1
|
Kushwaha A, Rani R, Kumar S, Gautam A. Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. ENVIRONMENTAL REVIEWS 2016. [PMID: 0 DOI: 10.1139/er-2015-0010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heavy metals, such as cobalt, copper, manganese, molybdenum, and zinc, are essential in trace amounts for growth by plants and other living organisms. However, in excessive amounts these heavy metals have deleterious effects. Like other organisms, plants possess a variety of detoxification mechanisms to counter the harmful effects of heavy metals. These include the restriction of heavy metals by mycorrhizal association, binding with plant cell wall and root excretions, metal efflux from the plasma membrane, metal chelation by phytochelatins and metallothioneins, and compartmentalization within the vacuole. Phytoremediation is an emerging technology that uses plants and their associated rhizospheric microorganisms to remove pollutants from contaminated sites. This technology is inexpensive, efficient, and ecofriendly. This review focuses on potential cellular and molecular adaptations by plants that are necessary to tolerate heavy metal stress.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Sanjay Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Aishvarya Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| |
Collapse
|
2
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2015] [Indexed: 03/26/2024] Open
Abstract
In a preceding study we have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was there demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, in this initial study complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established now new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
3
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
We have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
4
|
Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:269-83. [PMID: 21902799 DOI: 10.1111/j.1467-7652.2011.00657.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.
Collapse
Affiliation(s)
- Agnes M Rimando
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mikschofsky H, Heilmann E, Schmidtke J, Schmidt K, Meyer U, Leinweber P, Broer I. Greenhouse and field cultivations of antigen-expressing potatoes focusing on the variability in plant constituents and antigen expression. PLANT MOLECULAR BIOLOGY 2011; 76:131-144. [PMID: 21594687 DOI: 10.1007/s11103-011-9774-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 03/26/2011] [Indexed: 05/30/2023]
Abstract
The production of plant-derived pharmaceuticals essentially requires stable concentrations of plant constituents, especially recombinant proteins; nonetheless, soil and seasonal variations might drastically interfere with this stability. In addition, variability might depend on the plant organ used for production. Therefore, we investigated the variability in plant constituents and antigen expression in potato plants under greenhouse and field growth conditions and in leaves compared to tubers. Using potatoes expressing VP60, the only structural capsid protein of the rabbit haemorrhagic disease virus (RHDV), CTB, the non-toxic B subunit (CTB) of the cholera toxin (CTA-CTB(5)) and the marker protein NPTII (neomycinphosphotransferase) as a model, we compare greenhouse and field production of potato-derived antigens. The influence of the production organ turned out to be transgene specific. In general, yield, plant quality and transgene expression levels in the field were higher than or similar to those observed in the greenhouse. The variation (CV) of major plant constituents and the amount of transgene-encoded protein was not influenced by the higher variation of soil properties observed in the field. Amazingly, for specific events, the variability in the model protein concentrations was often lower under field than under greenhouse conditions. The changes in gene expression under environmental stress conditions in the field observed in another event do not reduce the positive influence on variability since events like these should excluded from production. Hence, it can be concluded that for specific applications, field production of transgenic plants producing pharmaceuticals is superior to greenhouse production, even concerning the stability of transgene expression over different years. On the basis of our results, we expect equal or even higher expression levels with lower variability of recombinant pharmaceuticals in the field compared to greenhouse production combined with approximately 10 times higher tuber yield in the field.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Mikschofsky H, Schirrmeier H, Katzel A, Lehmann B, Broer I. Expression of truncated CTB::VP60 in tobacco exhibited no immunogenicity in rabbits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:246-50. [PMID: 21421367 DOI: 10.1016/j.plantsci.2010.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/21/2010] [Accepted: 08/21/2010] [Indexed: 05/30/2023]
Abstract
