sorted by different mechanisms. While a receptor for this signal has not yet been convincingly identified, the research using the chitinase CtVSD has been very informative, leading to the observation of phenomena otherwise difficult to observe such as the presence of separate vacuoles in differentiating cells and the existence of a Golgi-independent route to the vacuole. Thanks to these new insights in the endoplasmic reticulum (ER)-to-vacuole transport, GFPChi (Green Fluorescent Protein carrying the chitinase A CtVSD) and other markers based on chitinase signals will continue to help the investigation of vacuolar biogenesis in plants.
Collapse
Affiliation(s)
- Egidio Stigliano
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel CH-2000, Switzerland.
| | - Gian-Pietro Di Sansebastiano
- DiSTeBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, S.P. 6, Lecce-Monteroni, Lecce 73100, Italy.
| | - Jean-Marc Neuhaus
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel CH-2000, Switzerland.
| |
Collapse
|
18
|
The Development of Transgenic Crops to Improve Human Health by Advanced Utilization of Seed Storage Proteins. Biosci Biotechnol Biochem 2014; 75:823-8. [DOI: 10.1271/bbb.100924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Isayenkov SV. Plant vacuoles: Physiological roles and mechanisms of vacuolar sorting and vesicular trafficking. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714020042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chen Y, Aung K, Rolčík J, Walicki K, Friml J, Brandizzi F. Inter-regulation of the unfolded protein response and auxin signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:97-107. [PMID: 24180465 PMCID: PMC3981873 DOI: 10.1111/tpj.12373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.
Collapse
Affiliation(s)
- Yani Chen
- Michigan State University/Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kyaw Aung
- Michigan State University/Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Kathryn Walicki
- Michigan State University/Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jiří Friml
- Department of Functional Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Federica Brandizzi
- Michigan State University/Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Martinière A, Bassil E, Jublanc E, Alcon C, Reguera M, Sentenac H, Blumwald E, Paris N. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. THE PLANT CELL 2013; 25:4028-43. [PMID: 24104564 PMCID: PMC3877828 DOI: 10.1105/tpc.113.116897] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 07/30/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.
Collapse
Affiliation(s)
- Alexandre Martinière
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elodie Jublanc
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 866, Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| | - Carine Alcon
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hervé Sentenac
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| |
Collapse
|
22
|
Lee Y, Jang M, Song K, Kang H, Lee MH, Lee DW, Zouhar J, Rojo E, Sohn EJ, Hwang I. Functional identification of sorting receptors involved in trafficking of soluble lytic vacuolar proteins in vegetative cells of Arabidopsis. PLANT PHYSIOLOGY 2013; 161:121-33. [PMID: 23175753 PMCID: PMC3532246 DOI: 10.1104/pp.112.210914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In eukaryotic cells, protein trafficking plays an essential role in biogenesis of proteins that belong to the endomembrane compartments. In this process, an important step is the sorting of organellar proteins depending on their final destinations. For vacuolar proteins, vacuolar sorting receptors (VSRs) and receptor homology-transmembrane-RING H2 domain proteins (RMRs) are thought to be responsible. Arabidopsis (Arabidopsis thaliana) contains seven VSRs. Among them, VSR1, VSR3, and VSR4 are involved in sorting storage proteins targeted to the protein storage vacuole (PSV) in seeds. However, the identity of VSRs for soluble proteins of the lytic vacuole in vegetative cells remains controversial. Here, we provide evidence that VSR1, VSR3, and VSR4 are involved in sorting soluble lytic vacuolar and PSV proteins in vegetative cells. In protoplasts from leaf tissues of vsr1vsr3 and vsr1vsr4 but not vsr5vsr6, and rmr1rmr2 and rmr3rmr4 double mutants, soluble lytic vacuolar (Arabidopsis aleurain-like protein:green fluorescent protein [GFP] and carboxypeptidase Y:GFP and PSV (phaseolin) proteins, but not the vacuolar membrane protein Arabidopsis βFructosidase4:GFP, exhibited defects in their trafficking; they accumulated to the endoplasmic reticulum with an increased secretion into medium. The trafficking defects in vsr1vsr4 protoplasts were rescued by VSR1 or VSR4 but not VSR5 or AtRMR1. Furthermore, of the luminal domain swapping mutants between VSR1 and VSR5, the mutant with the luminal domain of VSR1, but not that of VSR5, rescued the trafficking defects of Arabidopsis aleurain-like protein:GFP and phaseolin in vsr1vsr4 protoplasts. Based on these results, we propose that VSR1, VSR3, and VSR4, but not other VSRs, are involved in sorting soluble lytic vacuolar and PSV proteins for their trafficking to the vacuoles in vegetative cells.
Collapse
|
23
|
Kang H, Kim SY, Song K, Sohn EJ, Lee Y, Lee DW, Hara-Nishimura I, Hwang I. Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor. THE PLANT CELL 2012; 24:5058-73. [PMID: 23263768 PMCID: PMC3556975 DOI: 10.1105/tpc.112.103481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/26/2012] [Accepted: 12/06/2012] [Indexed: 05/18/2023]
Abstract
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV.
