1
|
Maistriaux LC, Laurent MJ, Jeanguenin L, Prado SA, Nader J, Welcker C, Charcosset A, Tardieu F, Nicolas SD, Chaumont F. Genetic variability of aquaporin expression in maize: From eQTLs to a MITE insertion regulating PIP2;5 expression. PLANT PHYSIOLOGY 2024; 196:368-384. [PMID: 38839061 PMCID: PMC11376376 DOI: 10.1093/plphys/kiae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages, and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of 4 plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through expression quantitative trait locus (eQTL) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2;5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2;5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress adaptation processes.
Collapse
Affiliation(s)
- Laurie C Maistriaux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Maxime J Laurent
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Linda Jeanguenin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | | | - Joseph Nader
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Claude Welcker
- INRAE, LEPSE, Université de Montpellier, 34060 Montpellier, France
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - François Tardieu
- INRAE, LEPSE, Université de Montpellier, 34060 Montpellier, France
| | - Stéphane D Nicolas
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Pou A, Hachez C, Couvreur V, Maistriaux LC, Ismail A, Chaumont F. Exposure to high nitrogen triggered a genotype-dependent modulation of cell and root hydraulics, which can involve aquaporin regulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13640. [PMID: 35099809 DOI: 10.1111/ppl.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Root nitrogen acquisition has been proposed to be regulated by mass flow, a process by which water flow brings nutrients to the root surface, depending on a concerted regulation of the root hydraulic properties and stomatal conductance. As aquaporins play an important role in regulating transcellular water flow, we aimed at evaluating the short-term effect of high nitrogen (HN) availability on the dynamics of hydraulic parameters at both the root and cell level and the regulation of aquaporins. The effect of short-term HN (8 mM NO3 - ) treatment was investigated on 12 diverse 15-day-old maize genotypes. Root exposure to HN triggered a rapid (<4 h) increase in the root hydraulic conductivity (Lpr ) in seven genotypes while no Lpr variation was recorded for the others, allowing the separation of the genotypes into two groups (HN-responsive and HN-nonresponsive). A remarkable correlation between Lpr and the cortex cell hydraulic conductivity (Lpc ) was observed. However, while differences in gas exchange parameters were also observed, the variations were genotype-specific and not always correlated with the root hydraulic parameters. We then investigated whether HN-induced Lpr variations were linked to the activity and regulation of plasma membrane PIP aquaporins. While some changes in PIP mRNA levels were detected, this was not correlated with the protein levels. On the other hand, the rapid variation in Lpr observed in the B73 genotype was correlated with the PIP protein abundance in the plasma membrane, highlighting PIP posttranslational mechanisms in the short-term regulation of root hydraulic parameters in response to HN treatment.
Collapse
Affiliation(s)
- Alicia Pou
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - Laurie C Maistriaux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ahmed Ismail
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Sabir F, Zarrouk O, Noronha H, Loureiro-Dias MC, Soveral G, Gerós H, Prista C. Grapevine aquaporins: Diversity, cellular functions, and ecophysiological perspectives. Biochimie 2021; 188:61-76. [PMID: 34139292 DOI: 10.1016/j.biochi.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
High-scored premium wines are typically produced under moderate drought stress, suggesting that the water status of grapevine is crucial for wine quality. Aquaporins greatly influence the plant water status by facilitating water diffusion across the plasma membrane in a tightly regulated manner. They adjust the hydraulic conductance of the plasma membrane rapidly and reversibly, which is essential in specific physiological events, including adaptation to soil water scarcity. The comprehension of the sophisticated plant-water relations at the molecular level are thus important to optimize agricultural practices or to assist plant breeding programs. This review explores the recent progresses in understanding the water transport in grapevine at the cellular level through aquaporins and its regulation. Important aspects, including aquaporin structure, diversity, cellular localization, transport properties, and regulation at the cellular and whole plant level are addressed. An ecophysiological perspective about the roles of grapevine aquaporins in plant response to drought stress is also provided.