Despite several optimizations, the production of CTB::VP60 antigen fusion proteins in tobacco is still very low. This might be due to the size of the fusion partner VP60 (579 aa). Hence, two different N-terminal truncations of VP60 were fused to CTB, either with or without an ER retention signal. CTB::VP60 expression levels, in vitro and in vivo antigenicity and immunogenicity were analyzed in plants carrying one of four different transgenes. Only one of the truncated CTB::VP60 fusions (365 aa) directed to the endoplasmic reticulum led to similar but not enhanced expression levels as compared to the complete protein in tobacco and possessed similar in vitro antigenicity. In contrast to the complete protein, no anti-VP60-specific antibodies were induced in rabbits after the intramuscular application of plant extracts containing the truncated protein.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | | | | | | | |
Collapse
|
7
|
Boyko A, Molinier J, Chatter W, Laroche A, Kovalchuk I. Acute but not chronic exposure to abiotic stress results in transient reduction of expression levels of the transgene driven by the 35S promoter. N Biotechnol 2010; 27:70-7. [PMID: 19800040 DOI: 10.1016/j.nbt.2009.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/31/2009] [Accepted: 09/22/2009] [Indexed: 11/20/2022]
Abstract
The transgenic plant performance depends on the stable expression of the integrated transgene. In this paper, we have analyzed the stability of the most frequently used constitutive promoter, the cauliflower mosaic virus (CaMV) 35S promoter. We used several independent Nicotiana tabacum lines transgenic for the luciferase (LUC) or green fluorescence protein (GFP) coding genes driven by the same 35S promoter. As an indication of the expression level, we measured the steady state RNA level, protein level and protein activity. Exposure of plants to an acute single dose of UVC, UVB or X-ray radiation resulted in a decrease of the transgene expression level, whereas exposure to high temperature increased it. In most of the cases, the expression changed at one to two hours post exposure and returned to normal at four hours. By contrast, plants germinated and grown in the presence of a low dose of either UVB radiation or CuSO(4) for two weeks did not show any changes in expression level. We conclude that although the expression level of the transgenes driven by the 35S promoter can be transiently altered by the acute exposure, no substantial changes occur upon constant low exposure.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB. T1K 3M4, Canada
| | | | | | | | | |
Collapse
|
8
|
Mikschofsky H, Schirrmeier H, Keil GM, Lange B, Polowick PL, Keller W, Broer I. Pea-derived vaccines demonstrate high immunogenicity and protection in rabbits against rabbit haemorrhagic disease virus. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:537-49. [PMID: 19486322 DOI: 10.1111/j.1467-7652.2009.00422.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant-derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60-based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60(SEKDEL)) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self-fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48-400 microg potato-derived VP60 [Castanon, S., Marin, M.S., Martin-Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73, 4452-4455; Castanon, S., Martin-Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162, 87-95] to 0.56-0.28 microg antigenic VP60 (measured with VP60 enzyme-linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea-derived CTB::VP60 showed anti-VP60-specific antibodies, similar to RikaVacc((R))-immunized rabbits, and survived RHDV challenge.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Meng L, Ziv M, Lemaux PG. Nature of stress and transgene locus influences transgene expression stability in barley. PLANT MOLECULAR BIOLOGY 2006; 62:15-28. [PMID: 16900326 DOI: 10.1007/s11103-006-9000-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 04/06/2006] [Indexed: 05/11/2023]
Abstract
Stress and the nature of the transgene locus can affect transgene expression stability. These effects were studied in two, stably expressing, T6 populations of barley (Hordeum vulgare): bombardment-mediated, multi-copy lines with ubiquitin-driven bar and uidA or single-copy lines from Ds-mediated gene delivery with ubiquitin-driven bar alone. Imposing the environmental stresses, water and nutrient deprivation and heat shock, did not reproducibly affect transgene expression stability; however, high frequencies of heritable transcriptional gene silencing (TGS) occurred following in vitro culture after six generations of stable expression in the multi-copy subline, T3#30, but not in the other lines studied. T3#30 plants with complete TGS had epigenetic modification patterns exactly like those in an identical sibling subline, T3#31, which had significant reduction in transgene expression in the T3 generation and was completely transcriptionally silenced in the absence of imposed stresses in the T6 generation. Complete TGS in T3#30 plants correlated with methylation in the 5'UTR and intron of the ubi1 promoter complex and condensation of chromatin around the transgenes; DNA methylation likely occurred prior to chromatin condensation. Partial TGS in T3#30 also correlated with methylation of the ubi1 promoter complex, as occurred with complete TGS. T3#30 has a complex transgene structure with inverted repeat transgene fragments and a 3'-LTR from a barley retrotransposon, and therefore the transgene locus itself may affect its tendency to silence after in vitro culture and transgene silencing might result from host defense mechanisms activated by changes in plant developmental programming and/or stresses imposed during in vitro growth.