Collapse
Affiliation(s)
- Hyangju Kang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Soo Youn Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyungyoung Song
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Eun Ju Sohn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Address correspondence to
| |
Collapse
|
24
|
De Marcos Lousa C, Gershlick DC, Denecke J. Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. THE PLANT CELL 2012; 24:1714-32. [PMID: 22570446 PMCID: PMC3442565 DOI: 10.1105/tpc.112.095679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Delivery of proteins to the lytic vacuole in plants is a complex cascade of selective interactions that specifically excludes residents of the endoplasmic reticulum and secreted proteins. Vacuolar transport must be highly efficient to avoid mistargeting of hydrolytic enzymes to locations where they could be harmful. While plant vacuolar sorting signals have been well described for two decades, it is only during the last 5 years that a critical mass of data was gathered that begins to reveal how vacuolar sorting receptors (VSRs) may complete a full transport cycle. Yet, the field is far from reaching a consensus regarding the organelles that could be involved in vacuolar sorting, their potential biogenesis, and the ultimate recycling of membranes and protein machinery that maintain this pathway. This review will highlight the important landmarks in our understanding of VSR function and compare recent transport models that have been proposed so that an emerging picture of plant vacuolar sorting mechanisms can be drawn.
Collapse
|
25
|
Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 2012; 22:413-24. [PMID: 21826108 PMCID: PMC3271593 DOI: 10.1038/cr.2011.129] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/01/2011] [Accepted: 06/07/2011] [Indexed: 11/08/2022] Open
Abstract
The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
- Current address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Wilhelmina van de Ven
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Songqin Pan
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Yansong Miao
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
- Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Junqi Wang
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Nana F Keinath
- Heidelberg Institute for Plant Science, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- NuSep Inc., Bogart, GA 30622, USA
| | - Liwen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Karin Schumacher
- Heidelberg Institute for Plant Science, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Glenn Hicks
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Natasha Raikhel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| |
Collapse
|
26
|
Kim SJ, Brandizzi F. News and Views into the SNARE Complexity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:28. [PMID: 23018380 PMCID: PMC3355637 DOI: 10.3389/fpls.2012.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/25/2012] [Indexed: 05/18/2023]
Abstract
Secretory organelles are engaged in a continuous flux of membranes, which is believed to occur mostly via transport vesicles. Being critical in maintaining several cellular functions, transport vesicles are membrane-enclosed sacs that temporarily store and then deliver membrane lipids, protein, and polysaccharides. SNAREs have a crucial role in vesicle traffic by driving membrane fusion and conferring fidelity through the formation of specific SNARE complexes. Additionally, specific roles of SNAREs in growth and development implicate that they are versatile components for the life of a plant. Here, we summarize the recent progress on the understanding of the role of SNAREs and highlight some of the questions that are still unsolved.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Federica Brandizzi, Plant Research Laboratory, Department of Energy, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
27
|
Scabone CM, Frigerio L, Petruccelli S. A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells. PLANT CELL REPORTS 2011; 30:1823-33. [PMID: 21611741 DOI: 10.1007/s00299-011-1089-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 05/15/2023]
Abstract
To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.
Collapse
Affiliation(s)
- Camila María Scabone
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT-La Plata CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CC553, 1900, La Plata, Argentina
| | | | | |
Collapse
|
28
|
Shen Y, Wang J, Ding Y, Lo SW, Gouzerh G, Neuhaus JM, Jiang L. The rice RMR1 associates with a distinct prevacuolar compartment for the protein storage vacuole pathway. MOLECULAR PLANT 2011; 4:854-68. [PMID: 21493745 DOI: 10.1093/mp/ssr025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transport of vacuolar proteins from Golgi apparatus or trans-Golgi network (TGN) to vacuoles is a receptor-mediated process via an intermediate membrane-bound prevacuolar compartment (PVC) in plant cells. Both vacuolar sorting receptor (VSR) and receptor homology region-transmembrane domain-RING-H2 (RMR) proteins have been shown to function in transporting storage proteins to protein storage vacuole (PSV), but little is known about the nature of the PVC for the PSV pathway. Here, we use the rice RMR1 (OsRMR1) as a probe to study the PSV pathway in plants. Immunogold electron microscopy (EM) with specific OsRMR1 antibodies showed that OsRMR1 proteins were found in the Golgi apparatus, TGN, and a distinct organelle with characteristics of PVC in both rice culture cells and developing rice seeds, as well as the protein body type II (PBII) or PSV in developing rice seeds. This organelle, also found in both tobacco BY-2 and Arabidopsis suspension cultured cells, is morphologically distinct from the VSR-positive multivesicular lytic PVC or multivesicular body (MVB) and thus represent a PVC for the PSV pathway that we name storage PVC (sPVC). Further in vivo and in vitro interaction studies using truncated OsRMR1 proteins secreted into the culture media of transgenic BY-2 suspension cells demonstrated that OsRMR1 functions as a sorting receptor in transporting vicilin-like storage proteins.
