1
|
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. THE NEW PHYTOLOGIST 2020; 227:24-37. [PMID: 32297991 DOI: 10.1111/nph.16536] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHSPs) are an ubiquitous protein family found in archaea, bacteria and eukaryotes. In plants, as in other organisms, sHSPs are upregulated by stress and are proposed to act as molecular chaperones to protect other proteins from stress-induced damage. sHSPs share an 'α-crystallin domain' with a β-sandwich structure and a diverse N-terminal domain. Although sHSPs are 12-25 kDa polypeptides, most assemble into oligomers with ≥ 12 subunits. Plant sHSPs are particularly diverse and numerous; some species have as many as 40 sHSPs. In angiosperms this diversity comprises ≥ 11 sHSP classes encoding proteins targeted to the cytosol, nucleus, endoplasmic reticulum, chloroplasts, mitochondria and peroxisomes. The sHSPs underwent a lineage-specific gene expansion, diversifying early in land plant evolution, potentially in response to stress in the terrestrial environment, and expanded again in seed plants and again in angiosperms. Understanding the structure and evolution of plant sHSPs has progressed, and a model for their chaperone activity has been proposed. However, how the chaperone model applies to diverse sHSPs and what processes sHSPs protect are far from understood. As more plant genomes and transcriptomes become available, it will be possible to explore theories of the evolutionary pressures driving sHSP diversification.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
2
|
Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 2018; 359:930-935. [PMID: 29472485 PMCID: PMC6587588 DOI: 10.1126/science.aam7229] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
Oligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs. A hierarchy of assembly, involving intermediates that are populated only fleetingly at equilibrium, ensures selective oligomerization. Conformational flexibility at noninterfacial regions in the monomers prevents coassembly, allowing interfaces to remain largely conserved. Homomeric oligomers must overcome the entropic benefit of coassembly and, accordingly, homomeric paralogs comprise fewer subunits than homomers that have no paralogs.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dale A Shepherd
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Erik G Marklund
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Indu Santhanagoplan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Matteo T Degiacomi
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Arthur Laganowsky
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Timothy M Allison
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Eman Basha
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael T Marty
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Martin R Galpin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Andrew J Baldwin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
3
|
Wang Y, Zhou Z, Gao J, Wu Y, Xia Z, Zhang H, Wu J. The Mechanisms of Maize Resistance to Fusarium verticillioides by Comprehensive Analysis of RNA-seq Data. FRONTIERS IN PLANT SCIENCE 2016; 7:1654. [PMID: 27867390 PMCID: PMC5096342 DOI: 10.3389/fpls.2016.01654] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 05/21/2023]
Abstract
Fusarium verticillioides is the most commonly reported fungal species responsible for ear rot of maize which substantially reduces grain yield. It also results in a substantial accumulation of mycotoxins that give rise to toxic response when ingested by animals and humans. For inefficient control by chemical and agronomic measures, it thus becomes more desirable to select more resistant varieties. However, the molecular mechanisms underlying the infection process remain poorly understood, which hampers the application of quantitative resistance in breeding programs. Here, we reveal the disease-resistance mechanism of the maize inbred line of BT-1 which displays high resistance to ear rot using RNA high throughput sequencing. By analyzing RNA-seq data from the BT-1 kernels before and after F. verticillioides inoculation, we found that transcript levels of genes associated with key pathways are dramatically changed compared with the control treatment. Differential gene expression in ear rot resistant and susceptible maize was confirmed by RNA microarray and qRT-PCR analyses. Further investigation suggests that the small heat shock protein family, some secondary metabolites, and the signaling pathways of abscisic acid, jasmonic acid, or salicylic acids (SA) may be involved in the pathogen-associated molecular pattern-triggered immunity against F. verticillioides. These data will not only provide new insights into the molecular resistant mechanisms against fungi invading, but may also result in the identification of key molecular factors associated with ear rot resistance in maize.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiyong Zhang
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural UniversityZhengzhou, China
| | - Jianyu Wu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
4
|
McLoughlin F, Basha E, Fowler ME, Kim M, Bordowitz J, Katiyar-Agarwal S, Vierling E. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress. PLANT PHYSIOLOGY 2016; 172:1221-1236. [PMID: 27474115 PMCID: PMC5047077 DOI: 10.1104/pp.16.00536] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/25/2016] [Indexed: 05/23/2023]
Abstract
The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules.
Collapse
Affiliation(s)
- Fionn McLoughlin
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (F.M., M.E.F., M.K., E.V.);Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (E.B., M.K., J.B., S.K.-A.); andDepartment of Botany, Tanta University, Tanta 31527, Egypt (E.B.)
| | - Eman Basha
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (F.M., M.E.F., M.K., E.V.);Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (E.B., M.K., J.B., S.K.-A.); andDepartment of Botany, Tanta University, Tanta 31527, Egypt (E.B.)
| | - Mary E Fowler
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (F.M., M.E.F., M.K., E.V.);Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (E.B., M.K., J.B., S.K.-A.); andDepartment of Botany, Tanta University, Tanta 31527, Egypt (E.B.)
| | - Minsoo Kim
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (F.M., M.E.F., M.K., E.V.);Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (E.B., M.K., J.B., S.K.-A.); andDepartment of Botany, Tanta University, Tanta 31527, Egypt (E.B.)
| | - Juliana Bordowitz
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (F.M., M.E.F., M.K., E.V.);Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (E.B., M.K., J.B., S.K.-A.); andDepartment of Botany, Tanta University, Tanta 31527, Egypt (E.B.)
| | - Surekha Katiyar-Agarwal
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (F.M., M.E.F., M.K., E.V.);Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (E.B., M.K., J.B., S.K.-A.); andDepartment of Botany, Tanta University, Tanta 31527, Egypt (E.B.)