Collapse
Affiliation(s)
- Ling Meng
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley , CA 94720, USA
| | | | | |
Collapse
|
10
|
Ammitzbøll H, Mikkelsen TN, Jørgensen RB. Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa. ACTA ACUST UNITED AC 2006; 4:3-12. [PMID: 16209132 DOI: 10.1051/ebr:2005010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Oilseed rape (Brassica napus) is sexually compatible with its wild and weedy relative B. rapa, and introgression of genes from B. napus has been found to occur over a few generations. We simulated the early stages of transgene escape by producing F1 hybrids and the first backcross generation between two lines of transgenic B. napus and two populations of weedy B. rapa. Transgene expression and the fitness of the hybrids were examined under different environmental conditions. Expression of the transgenes was analyzed at the mRNA level by quantitative PCR and found to be stable in the hybrids, regardless of the genetic background and the environment, and equal to the level of transcription in the parental B. napus lines. Vigor of the hybrids was measured as the photosynthetic capability; pollen viability and seed set per silique. Photosynthetic capability of first generation hybrids was found to be at the same level, or higher, than that of the parental species, whereas the reproductive fitness was significantly lower. The first backcross generation had a significantly lower photosynthetic capability and reproductive fitness compared to the parental species. This is the first study that examines transgene expression at the mRNA level in transgenic hybrids of B. napus of different genetic background exposed to different environmental conditions. The data presented clarify important details of the overall risk assessment of growing transgenic oilseed rape.
Collapse
Affiliation(s)
- Henriette Ammitzbøll
- Biosystems Department, Risø National Laboratory, P.O. Box 49, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
11
|
Neumann K, Stephan DP, Ziegler K, Hühns M, Broer I, Lockau W, Pistorius EK. Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:249-58. [PMID: 17173624 DOI: 10.1111/j.1467-7652.2005.00122.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The production of biodegradable polymers in transgenic plants in order to replace petrochemical compounds is an important challenge for plant biotechnology. Polyaspartate, a biodegradable substitute for polycarboxylates, is the backbone of the cyanobacterial storage material cyanophycin. Cyanophycin, a copolymer of l-aspartic acid and l-arginine, is produced via non-ribosomal polypeptide biosynthesis by the enzyme cyanophycin synthetase. A gene from Thermosynechococcus elongatus BP-1 encoding cyanophycin synthetase has been expressed constitutively in tobacco and potato. The presence of the transgene-encoded messenger RNA (mRNA) correlated with changes in leaf morphology and decelerated growth. Such transgenic plants were found to produce up to 1.1% dry weight of a polymer with cyanophycin-like properties. Aggregated material, able to bind a specific cyanophycin antibody, was detected in the cytoplasm and the nucleus of the transgenic plants.
Collapse
Affiliation(s)
- Katrin Neumann
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Sousa-Majer MJD, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJV. Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific alpha-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:497-505. [PMID: 14718496 DOI: 10.1093/jxb/erh037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of water deficit and high temperature on the production of alpha-amylase inhibitor 1 (alpha-AI-1) were studied in transgenic peas (Pisum sativum L.) that were developed to control the seed-feeding pea weevil (Bruchus pisorum L., Coleoptera: Bruchidae). Transgenic and non-transgenic plants were subjected to water-deficit and high-temperature treatments under controlled conditions in the glasshouse and growth cabinet, beginning 1 week after the first pods were formed. In the water-deficit treatments, the peas were either adequately watered (control) or water was withheld after first pod formation. The high-temperature experiments were performed in two growth cabinets, one maintained at 27/22 degrees C (control) and one at 32/27 degrees C day/night temperatures, with the vapour pressure deficit maintained at 1.3 kPa. The plants exposure to high temperatures and water deficit produced 27% and 79% fewer seeds, respectively, than the controls. In the transgenic peas the level of alpha-AI-1 as a percentage of total protein was not influenced by water stress, but was reduced on average by 36.3% (the range in two experiments was 11-50%) in the high-temperature treatment. Transgenic and non-transgenic pods of plants grown at 27/22 degrees C and 32/27 degrees C were inoculated with pea weevil eggs to evaluate whether the reduction in level of alpha-AI-1 in the transgenic pea seeds affected pea weevil development and survival. At the higher temperatures, 39% of adult pea weevil emerged, compared to 1.2% in the transgenic peas grown at the lower temperatures, indicating that high temperature reduced the protective capacity of the transgenic peas.