Collapse
Affiliation(s)
- Farzana Sabir
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| | - Olfa Zarrouk
- Association SFCOLAB - Collaborative Laboratory for Digital Innovation in Agriculture, Rua Cândido dos Reis nº1, Espaço SFCOLAB, 2560-312, Torres Vedras, Portugal
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Maria C Loureiro-Dias
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Catarina Prista
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal; Departamento de Recursos Biologicos, Ambiente e Territorio (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
4
|
Cheng XF, Wu HH, Zou YN, Wu QS, Kuča K. Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:27-35. [PMID: 33662869 DOI: 10.1016/j.plaphy.2021.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 05/24/2023]
Abstract
Aquaporins (AQPs) involved in water and small molecule transport respond to environmental stress, while it is not clear how arbuscular mycorrhizal fungi (AMF) regulate AQP expression. Here, we investigated the change in leaf water potential and expression level of four tonoplast intrinsic proteins (TIPs), six plasma membrane intrinsic proteins (PIPs), and four nodin-26 like intrinsic proteins (NIPs) genes in trifoliate orange (Poncirus trifoliata) inoculated with Funneliformis mosseae under well-watered (WW), salt stress (SS), and waterlogging stress (WS). Root AMF colonization and soil hyphal length collectively were reduced by SS and WS. Under WW, inoculation with AMF gave diverse responses of AQPs: six AQPs up-regulated, three AQPs down-regulated, and five AQPs did not change. Such up-regulation of more AQPs under mycorrhization and WW partly accelerated water absorption, thereby, maintaining higher leaf water potential. However, under SS, all the fourteen AQPs were dramatically induced by AMF inoculation, which improved water permeability of membranes and stimulated water transport of the host. Under WS, AMF colonization almost did not induce or even down-regulated these AQPs expressions with three exceptions (PtTIP2;2, PtPIP1;1, and PtNIP1;2), thus, no change in leaf water potential. As a result, mycorrhizal plants under flooding may have an escape mechanism to reduce water absorption. It is concluded that AMF had different strategies in response to environmental stresses (e.g. SS and WS) by regulating leaf AQP expression in the host (e.g. trifoliate orange).
Collapse
Affiliation(s)
- Xiao-Fen Cheng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Hui-Hui Wu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Ying-Ning Zou
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China.
| | - Qiang-Sheng Wu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| |
Collapse
|
5
|
Laloux T, Matyjaszczyk I, Beaudelot S, Hachez C, Chaumont F. Interaction Between the SNARE SYP121 and the Plasma Membrane Aquaporin PIP2;7 Involves Different Protein Domains. FRONTIERS IN PLANT SCIENCE 2021; 11:631643. [PMID: 33537055 PMCID: PMC7847993 DOI: 10.3389/fpls.2020.631643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are channels facilitating the passive diffusion of water and small solutes. Arabidopsis PIP2;7 trafficking occurs through physical interaction with SNARE proteins including the syntaxin SYP121, a plasma membrane Qa-SNARE involved in membrane fusion. To better understand the interaction mechanism, we aimed at identifying the interaction motifs in SYP121 and PIP2;7 using ratiometric bimolecular fluorescence complementation assays in Nicotiana benthamiana. SYP121 consists of four regions, N, H, Q, and C, and sequential deletions revealed that the C region, containing the transmembrane domain, as well as the H and Q regions, containing the Habc and Qa-SNARE functional domains, interact with PIP2;7. Neither the linker between the Habc and the Qa-SNARE domains nor the H or Q regions alone could fully restore the interaction with PIP2;7, suggesting that the interacting motif depends on the conformation taken by the HQ region. When investigating the interacting motif(s) in PIP2;7, we observed that deletion of the cytosolic N- and/or C- terminus led to a significant decrease in the interaction with SYP121. Shorter deletions revealed that at the N-terminal amino acid residues 18-26 were involved in the interaction. Domain swapping experiments between PIP2;7 and PIP2;6, a PIP isoform that does not interact with SYP121, showed that PIP2;7 N-terminal part up to the loop C was required to restore the full interaction signal, suggesting that, as it is the case for SYP121, the interaction motif(s) in PIP2;7 depend on the protein conformation. Finally, we also showed that PIP2;7 physically interacted with other Arabidopsis SYP1s and SYP121 orthologs.
