1
|
Thangaraj S, Sun J. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ Microbiol 2020; 23:980-995. [PMID: 32975013 DOI: 10.1111/1462-2920.15248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
Under ocean warming and acidification, diatoms use a unique acclimation and adaptation strategy by saving energy and utilizing it for other cellular processes. However, the molecular mechanisms that underlie this reprogramming of energy utilization are currently unknown. Here, we investigate the metabolic reprogramming of the ecologically important diatom Skeletonema dohrnii grown under two different temperature (21°C and 25°C) and pCO2 (400 and 1000 ppm) levels, utilizing global transcriptomic analysis. We find that evolutionary changes in the baseline gene expression, which we termed transcriptional up- and downregulation, is the primary mechanism used by diatoms to acclimate to the combined conditions of ocean warming and acidification. This transcriptional regulation shows that under higher temperature and pCO2 conditions, photosynthesis, electron transport and carboxylation were modified with increasing abundances of genes encoding ATP, NADPH and carbon gaining for the carbon-dioxide-concentrating mechanisms (CCMs). Our results also indicate that changes in the transcriptional regulation of CCMs led to a decrease in the metabolic cost to save energy by promoting amino acid synthesis and nitrogen assimilation for the active protein processing machinery to adapt to warming and ocean acidification. This study generated unique metabolic insights into diatoms and suggests that future climate change conditions will cause evolutionary changes in oceanic diatoms that will facilitate their acclimation strategy.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| |
Collapse
|
2
|
Hu S, Zhou B, Wang Y, Wang Y, Zhang X, Zhao Y, Zhao X, Tang X. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi. PLoS One 2017; 12:e0183289. [PMID: 28813504 PMCID: PMC5558969 DOI: 10.1371/journal.pone.0183289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/02/2017] [Indexed: 11/19/2022] Open
Abstract
Karenia mikimotoi is a widespread, toxic and non-calcifying dinoflagellate, which can release and produce ichthyotoxins and hemolytic toxins affecting the food web within the area of its bloom. Shifts in the physiological characteristics of K. mikimotoi due to CO2-induced seawater acidification could alter the occurrence, severity and impacts of harmful algal blooms (HABs). Here, we investigated the effects of elevated pCO2 on the physiology of K. mikimotoi. Using semi-continuous cultures under controlled laboratory conditions, growth, photosynthesis and inorganic carbon acquisition were determined over 4-6 week incubations at ambient (390ppmv) and elevated pCO2 levels (1000 ppmv and 2000 ppmv). pH-drift and inhibitor-experiments suggested that K. mikimotoi was capable of acquiring HCO3-, and that the utilization of HCO3- was predominantly mediated by anion-exchange proteins, but that HCO3- dehydration catalyzed by external carbonic anhydrase (CAext) only played a minor role in K. mikimotoi. Even though down-regulated CO2 concentrating mechanisms (CCMs) and enhanced gross photosynthetic O2 evolution were observed under 1000 ppmv CO2 conditions, the saved energy did not stimulate growth of K. mikimotoi under 1000 ppmv CO2, probably due to the increased dark respiration. However, significantly higher growth and photosynthesis [in terms of photosynthetic oxygen evolution, effective quantum Yield (Yield), photosynthetic efficiency (α), light saturation point (Ek) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity] were observed under 2000 ppmv CO2 conditions. Furthermore, elevated pCO2 increased the photo-inhibition rate of photosystem II (β) and non-photochemical quenching (NPQ) at high light. We suggest that the energy saved through the down-regulation of CCMs might lead to the additional light stress and photo-damage. Therefore, the response of this species to elevated CO2 conditions will be determined by more than regulation and efficiency of CCMs.