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (F.M., M.E.F., M.K., E.V.);Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (E.B., M.K., J.B., S.K.-A.); andDepartment of Botany, Tanta University, Tanta 31527, Egypt (E.B.)
| |
Collapse
|
5
|
Cha JY, Lee SH, Seo KH, Choi YJ, Cheong MS, Son D. N-terminal arm of orchardgrass Hsp17.2 (DgHsp17.2) is essential for both in vitro chaperone activity and in vivo thermotolerance in yeast. Arch Biochem Biophys 2015; 591:18-27. [PMID: 26724757 DOI: 10.1016/j.abb.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
Abstract
Small heat shock proteins are well-known to function as chaperone in the protection of proteins and subcellular structures against stress-induced denaturation in many cell compartments. Irrespective of such general functional assignment, a proof of function in a living organism is missing. Here, we used heat-induced orchardgrass small Hsp17.2 (DgHsp17.2). Its function in in vitro chaperone properties has shown in protecting the model substrate, malate dehydrogenase (MDH) and citrate synthase (CS). Overexpression of DgHsp17.2 triggering strong chaperone activity enhanced in vivo thermotolerance of yeast cells. To identify the functional domain on DgHsp17.2 and correlationship between in vitro chaperone property and in vivo thermotolerance, we generated truncation mutants of DgHsp17.2 and showed essentiality of the N-terminal arm of DgHsp17.2 for the chaperone function. In addition, beyond for acquisition of thermotolerance irrespective of sequences are diverse among the small Hsps. However, any truncation mutants of DgHsp17.2 did not exhibit strong interaction with orchardgrass heat shock protein 70 (DgHsp70) different from mature DgHsp17.2, indicating that full-length DgHsp17.2 is necessary for cooperating with Hsp70 protein. Our study indicates that the N-terminal arm of DgHsp17.2 is an important region for chaperone activity and thermotolerance.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Sang-Hoon Lee
- Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Republic of Korea.
| | - Kyung Hye Seo
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumsung 3369-873, Republic of Korea.
| | - Young Jin Choi
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Mi Sun Cheong
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Daeyoung Son
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea; Department of Plant Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
6
|
|
7
|
Klein RD, Chidawanyika T, Tims HS, Meulia T, Bouchard RA, Pett VB. Chaperone function of two small heat shock proteins from maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:48-58. [PMID: 24656335 DOI: 10.1016/j.plantsci.2014.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that protect cells from the effect of heat and other stresses. Some sHsps are also expressed at specific stages of development. In plants different classes of sHsps are expressed in the various cellular compartments. While the Class I (cytosolic) sHsps in wheat and pea have been studied extensively, there are fewer experimental data on Class II (cytosolic) sHsps, especially in maize. Here we report the expression and purification of two Class II sHsps from Zea mays ssp. mays L. (cv. Oh43). The two proteins have almost identical sequences, with the significant exception of an additional nine-amino-acid intervening sequence near the beginning of the N-terminus in one of them. Both ZmHsp17.0-CII and ZmHsp17.8-CII oligomerize to form dodecamers at temperatures below heat shock, and we were able to visualize these dodecamers with TEM. There are significant differences between the two sHsps during heat shock at 43°C: ZmHsp17.8-CII dissociates into smaller oligomers than ZmHsp17.0-CII, and ZmHsp17.8-CII is a more efficient chaperone with target protein citrate synthase. Together with the previous observation that ZmHsp17.0-CII but not ZmHsp17.8-CII is expressed during development, we propose different roles in the cell for these two sHsps.
Collapse
Affiliation(s)
- Roger D Klein
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA.
| | | | - Hannah S Tims
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA.
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Robert A Bouchard
- Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Virginia B Pett
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA.
| |
Collapse
|
8
|
Kim DH, Xu ZY, Na YJ, Yoo YJ, Lee J, Sohn EJ, Hwang I. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:132-46. [PMID: 21730198 PMCID: PMC3165864 DOI: 10.1104/pp.111.178681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/03/2011] [Indexed: 05/20/2023]
Abstract
Plastid proteins that are encoded by the nuclear genome and synthesized in the cytosol undergo posttranslational targeting to plastids. Ankyrin repeat protein 2A (AKR2A) and AKR2B were recently shown to be involved in the targeting of proteins to the plastid outer envelope. However, it remains unknown whether other factors are involved in this process. In this study, we investigated a factor involved in AKR2A-mediated protein targeting to chloroplasts in Arabidopsis (Arabidopsis thaliana). Hsp17.8, a member of the class I (CI) cytosolic small heat shock proteins (sHsps), was identified in interactions with AKR2A. The interaction between Hsp17.8 and AKR2A was further confirmed by coimmunoprecipitation experiments. The carboxyl-terminal ankyrin repeat domain of AKR2A was responsible for AKR2A binding to Hsp17.8. Other CI cytosolic sHsps also interact with AKR2A to varying degrees. Additionally, Hsp17.8 binds to chloroplasts in vitro and enhances AKR2A binding to chloroplasts. HSP17.8 was expressed under normal growth conditions, and its expression increased after heat shock. Hsp17.8 exists as a dimer under normal physiological conditions, and it is converted to high oligomeric complexes, ranging from 240 kD to greater than 480 kD, after heat shock. High levels of Hsp17.8 together with AKR2A resulted in increased plastid targeting of Outer Envelope Protein7 (OEP7), a plastid outer envelope protein expressed as a green fluorescent protein fusion protein. In contrast, artificial microRNA suppression of HSP17.8 and closely related CI cytosolic sHSPs in protoplasts resulted in a reduction of OEP7:green fluorescent protein targeting to plastids. Based on these data, we propose that Hsp17.8 functions as an AKR2A cofactor in targeting membrane proteins to plastid outer membranes under normal physiological conditions.