Collapse
Affiliation(s)
- Yun Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang H, Zhuang XH, Hillmer S, Robinson DG, Jiang LW. Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes. MOLECULAR PLANT 2011; 4:845-53. [PMID: 21430175 DOI: 10.1093/mp/ssr011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vacuolar sorting receptors (VSRs) are type I integral membrane proteins that mediate the vacuolar transport of soluble cargo proteins via prevacuolar compartments (PVCs) in plants. Confocal immunofluorescent and immunogold Electron Microscope (EM) studies have localized VSRs to PVCs or multivesicular bodies (MVBs) and trans-Golgi network (TGN) in various plant cell types, including suspension culture cells, root cells, developing and germinating seeds. Here, we provide evidence that VSRs reach plasma membrane (PM) in growing pollen tubes. Both immunofluorescent and immunogold EM studies with specific VSR antibodies show that, in addition to the previously demonstrated PVC/MVB localization, VSRs also localize to PM in lily and tobacco pollen tubes prepared from chemical fixation or high-pressure freezing/frozen substitution. Such a PM localization suggests an additional role of VSR proteins in mediating protein transport to PM and endocytosis in growing pollen tubes. Using a high-speed Spinning Disc Confocal Microscope, the possible fusion between VSR-positive PVC organelles and the PM was also observed in living tobacco pollen tubes transiently expressing the PVC reporter GFP-VSR. In contrast, the lack of a prominent PM localization of GFP-VSR in living pollen tubes may be due to the highly dynamic situation of vesicular transport in this fast-growing cell type.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
30
|
Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci U S A 2011; 108:8048-53. [PMID: 21512130 DOI: 10.1073/pnas.1018371108] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.
Collapse
|
31
|
Kim H, Kang H, Jang M, Chang JH, Miao Y, Jiang L, Hwang I. Homomeric interaction of AtVSR1 is essential for its function as a vacuolar sorting receptor. PLANT PHYSIOLOGY 2010; 154:134-48. [PMID: 20625000 PMCID: PMC2938145 DOI: 10.1104/pp.110.159814] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vacuolar sorting receptors, BP80/VSRs, play a critical role in vacuolar trafficking of soluble proteins in plant cells. However, the mechanism of action of BP80 is not well understood. Here, we investigate the action mechanism of AtVSR1, a member of BP80 proteins in Arabidopsis (Arabidopsis thaliana), in vacuolar trafficking. AtVSR1 exists as multiple forms, including a high molecular mass homomeric complex in vivo. Both the transmembrane and carboxyl-terminal cytoplasmic domains of AtVSR1 are necessary for the homomeric interaction. The carboxyl-terminal cytoplasmic domain contains specific sequence information, whereas the transmembrane domain has a structural role in the homomeric interaction. In protoplasts, an AtVSR1 mutant, C2A, that contained alanine substitution of the region involved in the homomeric interaction, was defective in trafficking to the prevacuolar compartment and localized primarily to the trans-Golgi network. In addition, overexpression of C2A, but not wild-type AtVSR1, inhibited trafficking of soluble proteins to the vacuole and caused their secretion into the medium. Furthermore, C2A:hemagglutinin in transgenic plants interfered with the homomeric interaction of endogenous AtVSR1 and inhibited vacuolar trafficking of sporamin:green fluorescent protein. These data suggest that homomeric interaction of AtVSR1 is critical for its function as a vacuolar sorting receptor.
Collapse
|
32
|
Saint-Jean B, Seveno-Carpentier E, Alcon C, Neuhaus JM, Paris N. The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. THE PLANT CELL 2010; 22:2825-37. [PMID: 20807880 PMCID: PMC2947187 DOI: 10.1105/tpc.109.072215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 06/24/2010] [Accepted: 08/05/2010] [Indexed: 05/18/2023]
Abstract
Pea (Pisum sativum) BP80 is a vacuolar sorting receptor for soluble proteins and has a cytosolic domain essential for its intracellular trafficking between the trans-Golgi network and the prevacuole. Based on mammalian knowledge, we introduced point mutations in the cytosolic region of the receptor and produced chimeras of green fluorescent protein fused to the transmembrane domain of pea BP80 along with the modified cytosolic tails. By analyzing the subcellular location of these chimera, we found that mutating Glu-604, Asp-616, or Glu-620 had mild effects, whereas mutating the Tyr motif partially redistributed the chimera to the plasma membrane. Replacing both Ile-608 and Met-609 by Ala (IMAA) led to a massive redistribution of fluorescence to the vacuole, indicating that recycling is impaired. When the chimera uses the alternative route, the IMAA mutation led to a massive accumulation at the plasma membrane. Using Arabidopsis thaliana plants expressing a fluorescent reporter with the full-length sequence of At VSR4, we demonstrated that the receptor undergoes brefeldin A-sensitive endocytosis. We conclude that the receptors use two pathways, one leading directly to the lytic vacuole and the other going via the plasma membrane, and that the Ileu-608 Met-609 motif has a role in the retrieval step in both pathways.