Collapse
|
6
|
Fox AR, Scochera F, Laloux T, Filik K, Degand H, Morsomme P, Alleva K, Chaumont F. Plasma membrane aquaporins interact with the endoplasmic reticulum resident VAP27 proteins at ER-PM contact sites and endocytic structures. THE NEW PHYTOLOGIST 2020; 228:973-988. [PMID: 33410187 PMCID: PMC7586982 DOI: 10.1111/nph.16743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 05/24/2023]
Abstract
Plasma membrane (PM) intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water and small solutes. The functional importance of the PM organisation of PIPs in the interaction with other cellular structures is not completely understood. We performed a pull-down assay using maize (Zea mays) suspension cells expressing YFP-ZmPIP2;5 and validated the protein interactions by yeast split-ubiquitin and bimolecular fluorescence complementation assays. We expressed interacting proteins tagged with fluorescent proteins in Nicotiana benthamiana leaves and performed water transport assays in oocytes. Finally, a phylogenetic analysis was conducted. The PM-located ZmPIP2;5 physically interacts with the endoplasmic reticulum (ER) resident ZmVAP27-1. This interaction requires the ZmVAP27-1 cytoplasmic major sperm domain. ZmPIP2;5 and ZmVAP27-1 localise in close vicinity in ER-PM contact sites (EPCSs) and endocytic structures upon exposure to salt stress conditions. This interaction enhances PM water permeability in oocytes. Similarly, the Arabidopsis ZmVAP27-1 paralogue, AtVAP27-1, interacts with the AtPIP2;7 aquaporin. Together, these data indicate that the PIP2-VAP27 interaction in EPCSs is evolutionarily conserved, and suggest that VAP27 might stabilise the aquaporins and guide their endocytosis in response to salt stress.
Collapse
Affiliation(s)
- Ana Romina Fox
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - Florencia Scochera
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
- Facultad de Farmacia y BioquímicaDepartamento de FisicomatemáticaUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - Timothée Laloux
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Karolina Filik
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Karina Alleva
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
- Facultad de Farmacia y BioquímicaDepartamento de FisicomatemáticaUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| |
Collapse
|
7
|
Wang H, Zhang L, Tao Y, Wang Z, Shen D, Dong H. Transmembrane Helices 2 and 3 Determine the Localization of Plasma Membrane Intrinsic Proteins in Eukaryotic Cells. FRONTIERS IN PLANT SCIENCE 2019; 10:1671. [PMID: 31998350 PMCID: PMC6966961 DOI: 10.3389/fpls.2019.01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/27/2019] [Indexed: 05/12/2023]
Abstract
In plants, plasma membrane intrinsic protein (PIP) PIP1s and PIP2s mediate the transport of disparate substrates across plasma membranes (PMs), with a prerequisite that the proteins correctly localize to the PMs. While PIP2s can take correct localization by themselves in plant cells, PIP1s cannot unless aided by a specific PIP2. Here, we analyzed the localization of the Arabidopsis aquaporins, AtPIP1s, AtPIP2;4, and their mutants in yeast, Xenopus oocytes, and protoplasts of Arabidopsis. Most of AtPIP2;4 localized in the PM when expressed alone, whereas AtPIP1;1 failed to realize it in yeast and Xenopus oocytes. Switch of the transmembrane helix 2 (TM2) or TM3 from AtPIP1;1 to AtPIP2;4 disabled the latter's PM targeting activity. Surprisingly, a replacement of TM2 and TM3 of AtPIP1;1 with those of AtPIP2;4 created a PM-localized AtPIP1;1 mutant, 1;1Δ(TM2+TM3)/2;4(TM2+TM3), which could act as a water and hydrogen peroxide channel just like AtPIP2;4. A localization and function analysis on mutants of AtPIP1;2, AtPIP1;3, AtPIP1;4, and AtPIP1;5, with the same replaced TM2 and TM3 from AtPIP2;4, showed that these AtPIP1 variants could also localize in the PM spontaneously, thus playing an inherent role in transporting solutes. Sequential and structural analysis suggested that a hydrophilic residue and a defective LxxxA motif are modulators of PM localization of AtPIP1s. These results indicate that TM2 and TM3 are necessary and, more importantly, sufficient in AtPIP2 for its PM localization.