Collapse
|
9
|
van Ooijen G, Lukasik E, van den Burg HA, Vossen JH, Cornelissen BJC, Takken FLW. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:563-72. [PMID: 20497382 PMCID: PMC2988412 DOI: 10.1111/j.1365-313x.2010.04260.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 05/20/2023]
Abstract
Race-specific disease resistance in plants depends on the presence of resistance (R) genes. Most R genes encode NB-ARC-LRR proteins that carry a C-terminal leucine-rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report the identification of RSI2 (Required for Stability of I-2) as a protein that interacts with the LRR domain of the tomato R protein I-2. RSI2 belongs to the family of small heat shock proteins (sHSPs or HSP20s). HSP20s are ATP-independent chaperones that form oligomeric complexes with client proteins to prevent unfolding and subsequent aggregation. Silencing of RSI2-related HSP20s in Nicotiana benthamiana compromised the hypersensitive response that is normally induced by auto-active variants of I-2 and Mi-1, a second tomato R protein. As many HSP20s have chaperone properties, the involvement of RSI2 and other R protein (co)chaperones in I-2 and Mi-1 protein stability was examined. RSI2 silencing compromised the accumulation of full-length I-2 in planta, but did not affect Mi-1 levels. Silencing of heat shock protein 90 (HSP90) and SGT1 led to an almost complete loss of full-length I-2 accumulation and a reduction in Mi-1 protein levels. In contrast to SGT1 and HSP90, RSI2 silencing led to accumulation of I-2 breakdown products. This difference suggests that RSI2 and HSP90/SGT1 chaperone the I-2 protein using different molecular mechanisms. We conclude that I-2 protein function requires RSI2, either through direct interaction with, and stabilization of I-2 protein or by affecting signalling components involved in initiation of the hypersensitive response.
Collapse
Affiliation(s)
| | - Ewa Lukasik
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | - Ben J C Cornelissen
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, The Netherlands
| | - Frank L W Takken
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Basha E, Jones C, Wysocki V, Vierling E. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 2010; 285:11489-97. [PMID: 20145254 PMCID: PMC2857027 DOI: 10.1074/jbc.m109.074088] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/30/2010] [Indexed: 11/06/2022] Open
Abstract
The small heat shock proteins (sHSPs) and alpha-crystallins are highly effective, ATP-independent chaperones that can bind denaturing client proteins to prevent their irreversible aggregation. One model of sHSP function suggests that the oligomeric sHSPs are activated to the client-binding form by dissociation at elevated temperatures to dimers or other sub-oligomeric species. Here we examine this model in a comparison of the oligomeric structure and chaperone activity of two conserved classes of cytosolic sHSPs in plants, the class I (CI) and class II (CII) proteins. Like the CI sHSPs, recombinant CII sHSPs from three divergent plant species, pea, wheat, and Arabidopsis, are dodecamers as determined by nano-electrospray mass spectrometry. While at 35 to 45 degrees C, all three CI sHSPs reversibly dissociate to dimers, the CII sHSPs retain oligomeric structure at high temperature. The CII dodecamers are, however, dynamic and rapidly exchange subunits, but unlike CI sHSPs, the exchange unit appears larger than a dimer. Differences in dodecameric structure are also reflected in the fact that the CII proteins do not hetero-oligomerize with CI sHSPs. Binding of the hydrophobic probe bis-ANS and limited proteolysis demonstrate CII proteins undergo significant, reversible structural changes at high temperature. All three recombinant CII proteins more efficiently protect firefly luciferase from insolubilization during heating than do the CI proteins. The CI and CII proteins behave strictly additively in client protection. In total, the results demonstrate that different sHSPs can achieve effective protection of client proteins by varied mechanisms.
Collapse
Affiliation(s)
- Eman Basha
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Christopher Jones
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Vicki Wysocki
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Elizabeth Vierling
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
11
|
den Engelsman J, Boros S, Dankers PY, Kamps B, Vree Egberts WT, Böde CS, Lane LA, Aquilina JA, Benesch JL, Robinson CV, de Jong WW, Boelens WC. The Small Heat-Shock Proteins HSPB2 and HSPB3 Form Well-defined Heterooligomers in a Unique 3 to 1 Subunit Ratio. J Mol Biol 2009; 393:1022-32. [DOI: 10.1016/j.jmb.2009.08.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
|
12
|
Coucheney F, Gal L, Beney L, Lherminier J, Gervais P, Guzzo J. A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:92-8. [PMID: 16472556 DOI: 10.1016/j.bbamem.2005.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/28/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
The small heat shock proteins (sHSP) are characterized by a chaperone activity to prevent irreversible protein denaturation. This study deals with the sHSP Lo18 induced by multiple stresses in Oenococcus oeni, a lactic acid bacterium. Using in situ immunocytochemistry and cellular fractionation experiments, we demonstrated the association of Lo18 with the membrane in O. oeni cells submitted to heat shock. The same result was obtained after exposure of cells to ethanol or benzyl alcohol, agents known to have an influence on membranes. For the different stresses, the protein was located on the periphery of the cell at membrane level and was also found within the cytoplasm. In order to determine if Lo18 could interact with the phospholipids, we used model membranes made of lipids extracted from O. oeni cells. Using fluorescence anisotropy of diphenylhexatriene (DPH) and generalized polarization of Laurdan, we showed that purified Lo18 interacts with these liposomes, and increases the molecular order of the lipid bilayer in these membranes when the temperature reaches 33.8 degrees C. All these data suggest that Lo18 could be involved in an adaptive response allowing the maintenance of membrane integrity during stress conditions in O. oeni cells.