Collapse
Affiliation(s)
- Bruno Saint-Jean
- Laboratoire de Physiologie et Biotechnologie des Algues, Institut Français de Recherche pour l'Exploitation de la Mer, 44311 Nantes Cedex 03, France
| | - Emilie Seveno-Carpentier
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Carine Alcon
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Neuchâtel, CH-2009 Neuchâtel, Switzerland
| | - Nadine Paris
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| |
Collapse
|
33
|
Wang H, Tse YC, Law AHY, Sun SSM, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:826-38. [PMID: 20030753 DOI: 10.1111/j.1365-313x.2009.04111.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vacuolar sorting receptors (VSRs) are type-I integral membrane proteins that mediate biosynthetic protein traffic in the secretory pathway to the vacuole, whereas secretory carrier membrane proteins (SCAMPs) are type-IV membrane proteins localizing to the plasma membrane and early endosome (EE) or trans-Golgi network (TGN) in the plant endocytic pathway. As pollen tube growth is an extremely polarized and highly dynamic process, with intense anterograde and retrograde membrane trafficking, we have studied the dynamics and functional roles of VSR and SCAMP in pollen tube growth using lily (Lilium longiflorum) pollen as a model. Using newly cloned lily VSR and SCAMP cDNA (termed LIVSR and LISCAMP, respectively), as well as specific antibodies against VSR and SCAMP1 as tools, we have demonstrated that in growing lily pollen tubes: (i) transiently expressed GFP-VSR/GFP-LIVSR is located throughout the pollen tubes, excepting the apical clear-zone region, whereas GFP-LISCAMP is mainly concentrated in the tip region; (ii) VSRs are localized to the multivesicular body (MVB) and vacuole, whereas SCAMPs are localized to apical endocytic vesicles, TGN and vacuole; and (iii) microinjection of VSR or SCAMP antibodies and LlVSR small interfering RNAs (siRNAs) significantly reduced the growth rate of the lily pollen tubes. Taken together, both VSR and SCAMP are required for pollen tube growth, probably working together in regulating protein trafficking in the secretory and endocytic pathways, which need to be coordinated in order to support pollen tube elongation.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biology, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chi WT, Fung RWM, Liu HC, Hsu CC, Charng YY. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:917-27. [PMID: 19302169 DOI: 10.1111/j.1365-3040.2009.01972.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant temperature-induced lipocalins (TILs) have been shown to be responsive to heat stress (HS), but the nature of this response was unknown. In this study, a reverse genetic approach was taken to elucidate the role of Arabidopsis TIL1 (At5g58070) in thermotolerance. A T-DNA knock-out line of TIL1 (til1-1) showed severe defects in basal (BT) and acquired thermotolerance (AT), which could be complemented by introducing the wild-type gene. However, over-expression of TIL1 did not significantly enhance thermotolerance in transgenic plants. TIL1 is peripherally associated with plasma membrane. Transcriptomic analysis showed that the heat shock response in til1-1 seedlings was about the same as in the wild-type plants except the expression of TIL1. The level of TIL1 did not affect the temperature threshold for heat shock protein induction. Ion leakage analysis revealed no significant difference in membrane stability between the wild-type and til1-1 seedlings. These results suggest that TIL1 is not involved in regulating membrane fluidity or stability. Nevertheless, the mutant plants were also more sensitive than the wild type to tert-butyl hydroperoxide, a reagent that induces lipid peroxidation. Taken together, these data indicate that TIL1 is an essential component for thermotolerance and probably functions by acting against lipid peroxidation induced by severe HS.