Collapse
Affiliation(s)
- Hao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Taian, China
| | - Yuan Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zuodong Wang
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Taian, China
| | - Dan Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Dan Shen, ; Hansong Dong,
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Taian, China
- *Correspondence: Dan Shen, ; Hansong Dong,
| |
Collapse
|
8
|
Matsui H, Hopkinson BM, Nakajima K, Matsuda Y. Plasma Membrane-Type Aquaporins from Marine Diatoms Function as CO 2/NH 3 Channels and Provide Photoprotection. PLANT PHYSIOLOGY 2018; 178:345-357. [PMID: 30076224 PMCID: PMC6130027 DOI: 10.1104/pp.18.00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Aquaporins (AQPs) are ubiquitous water channels that facilitate the transport of many small molecules and may play multiple vital roles in aquatic environments. In particular, mechanisms to maintain transmembrane fluxes of important small molecules have yet to be studied in marine photoautotrophic organisms. Here, we report the occurrence of multiple AQPs with differential cellular localizations in marine diatoms, an important group of oceanic primary producers. The AQPs play a role in mediating the permeability of membranes to CO2 and NH3 In silico surveys revealed the presence of five AQP orthologs in the pennate diatom Phaeodactylum tricornutum and two in the centric diatom Thalassiosira pseudonana GFP fusions of putative AQPs displayed clear localization to the plasma membrane (PtAGP1 and PtAQP2), the chloroplast endoplasmic reticulum (CER; PtAGP1 and PtAQP3), and the tonoplast (PtAQP5) in P. tricornutum In T. pseudonana, GFP-AQP fusion proteins were found on the vacuole membrane (TpAQP1) and CER (TpAQP2). Transcript levels of both PtAQP1 and PtAQP2 were highly induced by ammonia, while only PtAQP2 was induced by high (1%[v/v]) CO2 Constitutive overexpression of GFP-tagged PtAQP1 and PtAQP2 significantly increased CO2 and NH3 permeability in P. tricornutum, strongly indicating that these AQPs function in regulating CO2/NH3 permeability in the plasma membrane and/or CER. Cells carrying GFP-tagged PtAQP1 and PtAQP2 had higher nonphotochemical quenching under high light relative to that of wild-type cells, suggesting that these AQPs are involved in photoprotection. These AQPs may facilitate the efflux of NH3, preventing the uncoupling effect of high intracellular ammonia concentrations.
Collapse
Affiliation(s)
- Hiroaki Matsui
- Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan 669-1337
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602
| | - Kensuke Nakajima
- Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan 669-1337
| | - Yusuke Matsuda
- Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan 669-1337
| |
Collapse
|
9
|
Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F. Plant and Mammal Aquaporins: Same but Different. Int J Mol Sci 2018; 19:E521. [PMID: 29419811 PMCID: PMC5855743 DOI: 10.3390/ijms19020521] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions. In addition, plants are mostly autotrophic, being able to synthesize carbohydrates molecules from the carbon dioxide in the air during the process of photosynthesis, using sunlight as an energy source. It is therefore interesting to analyze how, in these different contexts specific to both kingdoms of life, AQP function and regulation evolved. This review aims at highlighting similarities and differences between plant and mammal AQPs. Emphasis is given to the comparison of isoform numbers, their substrate selectivity, the regulation of the subcellular localization, and the channel activity.