Collapse
Affiliation(s)
- Françoise Coucheney
- Laboratoire de Microbiologie UMR UB/INRA 1232, Université de Bourgogne, ENSBANA, 1, Esplanade Erasme, 21 000 Dijon, France
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Moriguchi K, Suzuki T, Ito Y, Yamazaki Y, Niwa Y, Kurata N. Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations. THE PLANT CELL 2005; 17:389-403. [PMID: 15659629 PMCID: PMC548814 DOI: 10.1105/tpc.104.028456] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nuclear proteins play key roles in the fundamental regulation of genome instability, the phases of organ development, and physiological responsiveness through gene expression. Although nuclear proteins have been shown to account for approximately one-fourth of total proteins in yeast, no efficient method to identify novel nuclear proteins has been applied to plants. In this study, a trial to isolate nuclear proteins in rice was attempted, and several novel nuclear proteins showing a variety of subnuclear localizations were identified. The nuclear transportation trap (NTT) system, which is a modified two-hybrid system, isolated many nuclear proteins from rice (Oryza sativa) NTT cDNA libraries. Nuclear localization of the isolated proteins was confirmed by transient introduction of green fluorescent protein fusion constructs for a subset of protein genes into onion (Allium cepa) cells. The majority of these proteins, including novel proteins and proteins initially categorized as cytoplasmic proteins, were revealed to be localized in the nucleus. Detailed characterization of unknown proteins revealed various subnuclear localizations, indicating their possible association with chromatin and the nuclear matrix with a foci or speckle-like distribution. Some also showed dual distribution in the nucleus and cytoplasm. In the novel protein fraction, a protein was further identified for its chromatin-associated localization in a specific organ of rice by immunostaining. Thus, a variety of novel nuclear architectural proteins with chromatin or matrix associating abilities, which are important in nuclear organization by influencing certain organ developments or cell responsiveness, can be isolated using the NTT method. Because nuclear proteins other than transcription regulators have rarely been characterized in plants, such as matrix proteins and development-specific chromatin proteins, their identification and subsequent characterization could provide important information for genome-wide regulatory mechanisms controlled by nuclear organization.
Collapse
Affiliation(s)
- Kazuki Moriguchi
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Miroshnichenko S, Tripp J, Nieden UZ, Neumann D, Conrad U, Manteuffel R. Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:269-81. [PMID: 15634203 DOI: 10.1111/j.1365-313x.2004.02290.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The conformational dynamism and aggregate state of small heat shock proteins (sHSPs) may be crucial for their functions in thermoprotection of plant cells from the detrimental effects of heat stress. Ectopic expression of single chain fragment variable (scFv) antibodies against cytosolic sHSPs was used as new tool to generate sHSP loss-of-function mutants by antibody-mediated prevention of the sHSP assembly in vivo. Anti-sHSP scFv antibodies transiently expressed in heat-stressed tobacco protoplasts were not only able to recognize the endogenous sHSPs but also prevented their assembly into heat stress granula (HSGs). Constitutive expression of the same scFv antibodies in transgenic plants did not alter their phenotype at normal growth temperatures, but their leaves turned yellow and died after prolonged stress at sublethal temperatures. Structural analysis revealed a regular cytosolic distribution of stress-induced sHSPs in mesophyll cells of stress-treated transgenic plants, whereas extensive formation of HSGs was observed in control cells. After prolonged stress at sublethal temperatures, mesophyll cells of transgenic plants suffered destruction of all cellular membranes and finally underwent cell death. In contrast, mesophyll cells of the stressed controls showed HSG disintegration accompanied by appearance of polysomes, dictyosomes and rough endoplasmic reticulum indicating normalization of cell functions. Apparently, the ability of sHSPs to assemble into HSGs as well as the HSG disintegration is a prerequisite for survival of plant cells under continuous stress conditions at sublethal temperatures.
Collapse
Affiliation(s)
- Sergey Miroshnichenko
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Siddique M, Port M, Tripp J, Weber C, Zielinski D, Calligaris R, Winkelhaus S, Scharf KD. Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress Chaperones 2004; 8:381-94. [PMID: 15115290 PMCID: PMC514909 DOI: 10.1379/1466-1268(2003)008<0381:thsphr>2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We describe a new class of plant small heat stress proteins (sHsps) with dominant nuclear localization (Hsp17-CIII). The corresponding proteins in tomato, Arabidopsis, and rice are encoded by unique genes containing a short intron in the beta4-encoding region of the alpha-crystallin domain (ACD). The strong nuclear localization results from a cluster of basic amino acid residues in the loop between beta5 and beta6 of the ACD. Using yeast 2-hybrid tests, analyses of native complexes of the sHsps, and immunofluorescence data, we demonstrate that, in contrast to earlier observations (Kirschner et al 2000), proteins of the sHsp classes CI, CII, and CIII interact with each other, thereby influencing oligomerization state and intracellular localization.
Collapse
Affiliation(s)
- Masood Siddique
- Department of Molecular Cell Biology, Biocenter of the Goethe University, Marie-Curie-Strasse 9, D-60439 Frankfurt/M., Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Basha E, Lee GJ, Demeler B, Vierling E. Chaperone activity of cytosolic small heat shock proteins from wheat. ACTA ACUST UNITED AC 2004; 271:1426-36. [PMID: 15066169 DOI: 10.1111/j.1432-1033.2004.04033.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small Hsps (sHsps) and the structurally related eye lens alpha-crystallins are ubiquitous stress proteins that exhibit ATP-independent molecular chaperone activity. We studied the chaperone activity of dodecameric wheat TaHsp16.9C-I, a class I cytosolic sHsp from plants and the only eukaryotic sHsp for which a high resolution structure is available, along with the related wheat protein TaHsp17.8C-II, which represents the evolutionarily distinct class II plant cytosolic sHsps. Despite the available structural information on TaHsp16.9C-I, there is minimal data on its chaperone activity, and likewise, data on activity of the class II proteins is very limited. We prepared purified, recombinant TaHsp16.9C-I and TaHsp17.8C-II and find that the class II protein comprises a smaller oligomer than the dodecameric TaHsp16.9C-I, suggesting class II proteins have a distinct mode of oligomer assembly as compared to the class I proteins. Using malate dehydrogenase as a substrate, TaHsp16.9C-I was shown to be a more effective chaperone than TaHsp17.8C-II in preventing heat-induced malate dehydrogenase aggregation. As observed by EM, morphology of sHsp/substrate complexes depended on the sHsp used and on the ratio of sHsp to substrate. Surprisingly, heat-denaturing firefly luciferase did not interact significantly with TaHsp16.9C-I, although it was fully protected by TaHsp17.8C-II. In total the data indicate sHsps show substrate specificity and suggest that N-terminal residues contribute to substrate interactions.