Collapse
Affiliation(s)
- Wen-Tzu Chi
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Miao Y, Li KY, Li HY, Yao X, Jiang L. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:824-39. [PMID: 18680561 DOI: 10.1111/j.1365-313x.2008.03645.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
36
|
Zeng W, Keegstra K. AtCSLD2 is an integral Golgi membrane protein with its N-terminus facing the cytosol. PLANTA 2008; 228:823-38. [PMID: 18642024 DOI: 10.1007/s00425-008-0785-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/04/2008] [Indexed: 05/03/2023]
Abstract
Cellulose synthase-like proteins in the D family share high levels of sequence identity with the cellulose synthase proteins and also contain the processive beta-glycosyltransferase motifs conserved among all members of the cellulose synthase superfamily. Consequently, it has been hypothesized that members of the D family function as either cellulose synthases or glycan synthases involved in the formation of matrix polysaccharides. As a prelude to understanding the function of proteins in the D family, we sought to determine where they are located in the cell. A polyclonal antibody against a peptide located at the N-terminus of the Arabidopsis D2 cellulose synthase-like protein was generated and purified. After resolving Golgi vesicles from plasma membranes using endomembrane purification techniques including two-phase partitioning and sucrose density gradient centrifugation, we used antibodies against known proteins and marker enzyme assays to characterize the various membrane preparations. The Arabidopsis cellulose synthase-like D2 protein was found mostly in a fraction that was enriched with Golgi membranes. In addition, versions of the Arabidopsis cellulose synthase-like D2 proteins tagged with a green fluorescent protein was observed to co-localize with a DsRed-tagged Golgi marker protein, the rat alpha-2,6-sialyltransferase. Therefore, we postulate that the majority of Arabidopsis cellulose synthase-like D proteins, under our experimental conditions, are likely located at the Golgi membranes. Furthermore, protease digestion of Golgi-rich vesicles revealed almost complete loss of reaction with the antibodies, even without detergent treatment of the Golgi vesicles. Therefore, the N-terminus of the Arabidopsis cellulose synthase-like D2 protein likely faces the cytosol. Combining this observation with the transmembrane domain predictions, we postulate that the large hydrophilic domain of this protein also faces the cytosol.
Collapse
Affiliation(s)
- Weiqing Zeng
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
37
|
Hwang I. Sorting and anterograde trafficking at the Golgi apparatus. PLANT PHYSIOLOGY 2008; 148:673-83. [PMID: 18838501 PMCID: PMC2556845 DOI: 10.1104/pp.108.124925] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/28/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Inhwan Hwang
- Center for Plant Protein Distribution System, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea.
| |
Collapse
|
38
|
Bassham DC, Brandizzi F, Otegui MS, Sanderfoot AA. The secretory system of Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0116. [PMID: 22303241 PMCID: PMC3243370 DOI: 10.1199/tab.0116] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past few years, a vast amount of research has illuminated the workings of the secretory system of eukaryotic cells. The bulk of this work has been focused on the yeast Saccharomyces cerevisiae, or on mammalian cells. At a superficial level, plants are typical eukaryotes with respect to the operation of the secretory system; however, important differences emerge in the function and appearance of endomembrane organelles. In particular, the plant secretory system has specialized in several ways to support the synthesis of many components of the complex cell wall, and specialized kinds of vacuole have taken on a protein storage role-a role that is intended to support the growing seedling, but has been co-opted to support human life in the seeds of many crop plants. In the past, most research on the plant secretory system has been guided by results in mammalian or fungal systems but recently plants have begun to stand on their own as models for understanding complex trafficking events within the eukaryotic endomembrane system.
Collapse
Affiliation(s)
- Diane C. Bassham
- Department of Genetics, Development and Cell Biology and Plant Sciences Institute, Iowa State University, 455 Bessey Hall, Ames, Iowa 50011
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, S-238 Plant Biology, East Lansing, Michigan 48824
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin- Madison, 224 Birge Hall, 430 Lincoln Drive, Madison, Wisconsin 53706
| | - Anton A. Sanderfoot
- Department of Plant Biology, University of Minnesota-Twin Cities, 250 Bioscience Center, 1445 Gortner Ave, St. Paul, Minnesota 55108
| |
Collapse
|
39
|
Robinson DG, Jiang L, Schumacher K. The endosomal system of plants: charting new and familiar territories. PLANT PHYSIOLOGY 2008; 147:1482-92. [PMID: 18678740 PMCID: PMC2492610 DOI: 10.1104/pp.108.120105] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/05/2008] [Indexed: 05/18/2023]
Affiliation(s)
- David G Robinson
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
40
|
Johnson ED, Miller EA, Anderson MA. Dual location of a family of proteinase inhibitors within the stigmas of Nicotiana alata. PLANTA 2007; 225:1265-76. [PMID: 17053891 DOI: 10.1007/s00425-006-0418-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/26/2006] [Indexed: 05/07/2023]
Abstract
Reproductive and storage tissues of many plants produce large amounts of serine proteinase inhibitors (PIs). The ornamental tobacco, Nicotiana alata, produces a series of 6 kDa chymotrypsin and trypsin inhibitors that accumulate to up to 30% of soluble protein in the stigma. These inhibitors are derived by proteolytic processing of two closely related multidomain precursor proteins. Using immunogold electron microscopy, we find that the stigmatic PIs accumulate in both the central vacuole and in the extracellular mucilage. Labelling with antibodies specific for the C-terminal vacuolar targeting peptide (VTS) of each precursor confirms earlier biochemical data showing that the VTS is removed during passage through the secretory pathway. We have isolated and characterised the extracellular population of PIs, which are largely identical to PIs isolated from whole stigmas and are functional inhibitors of serine proteases. Subcellular fractionation of immature stigmas reveals that a sub-population of the PI precursor protein is proteolytically processed within the endoplasmic reticulum. This proteolysis results in the removal of the vacuolar sorting information, causing secretion of this PI population. We propose a novel mechanism whereby a single gene product may be simultaneously trafficked to two separate compartments mediated by proteolysis early in the secretory pathway.