Collapse
Affiliation(s)
- Timothée Laloux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Jahed Ahmed
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Agnieszka Jurkiewicz
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| |
Collapse
|
10
|
Bienert MD, Diehn TA, Richet N, Chaumont F, Bienert GP. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function. FRONTIERS IN PLANT SCIENCE 2018; 9:382. [PMID: 29632543 PMCID: PMC5879115 DOI: 10.3389/fpls.2018.00382] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/08/2018] [Indexed: 05/21/2023]
Abstract
Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for angiosperm PIP1 and PIP2 isoforms in terms of their water transport activity, trafficking, and interaction emerged already as early as in non-seed vascular plants. The existence and conservation of these characteristics may argue for the fact that PIP2s are indeed involved in the delivery of PIP1s to the plasma membrane and that the formation of functional heterotetramers is of biological relevance.
Collapse
Affiliation(s)
- Manuela D. Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Till A. Diehn
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nicolas Richet
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gerd P. Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- *Correspondence: Gerd P. Bienert,
| |
Collapse
|
11
|
Roche JV, Törnroth-Horsefield S. Aquaporin Protein-Protein Interactions. Int J Mol Sci 2017; 18:ijms18112255. [PMID: 29077056 PMCID: PMC5713225 DOI: 10.3390/ijms18112255] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1) interactions between aquaporin tetramers; (2) interactions between aquaporin monomers within a tetramer (hetero-tetramerization); and (3) transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.
Collapse
Affiliation(s)
- Jennifer Virginia Roche
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
12
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
13
|
|
14
|
Jozefkowicz C, Sigaut L, Scochera F, Soto G, Ayub N, Pietrasanta LI, Amodeo G, González Flecha FL, Alleva K. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry. Biophys J 2016; 110:1312-21. [PMID: 27028641 DOI: 10.1016/j.bpj.2016.01.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/28/2015] [Accepted: 01/19/2016] [Indexed: 01/27/2023] Open
Abstract
Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.
Collapse
Affiliation(s)
- Cintia Jozefkowicz
- Instituto de Química y Fisicoquímica Biológica Alejandro C. Paladini (IQUIFIB), Universidad de Buenos Aires, Consejo National de Investigaciones Científicas y Técnicas (UBA-CONICET), Buenos Aires, Argentina
| | - Lorena Sigaut
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Física de Buenos Aires (IFIBA), CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Florencia Scochera
- Instituto de Química y Fisicoquímica Biológica Alejandro C. Paladini (IQUIFIB), Universidad de Buenos Aires, Consejo National de Investigaciones Científicas y Técnicas (UBA-CONICET), Buenos Aires, Argentina; Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Genética Ewald A. Favret, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Argentina
| | - Nicolás Ayub
- Instituto de Genética Ewald A. Favret, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Argentina
| | - Lía Isabel Pietrasanta
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Física de Buenos Aires (IFIBA), CONICET, Ciudad Universitaria, Buenos Aires, Argentina; Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, UBA-CONICET, Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad y Biología Experimental y Aplicada, Facultad de Ciencias Exactas y Naturales, UBA-CONICET, Buenos Aires, Argentina
| | - F Luis González Flecha
- Instituto de Química y Fisicoquímica Biológica Alejandro C. Paladini (IQUIFIB), Universidad de Buenos Aires, Consejo National de Investigaciones Científicas y Técnicas (UBA-CONICET), Buenos Aires, Argentina
| | - Karina Alleva
- Instituto de Química y Fisicoquímica Biológica Alejandro C. Paladini (IQUIFIB), Universidad de Buenos Aires, Consejo National de Investigaciones Científicas y Técnicas (UBA-CONICET), Buenos Aires, Argentina; Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Noronha H, Araújo D, Conde C, Martins AP, Soveral G, Chaumont F, Delrot S, Gerós H. The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water. PLoS One 2016; 11:e0160976. [PMID: 27504956 PMCID: PMC4978503 DOI: 10.1371/journal.pone.0160976] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