Collapse
Affiliation(s)
- Eman Basha
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, AZ 85721-0106, USA
| | | | | | | |
Collapse
|
18
|
Siddique M, Port M, Tripp J, Weber C, Zielinski D, Calligaris R, Winkelhaus S, Scharf KD. Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress Chaperones 2003. [PMID: 15115290 DOI: 10.1379/1466-1268(2003)008<0381:thsphr>2.0.co] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
We describe a new class of plant small heat stress proteins (sHsps) with dominant nuclear localization (Hsp17-CIII). The corresponding proteins in tomato, Arabidopsis, and rice are encoded by unique genes containing a short intron in the beta4-encoding region of the alpha-crystallin domain (ACD). The strong nuclear localization results from a cluster of basic amino acid residues in the loop between beta5 and beta6 of the ACD. Using yeast 2-hybrid tests, analyses of native complexes of the sHsps, and immunofluorescence data, we demonstrate that, in contrast to earlier observations (Kirschner et al 2000), proteins of the sHsp classes CI, CII, and CIII interact with each other, thereby influencing oligomerization state and intracellular localization.
Collapse
Affiliation(s)
- Masood Siddique
- Department of Molecular Cell Biology, Biocenter of the Goethe University, Marie-Curie-Strasse 9, D-60439 Frankfurt/M., Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sobott F, Benesch JLP, Vierling E, Robinson CV. Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J Biol Chem 2002; 277:38921-9. [PMID: 12138169 DOI: 10.1074/jbc.m206060200] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subunit exchange of the small heat shock proteins (sHSPs) PsHSP18.1 from pea and TaHSP16.9 from wheat has been monitored in real-time using nanoelectrospray mass spectrometry. By preserving the noncovalent interactions between subunits in the mass spectrometer, we show that these proteins are dodecameric. After mixing PsHSP18.1 and TaHSP16.9, a distribution of heterododecamers is formed. A comparison with spectra obtained from statistical modeling demonstrates that after equilibration the distribution of these heterocomplexes is governed by the starting ratio of the two components rather than an inherent preference for certain stoichiometries. This finding suggests that the two different sHSP subunits interact in a very similar manner. Following the kinetics of this reaction by mass spectrometry reveals that exchange proceeds via sequential incorporation of subunits with dimeric species being the principal units of exchange. Therefore, we conclude that sHSP complexes are in rapid dissociation/reassociation equilibria with suboligomeric forms. More generally, these experiments illustrate a powerful approach for the real-time analysis of the evolution of transient species and their relative populations during the subunit exchange of multimeric protein complexes.
Collapse
Affiliation(s)
- Frank Sobott
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
20
|
Plesofsky N, Brambl R. Analysis of interactions between domains of a small heat shock protein, Hsp30 of Neurospora crassa. Cell Stress Chaperones 2002; 7:374-86. [PMID: 12653482 PMCID: PMC514837 DOI: 10.1379/1466-1268(2002)007<0374:aoibdo>2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The alpha-crystallin-related, small heat shock proteins (sHsps), despite their overall variability in sequence, have discrete regions of conserved sequence that are involved in structural organization, as well as nonconserved regions that may perform similar roles in each protein. Recent X-ray diffraction analyses of an archeal and a plant sHsp have revealed both similarities and differences in how they are organized, suggesting that there is variability, particularly in the oligomeric organization of sHsps. As an adjunct to crystallographic analysis of sHsp structure, we employed the yeast 2-hybrid system to detect interactions between peptide regions of the sHsp of Neurospora crassa, Hsp30. We found that the conserved alpha-crystallin domain can be divided into N-terminal and C-terminal subdomains that interact strongly with one another. This interaction likely represents the tertiary contacts of the monomer that were visualized in the crystallographic structures of MjHsp16.5 and wheat Hsp16.9. The conserved sHsp monomeric fold is apparently determined by these regions of conserved sequence. We found that the C-terminal portion of the alpha-crystallin domain also interacts with itself in 2-hybrid assays; however, this interaction requires peptide extension into the semiconserved carboxyl tail. This C-terminal association may represent a principal contact site between dimers that contributes to higher-order assembly, as seen for the crystallized sHsps.
Collapse
Affiliation(s)
- Nora Plesofsky
- Department of Plant Biology, 1445 Gortner Avenue, The University of Minnesota, Saint Paul, MN 55108, USA.
| | | |
Collapse
|
21
|
Van Montfort R, Slingsby C, Vierling E. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:105-56. [PMID: 11868270 DOI: 10.1016/s0065-3233(01)59004-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R Van Montfort
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | |
Collapse
|
22
|
Sun W, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:1-9. [PMID: 12151089 DOI: 10.1016/s0167-4781(02)00417-7] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small heat shock proteins (sHsps) are produced ubiquitously in prokaryotic and eukaryotic cells upon heat. The special importance of sHsps in plants is suggested by unusual abundance and diversity. Six classes of sHsps have been identified in plants based on their intracellular localization and sequence relatedness. In addition to heat stress, plant sHsps are also produced under other stress conditions and at certain developmental stages. Induction of sHsp gene expression and protein accumulation upon environmental stresses point to the hypothesis that these proteins play an important role in stress tolerance. The function of sHsps as molecular chaperones is supported by in vitro and in vivo assays. This review summarizes recent knowledge about plant sHsp gene expression, protein structure and functions.