Collapse
Affiliation(s)
- Shunxin Hu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan Zhao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinyu Zhao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Ruan Z, Raven JA, Giordano M. In Synechococcus sp. competition for energy between assimilation and acquisition of C and those of N only occurs when growth is light limited. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3829-3839. [PMID: 28369501 DOI: 10.1093/jxb/erx074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The carbon-concentrating mechanisms (CCMs) of cyanobacteria counteract the low CO2 affinity and CO2:O2 selectivities of the Rubisco of these photolithotrophs and the relatively low oceanic CO2 availability. CCMs have a significant energy cost; if light is limiting, the use of N sources whose assimilation demands less energy could permit a greater investment of energy into CCMs and inorganic C (Ci) assimilation. To test this, we cultured Synechococcus sp. UTEX LB 2380 under either N or energy limitation, in the presence of NO3- or NH4+. When growth was energy-limited, NH4+-grown cells had a 1.2-fold higher growth rate, 1.3-fold higher dissolved inorganic carbon (DIC)-saturated photosynthetic rate, 19% higher linear electron transfer, 80% higher photosynthetic 1/K1/2(DIC), 2.0-fold greater slope of the linear part of the photosynthesis versus DIC curve, 3.5-fold larger intracellular Ci pool, and 2.3-fold higher Zn quota than NO3--grown cells. When energy was not limiting growth, there were not differences between NH4+- and NO3--grown cells, except for higher linear electron transfer and larger intracellular Ci pool.We conclude that, when energy limits growth, cells that use the cheaper N source divert energy from N assimilation to C acquisition and assimilation; this does not happen when energy is not limiting.
Collapse
Affiliation(s)
- Zuoxi Ruan
- Marine Biology Institute, Science Center, Shantou University, Shantou, Guangdong 515063, China
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- Institute of Microbiology ASCR, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science, Venezia, Italy
| |
Collapse
|
4
|
Ogawa T, Sonoike K. Dissection of respiration and photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by the analysis of chlorophyll fluorescence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 144:61-7. [DOI: 10.1016/j.jphotobiol.2015.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
5
|
Hanson DT, Collins AM, Jones HDT, Roesgen J, Lopez-Nieves S, Timlin JA. On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina. PHOTOSYNTHESIS RESEARCH 2014; 121:311-22. [PMID: 24844569 PMCID: PMC8078823 DOI: 10.1007/s11120-014-0001-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/24/2014] [Indexed: 05/28/2023]
Abstract
Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.
Collapse
Affiliation(s)
- David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA,
| | | | | | | | | | | |
Collapse
|
6
|
Pierangelini M, Stojkovic S, Orr PT, Beardall J. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1091-1098. [PMID: 24878143 DOI: 10.1016/j.jplph.2014.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
We studied the physiological acclimation of growth, photosynthesis and CO2-concentrating mechanism (CCM) in Cylindrospermopsis raciborskii exposed to low (present day; L-CO2) and high (1300ppm; H-CO2) pCO2. Results showed that under H-CO2 the cell specific division rate (μc) was higher and the CO2- and light-saturated photosynthetic rates (Vmax and Pmax) doubled. The cells' photosynthetic affinity for CO2 (K0.5CO2) was halved compared to L-CO2 cultures. However, no significant differences were found in dark respiration rates (Rd), pigment composition and light harvesting efficiency (α). In H-CO2 cells, non-photochemical quenching (NPQ), associated with state transitions of the electron transport chain (ETC), was negligible. Simultaneously, a reorganisation of PSII features including antenna connectivity (JconPSIIα), heterogeneity (PSIIα/β) and effective absorption cross sectional area (σPSIIα/β) was observed. In relation to different activities of the CCM, our findings suggest that for cells grown under H-CO2: (1) there is down-regulation of CCM activity; (2) the ability of cells to use the harvested light energy is altered; (3) the occurrence of state transitions is likely to be associated with changes of electron flow (cyclic vs linear) through the ETC; (4) changes in PSII characteristics are important in regulating state transitions.