Collapse
Affiliation(s)
- Elizabeth D Johnson
- Department of Biochemistry, La Trobe University, 3086, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
41
|
Fuji K, Shimada T, Takahashi H, Tamura K, Koumoto Y, Utsumi S, Nishizawa K, Maruyama N, Hara-Nishimura I. Arabidopsis vacuolar sorting mutants (green fluorescent seed) can be identified efficiently by secretion of vacuole-targeted green fluorescent protein in their seeds. THE PLANT CELL 2007; 19:597-609. [PMID: 17293568 PMCID: PMC1867321 DOI: 10.1105/tpc.106.045997] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Two Arabidopsis thaliana genes have been shown to function in vacuolar sorting of seed storage proteins: a vacuolar sorting receptor, VSR1/ATELP1, and a retromer component, MAIGO1 (MAG1)/VPS29. Here, we show an efficient and simple method for isolating vacuolar sorting mutants of Arabidopsis. The method was based on two findings in this study. First, VSR1 functioned as a sorting receptor for beta-conglycinin by recognizing the vacuolar targeting signal. Second, when green fluorescent protein (GFP) fusion with the signal (GFP-CT24) was expressed in vsr1, mag1/vps29, and wild-type seeds, both vsr1and mag1/vps29 gave strongly fluorescent seeds but the wild type did not, suggesting that a defect in vacuolar sorting provided fluorescent seeds by the secretion of GFP-CT24 out of the cells. We mutagenized transformant seeds expressing GFP-CT24. From approximately 3,000,000 lines of M2 seeds, we obtained >100 fluorescent seeds and designated them green fluorescent seed (gfs) mutants. We report 10 gfs mutants, all of which caused missorting of storage proteins. We mapped gfs1 to VSR1, gfs2 to KAM2/GRV2, gfs10 to the At4g35870 gene encoding a novel membrane protein, and the others to different loci. This method should provide valuable insights into the complex molecular mechanisms underlying vacuolar sorting of storage proteins.
Collapse
Affiliation(s)
- Kentaro Fuji
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miao Y, Yan PK, Kim H, Hwang I, Jiang L. Localization of green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar compartments in tobacco BY-2 cells. PLANT PHYSIOLOGY 2006; 142:945-62. [PMID: 16980567 PMCID: PMC1630755 DOI: 10.1104/pp.106.083618] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 09/08/2006] [Indexed: 05/11/2023]
Abstract
We have previously demonstrated that vacuolar sorting receptor (VSR) proteins are concentrated on prevacuolar compartments (PVCs) in plant cells. PVCs in tobacco (Nicotiana tabacum) BY-2 cells are multivesicular bodies (MVBs) as defined by VSR proteins and the BP-80 reporter, where the transmembrane domain (TMD) and cytoplasmic tail (CT) sequences of BP-80 are sufficient and specific for correct targeting of the reporter to PVCs. The genome of Arabidopsis (Arabidopsis thaliana) contains seven VSR proteins, but little is known about their individual subcellular localization and function. Here, we study the subcellular localization of the seven Arabidopsis VSR proteins (AtVSR1-7) based on the previously proven hypothesis that the TMD and CT sequences correctly target individual VSR to its final destination in transgenic tobacco BY-2 cells. Toward this goal, we have generated seven chimeric constructs containing signal peptide (sp) linked to green fluorescent protein (GFP) and TMD/CT sequences (sp-GFP-TMD/CT) of the seven individual AtVSR. Transgenic tobacco BY-2 cell lines expressing these seven sp-GFP-TMD-CT fusions all exhibited typical punctate signals colocalizing with VSR proteins by confocal immunofluorescence. In addition, wortmannin caused the GFP-marked prevacuolar organelles to form small vacuoles, and VSR antibodies labeled these enlarged MVBs in transgenic BY-2 cells. Wortmannin also caused VSR-marked PVCs to vacuolate in other cell types, including Arabidopsis, rice (Oryza sativa), pea (Pisum sativum), and mung bean (Vigna radiata). Therefore, the seven AtVSRs are localized to MVBs in tobacco BY-2 cells, and wortmannin-induced vacuolation of PVCs is a general response in plants.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Biology and Molecular Biotechnology Program, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
43
|
Otegui MS, Herder R, Schulze J, Jung R, Staehelin LA. The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. THE PLANT CELL 2006; 18:2567-81. [PMID: 17012602 PMCID: PMC1626608 DOI: 10.1105/tpc.106.040931] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have investigated the transport of storage proteins, their processing proteases, and the Vacuolar Sorting Receptor-1/Epidermal Growth Factor Receptor-Like Protein1 (VSR-1/ATELP1) receptor during the formation of protein storage vacuoles in Arabidopsis thaliana embryos by means of high-pressure freezing/freeze substitution, electron tomography, immunolabeling techniques, and subcellular fractionation. The storage proteins and their processing proteases are segregated from each other within the Golgi cisternae and packaged into separate vesicles. The storage protein-containing vesicles but not the processing enzyme-containing vesicles carry the VSR-1/ATELP1 receptor. Both types of secretory vesicles appear to fuse into a type of prevacuolar multivesicular body (MVB). We have also determined that the proteolytic processing of the 2S albumins starts in the MVBs. We hypothesize that the compartmentalized processing of storage proteins in the MVBs may allow for the sequential activation of processing proteases as the MVB lumen gradually acidifies.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