Collapse
Affiliation(s)
- Weining Sun
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
23
|
Studer S, Obrist M, Lentze N, Narberhaus F. A critical motif for oligomerization and chaperone activity of bacterial alpha-heat shock proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3578-86. [PMID: 12135498 DOI: 10.1046/j.1432-1033.2002.03049.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oligomerization into multimeric complexes is a prerequisite for the chaperone function of almost all alpha-crystallin type heat shock proteins (alpha-Hsp), but the molecular details of complex assembly are poorly understood. The alpha-Hsp proteins from Bradyrhizobium japonicum are suitable bacterial models for structure-function studies of these ubiquitous stress proteins. They fall into two distinct classes, A and B, display chaperone activity in vitro and form oligomers of approximately 24 subunits. We constructed 19 derivatives containing truncations or point mutations within the N- and C-terminal regions and analyzed them by gel filtration, citrate synthase assay and coaffinity purification. Truncation of more than the initial few amino acids of the N-terminal region led to the formation of distinct dimeric to octameric structures devoid of chaperone activity. In the C-terminal extension, integrity of an isoleucine-X-isoleucine (I-X-I) motif was imperative for alpha-Hsp functionality. This I-X-I motif is one of the characteristic consensus motifs of the alpha-Hsp family, and here we provide experimental evidence of its structural and functional importance. alpha-Hsp proteins lacking the C-terminal extension were inactive, but still able to form dimers. Here, we demonstrate that the central alpha-crystallin domain alone is not sufficient for dimerization. Additional residues at the end of the N-terminal region were required for the assembly of two subunits.
Collapse
Affiliation(s)
- Sonja Studer
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64-93; table of contents. [PMID: 11875128 PMCID: PMC120782 DOI: 10.1128/mmbr.66.1.64-93.2002] [Citation(s) in RCA: 399] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.
Collapse
Affiliation(s)
- Franz Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| |
Collapse
|
25
|
Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:407-15. [PMID: 11576425 DOI: 10.1046/j.1365-313x.2001.01107.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to their sessile lifestyle, it is crucial for plants to acquire stress tolerance. The function of heat-shock proteins, including small heat-shock proteins (smHSPs), in stress tolerance is not fully explored. To gain further knowledge about the smHSPs, the gene that encoded the cytosolic class II smHSP in Arabidopsis thaliana (At-HSP17.6A) was characterized. The At-HSP17.6A expression was induced by heat and osmotic stress, as well as during seed development. Accumulation of At-HSP17.6A proteins could be detected with heat and at a late stage of seed development, but not with osmotic stress, suggesting stress-induced post-transcriptional regulation of At-HSP17.6A expression. Overproduction of At-HSP17.6A could increase salt and drought tolerance in Arabidopsis. The chaperone activity of At-HSP17.6A was demonstrated in vitro.
Collapse
Affiliation(s)
- W Sun
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
26
|
Lund AA, Rhoads DM, Lund AL, Cerny RL, Elthon TE. In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol Chem 2001; 276:29924-9. [PMID: 11397800 DOI: 10.1074/jbc.m103373200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A maize (Zea mays L.) small heat shock protein (HSP), HSP22, was previously shown to accumulate to high levels in mitochondria during heat stress. Here we have purified native HSP22 and resolved the protein into three peaks using reverse phase high performance liquid chromatography. Mass spectrometry (MS) of the first two peaks revealed the presence of two HSP22 forms in each peak which differed in mass by 80 daltons (Da), indicative of a monophosphorylation. Phosphorylation of HSP22 by [gamma-(32)P]ATP was also observed in mitochondria labeled in vitro, but not when purified native HSP22 was similarly used, demonstrating that HSP22 does not autophosphorylate, implicating a kinase involvement in vivo. Collisionally induced dissociation tandem MS (CID MS/MS) identified Ser(59) as the phosphorylated residue. We have also observed forms of HSP22 that result from alternative intron splicing. The two HSP22 proteins in the first peak were approximately 57 Da larger than the two HSP22 proteins in the second peak. MS analysis revealed that the +57-Da forms have an additional Gly residue directly N-terminal of the expected Asp(84), which had been converted to an Asn residue. These results are the first demonstrations of phosphorylation and alternative intron splicing of a plant small HSP.
Collapse
Affiliation(s)
- A A Lund
- School of Biological Sciences and the Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | | | | | | | | |
Collapse
|
27
|
Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 2001. [PMID: 11599564 DOI: 10.1379/1466-12682001006<0225:] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Comprehensive analysis of the Arabidopsis genome revealed a total of 13 sHsps belonging to 6 classes defined on the basis of their intracellular localization and sequence relatedness plus 6 ORFs encoding proteins distantly related to the cytosolic class Cl or the plastidial class of sHsps. The complexity of the Arabidopsis sHsp family far exceeds that in any other organism investigated to date. Furthermore, we have identified a new family of ORFs encoding multidomain proteins that contain one or more regions with homology to the ACD (Acd proteins). The functions of the Acd proteins and the role of their ACDs remain to be investigated.