A MIP (Major Intrinsic Protein) subfamily called Uncharacterized Intrinsic Proteins (XIP) was recently described in several fungi and eudicot plants. In this work, we cloned a XIP from grapevine, VvXIP1, and agrobacterium-mediated transformation studies in Nicotiana benthamiana revealed that the encoded aquaporin shows a preferential localization at the endoplasmic reticulum membrane. Stopped-flow spectrometry in vesicles from the aqy-null yeast strain YSH1172 overexpressing VvXIP1 showed that VvXIP1 is unable to transport water but is permeable to glycerol. Functional studies with the ROS sensitive probe CM-H2DCFDA in intact transformed yeasts showed that VvXIP1 is also able to permeate hydrogen peroxide (H2O2). Drop test growth assays showed that besides glycerol and H2O2, VvXIP1 also transports boric acid, copper, arsenic and nickel. Furthermore, we found that VvXIP1 transcripts were abundant in grapevine leaves from field grown plants and strongly repressed after the imposition of severe water-deficit conditions in potted vines. The observed downregulation of VvXIP1 expression in cultured grape cells in response to ABA and salt, together with the increased sensitivity to osmotic stress displayed by the aqy-null yeast overexpressing VvXIP1, corroborates the role of VvXIP1 in osmotic regulation besides its involvement in H2O2 transport and metal homeostasis.
Collapse
Affiliation(s)
- Henrique Noronha
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas CITAB, Vila Real, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Diogo Araújo
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas CITAB, Vila Real, Portugal
| | - Carlos Conde
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana P. Martins
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) University of Lisbon, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) University of Lisbon, Lisbon, Portugal
| | - François Chaumont
- Institut des Science de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Serge Delrot
- INRA, ISVV, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, Université de Bordeaux, Villenave D’Ornon, France
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas CITAB, Vila Real, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
16
|
Berny MC, Gilis D, Rooman M, Chaumont F. Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer. MOLECULAR PLANT 2016; 9:986-1003. [PMID: 27109604 DOI: 10.1016/j.molp.2016.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/16/2016] [Accepted: 04/10/2016] [Indexed: 05/23/2023]
Abstract
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
Collapse
Affiliation(s)
- Marie C Berny
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Dimitri Gilis
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Marianne Rooman
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
17
|
Yoo YJ, Lee HK, Han W, Kim DH, Lee MH, Jeon J, Lee DW, Lee J, Lee Y, Lee J, Kim JS, Cho Y, Han JK, Hwang I. Interactions between Transmembrane Helices within Monomers of the Aquaporin AtPIP2;1 Play a Crucial Role in Tetramer Formation. MOLECULAR PLANT 2016; 9:1004-1017. [PMID: 27142778 DOI: 10.1016/j.molp.2016.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Aquaporin (AQP) is a water channel protein found in various subcellular membranes of both prokaryotic and eukaryotic cells. The physiological functions of AQPs have been elucidated in many organisms. However, understanding their biogenesis remains elusive, particularly regarding how they assemble into tetramers. Here, we investigated the amino acid residues involved in the tetramer formation of the Arabidopsis plasma membrane AQP AtPIP2;1 using extensive amino acid substitution mutagenesis. The mutant proteins V41A/E44A, F51A/L52A, F87A/I91A, F92A/I93A, V95A/Y96A, and H216A/L217A, harboring alanine substitutions in the transmembrane (TM) helices of AtPIP2;1 polymerized into multiple oligomeric complexes with a variable number of subunits greater than four. Moreover, these mutant proteins failed to traffic to the plasma membrane, instead of accumulating in the endoplasmic reticulum (ER). Structure-based modeling revealed that these residues are largely involved in interactions between TM helices within monomers. These results suggest that inter-TM interactions occurring both within and between monomers play crucial roles in tetramer formation in the AtPIP2;1 complex. Moreover, the assembly of AtPIP2;1 tetramers is critical for their trafficking from the ER to the plasma membrane, as well as water permeability.