44
|
Nishizawa K, Maruyama N, Utsumi S. The C-terminal region of alpha' subunit of soybean beta-conglycinin contains two types of vacuolar sorting determinants. PLANT MOLECULAR BIOLOGY 2006; 62:111-25. [PMID: 16900322 DOI: 10.1007/s11103-006-9007-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Accepted: 04/21/2006] [Indexed: 05/11/2023]
Abstract
In maturing seed cells, proteins that accumulate in the protein storage vacuoles (PSVs) are synthesized on the endoplasmic reticulum (ER) and transported by vesicles to the PSVs. Vacuolar sorting determinants (VSDs) which are usually amino acid sequences of short or moderate length direct the proteins to this pathway. VSDs identified so far are classified into two types: sequence specific VSDs (ssVSDs) and C-terminal VSDs (ctVSDs). We previously demonstrated that VSDs of alpha' and beta subunits of beta-conglycinin, one of major storage proteins of soybean (Glycine max), reside in the C-terminal ten amino acids. Here we show that both types of VSDs coexist within this region of the alpha' subunit. Although ctVSDs can function only at the very C-termini of proteins, the C-terminal ten amino acids of alpha' subunit directed green fluorescent protein (GFP) to the PSVs even when they were placed at the N-terminus of GFP, indicating that an ssVSD resides in the sequence. By mutation analysis, it was found that the core sequence of the ssVSD is Ser-Ile-Leu (fifth to seventh residues counted from the C-terminus) which is conserved in the alpha and beta subunits and some vicilin-like proteins. On the other hand, the sequence composed of the C-terminal three amino acids (AFY) directed GFP to the PSVs when it was placed at the C-terminus of GFP, though the function as a VSD was disrupted at the N-terminus of GFP, indicating that the AFY sequence is a ctVSD.
Collapse
Affiliation(s)
- Keito Nishizawa
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
45
|
Song J, Lee MH, Lee GJ, Yoo CM, Hwang I. Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. THE PLANT CELL 2006; 18:2258-74. [PMID: 16905657 PMCID: PMC1560928 DOI: 10.1105/tpc.105.039123] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Epsin and related proteins play important roles in various steps of protein trafficking in animal and yeast cells. Many epsin homologs have been identified in plant cells from analysis of genome sequences. However, their roles have not been elucidated. Here, we investigate the expression, localization, and biological role in protein trafficking of an epsin homolog, Arabidopsis thaliana EPSIN1, which is expressed in most tissues we examined. In the cell, one pool of EPSIN1 is associated with actin filaments, producing a network pattern, and a second pool localizes primarily to the Golgi complex with a minor portion to the prevacuolar compartment, producing a punctate staining pattern. Protein pull-down and coimmunoprecipitation experiments reveal that Arabidopsis EPSIN1 interacts with clathrin, VTI11, gamma-adaptin-related protein (gamma-ADR), and vacuolar sorting receptor1 (VSR1). In addition, EPSIN1 colocalizes with clathrin and VTI11. The epsin1 mutant, which has a T-DNA insertion in EPSIN1, displays a defect in the vacuolar trafficking of sporamin:green fluorescent protein (GFP), but not in the secretion of invertase:GFP into the medium. Stably expressed HA:EPSIN1 complements this trafficking defect. Based on these data, we propose that EPSIN1 plays an important role in the vacuolar trafficking of soluble proteins at the trans-Golgi network via its interaction with gamma-ADR, VTI11, VSR1, and clathrin.
Collapse
Affiliation(s)
- Jinhee Song
- Division of Molecular and Life Sciences and Center for Plant Intracellular Trafficking, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
46
|
Abstract
The use of fluorescent proteins and live cell imaging has greatly increased our knowledge of cell biology in recent years. Not only can these technologies be used to study protein trafficking under different conditions, but they have also been of use in elucidating the relationships between different organelles in a noninvasive manner. The use of multiple different fluorochromes allows the observation of interactions between organelles and between proteins, making this one of the fastest-developing and exciting fields at this time. In this review, we discuss the multitude of fluorescent markers that have been generated to study the plant secretory pathway. Although these markers have been used to solve many mysteries in this field, some areas that require further discussion remain.