Collapse
Affiliation(s)
- K D Scharf
- Biocenter of the Goethe University, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
28
|
Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 2001. [PMID: 11599564 DOI: 10.1379/1466-12682001006<0225:tefoat<2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Comprehensive analysis of the Arabidopsis genome revealed a total of 13 sHsps belonging to 6 classes defined on the basis of their intracellular localization and sequence relatedness plus 6 ORFs encoding proteins distantly related to the cytosolic class Cl or the plastidial class of sHsps. The complexity of the Arabidopsis sHsp family far exceeds that in any other organism investigated to date. Furthermore, we have identified a new family of ORFs encoding multidomain proteins that contain one or more regions with homology to the ACD (Acd proteins). The functions of the Acd proteins and the role of their ACDs remain to be investigated.
Collapse
Affiliation(s)
- K D Scharf
- Biocenter of the Goethe University, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
29
|
Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 2001; 6:225-37. [PMID: 11599564 PMCID: PMC434404 DOI: 10.1379/1466-1268(2001)006<0225:tefoat>2.0.co;2] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2001] [Accepted: 05/01/2001] [Indexed: 11/24/2022] Open
Abstract
Comprehensive analysis of the Arabidopsis genome revealed a total of 13 sHsps belonging to 6 classes defined on the basis of their intracellular localization and sequence relatedness plus 6 ORFs encoding proteins distantly related to the cytosolic class Cl or the plastidial class of sHsps. The complexity of the Arabidopsis sHsp family far exceeds that in any other organism investigated to date. Furthermore, we have identified a new family of ORFs encoding multidomain proteins that contain one or more regions with homology to the ACD (Acd proteins). The functions of the Acd proteins and the role of their ACDs remain to be investigated.
Collapse
Affiliation(s)
- K D Scharf
- Biocenter of the Goethe University, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
30
|
Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 2001. [PMID: 11599564 DOI: 10.1379/1466-1268(2001)006<0225:tefoat>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Comprehensive analysis of the Arabidopsis genome revealed a total of 13 sHsps belonging to 6 classes defined on the basis of their intracellular localization and sequence relatedness plus 6 ORFs encoding proteins distantly related to the cytosolic class Cl or the plastidial class of sHsps. The complexity of the Arabidopsis sHsp family far exceeds that in any other organism investigated to date. Furthermore, we have identified a new family of ORFs encoding multidomain proteins that contain one or more regions with homology to the ACD (Acd proteins). The functions of the Acd proteins and the role of their ACDs remain to be investigated.
Collapse
Affiliation(s)
- K D Scharf
- Biocenter of the Goethe University, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
31
|
Studer S, Narberhaus F. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 2000; 275:37212-8. [PMID: 10978322 DOI: 10.1074/jbc.m004701200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhizobia are the only bacteria known to induce a multitude of small heat shock proteins (sHsps) upon temperature upshift. The sHsps of Bradyrhizobium japonicum fall into two different classes, class A and class B. Here, we studied the chaperone activity and oligomeric features of two representative members of each class. The purified sHsps were efficient chaperones, as demonstrated by their ability to prevent thermally induced aggregation of citrate synthase in vitro. Homo-oligomer formation of all four sHsps was demonstrated by gel filtration and by two independent co-purification approaches. Mixed oligomers were readily observed between members of the same class, even when these proteins originated from different species such as Escherichia coli and B. japonicum. The chaperone activity of purified hetero-oligomers was indistinguishable from the activity of homo-oligomers. Heteromeric complexes were never obtained between class A and class B sHsps, indicating that hetero-oligomer formation is restricted to sHsps of the same class.
Collapse
Affiliation(s)
- S Studer
- Institute of Microbiology, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
32
|
Kirschner M, Winkelhaus S, Thierfelder JM, Nover L. Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:397-411. [PMID: 11069712 DOI: 10.1046/j.1365-313x.2000.00887.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Heat-stress granules (HSG) are highly ordered, cytoplasmic chaperone complexes found in all heat-stressed plant cells. We have developed an experimental system involving expression of cytosolic class I and class II small heat-stress proteins (Hsps) of pea, Arabidopsis and tomato in tobacco protoplasts to study the structural prerequisites for the assembly of HSG or HSG-like complexes. Class I and class II small Hsps formed class-specific dodecamers of 210-280 kDa, which, upon heat stress, were incorporated into HSG complexes. Interestingly, class II dodecamers alone could form HSG-like complexes (auto-aggregation), whereas class I dodecamers could do so only in the presence of class II proteins (recruitment). By analysing C-terminal deletion forms of Hsp17 class II, we obtained evidence that the intact C-terminus is critical for the oligomerization state, for the heat-stress-induced auto-aggregation and for recruitment of class I proteins. The class-specific formation of dimers as a prerequisite for oligomerization was analysed by the yeast two-hybrid system. In the presence of the endogenous (tobacco) set of heat-stress-induced proteins, all heterologous class I and class II proteins were incorporated into HSG complexes, whose ultrastructure was different from that of complexes formed by class I and class II proteins alone. Although other, more distantly related, members of the Hsp20 family, i.e. the plastidic pea Hsp21, the Drosophila Hsp23 and the mouse Hsp25, were well expressed in tobacco protoplasts and formed homo-oligomers of 200-700 kDa, none of them could be recruited to HSG complexes.