Collapse
Affiliation(s)
- Yun-Joo Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hyun Kyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Wonhee Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Korea
| | - Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jouhyun Jeon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Juhun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jin Seok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
18
|
de Michele R, McFarlane HE, Parsons HT, Meents MJ, Lao J, González Fernández-Niño SM, Petzold CJ, Frommer WB, Samuels AL, Heazlewood JL. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings. J Proteome Res 2016; 15:900-13. [PMID: 26781341 DOI: 10.1021/acs.jproteome.5b00876] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.
Collapse
Affiliation(s)
- Roberto de Michele
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States.,Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy , Palermo 90129, Italy
| | - Heather E McFarlane
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada.,Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany
| | - Harriet T Parsons
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Plant and Environmental Sciences, University of Copenhagen , Copenhagen C-1871, Denmark
| | - Miranda J Meents
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Jeemeng Lao
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Susana M González Fernández-Niño
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States
| | - A Lacey Samuels
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne , Melbourne, Victoria 3010, Australia
| |
Collapse
|
19
|
Deshmukh RK, Sonah H, Bélanger RR. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. FRONTIERS IN PLANT SCIENCE 2016; 7:1896. [PMID: 28066459 PMCID: PMC5167727 DOI: 10.3389/fpls.2016.01896] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 05/02/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Collapse
|
20
|
Yaneff A, Vitali V, Amodeo G. PIP1 aquaporins: Intrinsic water channels or PIP2 aquaporin modulators? FEBS Lett 2015; 589:3508-15. [PMID: 26526614 DOI: 10.1016/j.febslet.2015.10.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
The highly conserved plant aquaporins, known as Plasma membrane Intrinsic Proteins (PIPs), are the main gateways for cell membrane water exchange. Years of research have described in detail the properties of the PIP2 subfamily. However, characterizing the PIP1 subfamily has been difficult due to the failure to localize to the plasma membrane. In addition, the discovery of the PIP1-PIP2 interaction suggested that PIP1 aquaporins could be regulated by a complex posttranslational mechanism that involves trafficking, heteromerization and fine-tuning of channel activity. This review not only considers the evidence and findings but also discusses the complexity of PIP aquaporins. To establish a new benchmark in PIP regulation, we propose to consider PIP1-PIP2 pairs as functional units for the purpose of future research into their physiological roles.