Collapse
Affiliation(s)
- Sally L Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | |
Collapse
|
47
|
Maruyama N, Mun LC, Tatsuhara M, Sawada M, Ishimoto M, Utsumi S. Multiple vacuolar sorting determinants exist in soybean 11S globulin. THE PLANT CELL 2006; 18:1253-73. [PMID: 16617100 PMCID: PMC1456878 DOI: 10.1105/tpc.105.036376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 01/17/2006] [Accepted: 03/22/2006] [Indexed: 05/08/2023]
Abstract
The sorting determinants of glycinin, a soybean (Glycine max) 11S globulin, which mediates protein targeting to the protein storage vacuole (PSV), were investigated in maturing soybean cotyledons by transient expression assays. A C-terminal stretch of 10 amino acids of A1aB1b, a glycinin group I subunit, was sufficient to direct green fluorescent protein (GFP) to the PSV. This peptide may correspond to a C-terminal vacuolar sorting determinant (ctVSD). Because functional inhibition of this putative ctVSD of A1aB1b did not block PSV sorting of A1aB1b, we used the three-dimensional structure of A1aB1b to identify candidates for a sequence-specific determinant (ssVSD). We found that the sequence downstream of disordered region 4 could direct GFP to the PSV and that Ile-297 is critical for sorting. However, functional inhibition of the ctVSD, combined with the Ile297Gly mutation, did not abolish the vacuolar sorting of A1aB1b, suggesting that A1aB1b has a third sorting determinant in addition to ctVSD and ssVSD. A glycinin group II subunit, A3B4, lacked a ctVSD but contained a VSD reminiscent of an ssVSD and an additional sorting determinant. We also demonstrate, by expression of dominant negative mutants of small GTPases and drug treatment experiments, that the trafficking of A1aB1b is COPII vesicle-dependent and wortmannin- and brefeldin A-sensitive.
Collapse
Affiliation(s)
- Nobuyuki Maruyama
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Hanton SL, Brandizzi F. Protein transport in the plant secretory pathwayThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b05-172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of the plant secretory pathway is a relatively new field, developing rapidly over the last 30 years. Many exciting discoveries have already been made in this area, but as old questions are answered new ones become apparent. Our understanding of the functions and mechanisms of the plant secretory pathway is constantly expanding, in part because of the development of new technologies, mainly in bioimaging. The increasing accessibility of these new tools in combination with more established methods provides an ideal way to increase knowledge of the secretory pathway in plants. In this review we discuss recent developments in understanding protein transport between organelles in the plant secretory pathway.
Collapse
Affiliation(s)
- Sally L. Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Federica Brandizzi
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
49
|
Lee DW, Lee S, Lee GJ, Lee KH, Kim S, Cheong GW, Hwang I. Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco. PLANT PHYSIOLOGY 2006; 140:466-83. [PMID: 16384899 PMCID: PMC1361317 DOI: 10.1104/pp.105.074575] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transit peptides of nuclear-encoded chloroplast proteins are necessary and sufficient for targeting and import of proteins into chloroplasts. However, the sequence information encoded by transit peptides is not fully understood. In this study, we investigated sequence motifs in the transit peptide of the small subunit of the Rubisco complex by examining the ability of various mutant transit peptides to target green fluorescent protein reporter proteins to chloroplasts in Arabidopsis (Arabidopsis thaliana) leaf protoplasts. We divided the transit peptide into eight blocks (T1 through T8), each consisting of eight or 10 amino acids, and generated mutants that had alanine (Ala) substitutions or deletions, of one or two T blocks in the transit peptide. In addition, we generated mutants that had the original sequence partially restored in single- or double-T-block Ala (A) substitution mutants. Analysis of chloroplast import of these mutants revealed several interesting observations. Single-T-block mutations did not noticeably affect targeting efficiency, except in T1 and T4 mutations. However, double-T mutants, T2A/T4A, T3A/T6A, T3A/T7A, T4A/T6A, and T4A/T7A, caused a 50% to 100% loss in targeting ability. T3A/T6A and T4A/T6A mutants produced only precursor proteins, whereas T2A/T4A and T4A/T7A mutants produced only a 37-kD protein. Detailed analyses revealed that sequence motifs ML in T1, LKSSA in T3, FP and RK in T4, CMQVW in T6, and KKFET in T7 play important roles in chloroplast targeting. In T1, the hydrophobicity of ML is important for targeting. LKSSA in T3 is functionally equivalent to CMQVW in T6 and KKFET in T7. Furthermore, subcellular fractionation revealed that Ala substitution in T1, T3, and T6 produced soluble precursors, whereas Ala substitution in T4 and T7 produced intermediates that were tightly associated with membranes. These results demonstrate that the transit peptide contains multiple motifs and that some of them act in concert or synergistically.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Okamoto T. Transport of Proteases to the Vacuole: ER Export Bypassing Golgi? PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|