Collapse
Affiliation(s)
- M Kirschner
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe University Frankfurt, Marie Curie Str. 9, D-60439 Frankfurt, Germany
| | | | | | | |
Collapse
|
33
|
Smýkal P, Masín J, Hrdý I, Konopásek I, Zárský V. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:703-13. [PMID: 10998182 DOI: 10.1046/j.1365-313x.2000.00837.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
NtHSP18P (HSP18), a cytosolic class I small heat-shock protein from tobacco pollen grains, was expressed in Escherichia coli. The viability of these cells was improved by 50% at 50 degrees C, demonstrating its functionality in vivo. Purified recombinant protein formed 240 kDa HSP18 oligomers, irrespective of temperature. These oligomers interacted with the model substrate citrate synthase (CS) to form large complexes in a temperature-dependent manner. Furthermore, HSP18 prevented thermally induced aggregation of CS at 45 degrees C. The fluorescence probe bis-ANS revealed the exposure of HSP18 hydrophobic surfaces at this temperature. Reactivation of chemically denatured CS was also significantly enhanced by HSP18. Surprisingly, HSP18 function was inhibited (in contrast to the related chaperone alphabeta-crystallin and plant sHSPs studied so far) by the presence of ATP in a concentration-dependent manner. The conformational changes of HSP18 imposed by ATP binding were indicated by the difference in the quenching of intrinsic tryptophan fluorescence, and implied more compact structure with ATP. Fluorescence measurements with bis-ANS showed that the conformational shift of HSP18 is suppressed in the presence of ATP. Decreased chaperone activity of HSP18 in the presence of ATP is caused by the lower affinity of conformationally blocked HSP18 for the substrate, as demonstrated by a higher susceptibility of model substrate, malate dehydrogenase, to proteolytic cleavage. Our results suggest that the chaperone activity of some plant sHSPs could be regulated by the availability of ATP in the cytoplasm, which would provide a mechanism to monitor the cell environment, control biological activity of sHSPs, and coordinate it with other ATP-dependent chaperones such as HSP70.
Collapse
Affiliation(s)
- P Smýkal
- Department of Plant Physiology, Faculty of Science, Charles University, Vinièná 5, 128 44 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
34
|
Waters ER, Vierling E. Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci U S A 1999; 96:14394-9. [PMID: 10588716 PMCID: PMC24447 DOI: 10.1073/pnas.96.25.14394] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot-dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.
Collapse
Affiliation(s)
- E R Waters
- Department of Biology, Marquette University, Milwaukee, WI 53201-1881, USA.
| | | |
Collapse
|
35
|
Stuger R, Ranostaj S, Materna T, Forreiter C. Messenger RNA-binding properties of nonpolysomal ribonucleoproteins from heat-stressed tomato cells. PLANT PHYSIOLOGY 1999; 120:23-32. [PMID: 10318680 PMCID: PMC59255 DOI: 10.1104/pp.120.1.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/1998] [Accepted: 01/31/1999] [Indexed: 05/23/2023]
Abstract
Most cells experiencing heat stress reprogram their translational machinery to favor the synthesis of heat-stress proteins. Translation of other transcripts is almost completely repressed, but most untranslated messengers are not degraded. In contrast to yeast, Drosophila melanogaster, and HeLa cells, plant cells store repressed messengers in cytoplasmic nonpolysomal ribonucleoproteins (RNPs). To follow the fate of untranslated transcripts, we studied protein composition, mRNA content, and RNA-binding properties of nonpolysomal RNPs from heat-stressed tomato (Lycopersicon peruvianum) cells. Contrary to the selective interaction in vivo, RNPs isolated from tomato cells bound both stress-induced and repressed messengers, suggesting that the selection mechanism resides elsewhere. This binding was independent of a cap or a poly(A) tail. The possible role of proteasomes and heat-stress granules (HSGs) in mRNA storage is a topic of debate. We found in vitro messenger-RNA-binding activity in messenger RNP fractions free of C2-subunit-containing proteasomes and HSGs. In addition, mRNAs introduced into tobacco (Nicotiana plumbaginifolia) protoplasts were found in the cytoplasm but were not associated with HSGs.
Collapse
Affiliation(s)
- R Stuger
- Department of Molecular Cell Biology, Goethe University, Marie Curie Strasse 9, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
36
|
Lee GJ, Vierling E. Expression, purification, and molecular chaperone activity of plant recombinant small heat shock proteins. Methods Enzymol 1998; 290:350-65. [PMID: 9534175 DOI: 10.1016/s0076-6879(98)90031-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- G J Lee
- Department of Biochemistry, University of Arizona, Tucson 85721-0106, USA
| | | |
Collapse
|
37
|
Suzuki TC, Krawitz DC, Vierling E. The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. PLANT PHYSIOLOGY 1998; 116:1151-61. [PMID: 9501148 PMCID: PMC35085 DOI: 10.1104/pp.116.3.1151] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/1997] [Accepted: 11/26/1997] [Indexed: 05/22/2023]
Abstract
Plants synthesize several classes of small (15- to 30-kD monomer) heat-shock proteins (sHSPs) in response to heat stress, including a nuclear-encoded, chloroplast-localized sHSP (HSP21). Cytosolic sHSPs exist as large oligomers (approximately 200-800 kD) composed solely or primarily of sHSPs. Phosphorylation of mammalian sHSPs causes oligomer dissociation, which appears to be important for regulation of sHSP function. We examined the native structure and phosphorylation of chloroplast HSP21 to understand this protein's basic properties and to compare it with cytosolic sHSPs. The apparent size of native HSP21 complexes was > 200 kD and they did not dissociate during heat stress. We found no evidence that HSP21 or the plant cytosolic sHSPs are phosphorylated in vivo. A partial HSP21 complex purified from heat-stressed pea (Pisum sativum L.) leaves contained no proteins other than HSP21. Mature recombinant pea and Arabidopsis thaliana HSP21 were expressed in Escherichia coli, and purified recombinant Arabidopsis HSP21 assembled into homo-oligomeric complexes with the same apparent molecular mass as HSP21 complexes observed in heat-stressed leaf tissue. We propose that the native, functional form of chloroplast HSP21 is a large, oligomeric complex containing nine or more HSP21 subunits, and that plant sHSPs are not regulated by phosphorylation-induced dissociation.
Collapse
Affiliation(s)
- T C Suzuki
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721-0106, USA
| | | | | |
Collapse
|