Collapse
Affiliation(s)
- Maria José de Sousa-Majer
- Department of Environmental Biology, Curtin University of Technology PO Box U1987, Perth, WA 6845, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Meza TJ, Kamfjord D, Håkelien AM, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB. The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 2001; 10:53-67. [PMID: 11252383 DOI: 10.1023/a:1008903026579] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a collection of 111 transgenic Arabidopsis thaliana lines, silencing of the nptII gene was observed in 62 (56%) of the lines and three distinct nptII-silencing phenotypes were identified. Two T-DNA constructs were used, which differed in distance and orientation of the marker gene relative to the border sequences. Comparison of the sets of lines generated with each vector, indicate that the T-DNA construct configuration influence the incidence of lines displaying silencing, as well as the distribution of silencing phenotypes. Twenty lines were investigated more thoroughly. The frequency of silencing varied between siblings in 19 lines, including three lines containing a single T-DNA copy. The last line showed 100% silencing. The gus gene present in both constructs could be expressed in the presence of a silenced nptII gene. Investigation of methylation at a single site in the pnos promoter revealed partial methylation in multi-copy lines, but no methylation in single-copy lines. For 16 lines, the overall frequencies of silencing differed significantly between control plants and plants exposed to temperature stress; in 11 of these lines at the 0.1% level. In several cases, the frequency of silencing in progeny of stress-treated plants was higher than for the control group, while other lines showed higher frequencies of kanamycin-resistant progeny for the stress-treated sibling plants.
Collapse
Affiliation(s)
- T J Meza
- Department of Biology, University of Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Down RE, Ford L, Bedford SJ, Gatehouse LN, Newell C, Gatehouse JA, Gatehouse AM. Influence of plant development and environment on transgene expression in potato and consequences for insect resistance. Transgenic Res 2001; 10:223-36. [PMID: 11437279 DOI: 10.1023/a:1016612912999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clonal replicates of different transformed potato plants expressing transgene constructs containing the constitutive Cauliflower Mosaic Virus (CaMV) 35S promoter, and sequences encoding the plant defensive proteins snowdrop lectin (Galanthus nivalis agglutinin; GNA), and bean chitinase (BCH) were propagated in tissue culture. Plants were grown to maturity, at first under controlled environmental conditions, and later in the glasshouse. For a given transgene product, protein accumulation was found to vary between the different lines of clonal replicates (where each line was derived from a single primary transformant plant), as expected. However, variability was also found to exist within each line of clonal replicates, comparable to the variation of mean expression levels observed between the different clonal lines. Levels of GNA, accumulated in different parts of a transgenic potato plant, also showed variation but to a lesser extent than plant-plant variation in expression. With the majority of the clonal lines investigated, accumulation of the transgene product was found to increase as the potato plant developed, with maximum levels found in mature plants. The variation in accumulation of GNA among transgenic plants within a line of clonal replicates was exploited to demonstrate that the enhanced resistance towards larvae of the tomato moth, Lacanobia oleracea L., caused by expression of this protein in potato, was directly correlated with the level of GNA present in the plants, and that conditions under which the plants were grown affect the levels of GNA expression and subsequent levels of insect resistance.
Collapse
Affiliation(s)
- R E Down
- Department of Agricultural and Environmental Science, University of Newcastle, Newcastle upon Tvne, UK.
| | | | | | | | | | | | | |
Collapse
|