Collapse
Affiliation(s)
- Agustín Yaneff
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Victoria Vitali
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in Plants. Physiol Rev 2015; 95:1321-58. [DOI: 10.1152/physrev.00008.2015] [Citation(s) in RCA: 486] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Chevalier AS, Chaumont F. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals. PLANT & CELL PHYSIOLOGY 2015; 56:819-29. [PMID: 25520405 PMCID: PMC7107115 DOI: 10.1093/pcp/pcu203] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
23
|
De Caroli M, Lenucci MS, Manualdi F, Dalessandro G, De Lorenzo G, Piro G. Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall. FRONTIERS IN PLANT SCIENCE 2015; 6:660. [PMID: 26379688 PMCID: PMC4550104 DOI: 10.3389/fpls.2015.00660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 05/14/2023]
Abstract
The plant endomembrane system is massively involved in the synthesis, transport and secretion of cell wall polysaccharides and proteins; however, the molecular mechanisms underlying trafficking toward the apoplast are largely unknown. Besides constitutive, the existence of a regulated secretory pathway has been proposed. A polygalacturonase inhibitor protein (PGIP2), known to move as soluble cargo and reach the cell wall through a mechanism distinguishable from default, was dissected in its main functional domains (A, B, C, D), and C sub-fragments (C1-10), to identify signals essential for its regulated targeting. The secretion patterns of the fluorescent chimeras obtained by fusing different PGIP2 domains to the green fluorescent protein (GFP) were analyzed. PGIP2 N-terminal and leucine-rich repeat domains (B and C, respectively) seem to operate as holding/releasing signals, respectively, during PGIP2 transit through the Golgi. The B domain slows down PGIP2 secretion by transiently interacting with Golgi membranes. Its depletion leads, in fact, to the secretion via default (Sp2-susceptible) of the ACD-GFP chimera faster than PGIP2. Depending on its length (at least the first 5 leucine-rich repeats are required), the C domain modulates B interaction with Golgi membranes allowing the release of chimeras and their extracellular secretion through a Sp2 independent pathway. The addition of the vacuolar sorting determinant Chi to PGIP2 diverts the path of the protein from cell wall to vacuole, suggesting that C domain is a releasing rather than a cell wall sorting signal.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Marcello S. Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Francesca Manualdi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Giuseppe Dalessandro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università degli Studi di Roma “La Sapienza”Rome, Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
- *Correspondence: Gabriella Piro, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, via prov.le Lecce-Monteroni, Lecce 73100, Italy
| |
Collapse
|
24
|
Chevalier AS, Chaumont F. The LxxxA motif in the third transmembrane helix of the maize aquaporin ZmPIP2;5 acts as an ER export signal. PLANT SIGNALING & BEHAVIOR 2015; 10:e990845. [PMID: 25897469 PMCID: PMC4622571 DOI: 10.4161/15592324.2014.990845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 05/20/2023]
Abstract
The subcellular localization of aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily is highly regulated. In maize (Zea mays), ZmPIP1s are retained in the endoplasmic reticulum (ER) whereas ZmPIP2s are able to reach the plasma membrane (PM). We recently identified a new sorting determinant which is buried within the third transmembrane domain (TM3) of ZmPIP2;5. The Leu127 and Ala131 are required for the localization of ZmPIP2;5 in the PM and for its exit from the ER. However, when inserted into ZmPIP1;2, these amino acids were not sufficient to export the protein out of the ER. Here, we show that, when inserted into a truncated version of ZmPIP1;2 consisting only of its TM3 region, Leu127 and Ala131 of ZmPIP2;5 are able to partially bring the protein to the PM, demonstrating the active anterograde sorting function of this motif.
Collapse
Affiliation(s)
- Adrien S. Chevalier
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve, Belgium
- Correspondence to: François Chaumont;
| |
Collapse
|
25
|
Srivastava AK, Penna S, Nguyen DV, Tran LSP. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 2014; 36:389-98. [PMID: 25430890 DOI: 10.3109/07388551.2014.973367] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant-water homeostasis, which is regulated by a group of proteins called "aquaporins". Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- a Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre , Mumbai , India
| | - Suprasanna Penna
- a Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre , Mumbai , India
| | - Dong Van Nguyen
- b National Key Laboratory for Plant Cell Technology , Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science , Hanoi , Vietnam , and
| | - Lam-Son Phan Tran
- c Signaling Pathway Research Unit , RIKEN Center for Sustainable Resource Science , Yokohama , Kanagawa , Japan
| |
Collapse
|
26
|
Nebenführ A. Targeting of polytopic proteins to the plasma membrane. PLANT PHYSIOLOGY 2014; 166:3-4. [PMID: 25174046 PMCID: PMC4149715 DOI: 10.1104/pp.114.247080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 05/29/2023]
Abstract
New research reveals unexpected targeting signals in a transmembrane domain of plasma membrane water channels.
Collapse
Affiliation(s)
- Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840
| |
Collapse
|