Collapse
Affiliation(s)
- Mattia Pierangelini
- School of Biological Science, Monash University, Clayton 3800, Victoria, Australia.
| | - Slobodanka Stojkovic
- School of Biological Science, Monash University, Clayton 3800, Victoria, Australia; CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia
| | - Philip T Orr
- School of Biological Science, Monash University, Clayton 3800, Victoria, Australia; Seqwater, PO Box 16146, City East 4002, Queensland, Australia
| | - John Beardall
- School of Biological Science, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
7
|
Gao K, Campbell DA. Photophysiological responses of marine diatoms to elevated CO 2 and decreased pH: a review. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:449-459. [PMID: 32481004 DOI: 10.1071/fp13247] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/24/2013] [Indexed: 05/19/2023]
Abstract
Diatoms dominate nearly half of current oceanic productivity, so their responses to ocean acidification are of general concern regarding future oceanic carbon sequestration. Community, mesocosm and laboratory studies show a range of diatom growth and photophysiological responses to increasing pCO2. Nearly 20 studies on effects of elevated pCO2 on diatoms have shown stimulations, no effects or inhibitions of growth rates. These differential responses could result from differences in experimental setups, cell densities, levels of light and temperature, but also from taxon-specific physiology. Generally, ocean acidification treatments of lowered pH with elevated CO2 stimulate diatom growth under low to moderate levels of light, but lead to growth inhibition when combined with excess light. Additionally, diatom cell sizes and their co-varying metabolic rates can influence responses to increasing pCO2 and decreasing pH, although cell size effects are confounded with taxonomic specificities in cell structures and metabolism. Here we summarise known diatom growth and photophysiological responses to increasing pCO2 and decreasing pH, and discuss some reasons for the diverse responses observed across studies.
Collapse
Affiliation(s)
- Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005 Xiamen, China
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
8
|
Yang G, Gao K. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. MARINE ENVIRONMENTAL RESEARCH 2012; 79:142-151. [PMID: 22770534 DOI: 10.1016/j.marenvres.2012.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 05/25/2012] [Accepted: 06/02/2012] [Indexed: 06/01/2023]
Abstract
We studied the effects of elevated CO(2) concentration and seawater acidity on inorganic carbon acquisition, photoinhibition and photoprotection as well as growth and respiration in the marine diatom Thalassiosira pseudonana. After having grown under the elevated CO(2) level (1000 μatm, pH 7.83) at sub-saturating photosynthetically active radiation (PAR, 75 μmol photons m(-2) s(-1)) for 20 generations, photosynthesis and dark respiration of the alga increased by 25% (14.69 ± 2.55 fmol C cell(-1) h(-1)) and by 35% (4.42 ± 0.98 fmol O(2) cell(-1) h(-1)), respectively, compared to that grown under the ambient CO(2) level (390 μatm, pH 8.16), leading to insignificant effects on growth (1.09 ± 0.08 d(-1)v 1.04 ± 0.07 d(-1)). The photosynthetic affinity for CO(2) was lowered in the high-CO(2) grown cells, reflecting a down-regulation of the CO(2) concentrating mechanism (CCM). When exposed to an excessively high level of PAR, photochemical and non-photochemical quenching responded similarly in the low- and high-CO(2) grown cells, reflecting that photoinhibition was not influenced by the enriched level of CO(2). In T. pseudonana, it appeared that the energy saved due to the down-regulated CCM did not contribute to any additional light stress as previously found in another diatom Phaeodactylum tricornutum, indicating differential physiological responses to ocean acidification between these two diatom species.
Collapse
Affiliation(s)
- Guiyuan Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Daxue Road 182 (HAIYANG-LOU), Xiamen, Fujian 361005, China.
| | | |
Collapse
|
9
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
de Araujo ED, Patel J, de Araujo C, Rogers SP, Short SM, Campbell DA, Espie GS. Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696. PHOTOSYNTHESIS RESEARCH 2011; 109:85-101. [PMID: 21678048 DOI: 10.1007/s11120-011-9663-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 05/26/2011] [Indexed: 05/30/2023]
Abstract
We studied the interactions of the CO(2)-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 μmol m(-2) s(-1) PPFD) and low inorganic carbon (50 μM Ci). Mass spectrometric and polarographic analysis revealed that mediated CO(2) uptake along with both active Na(+)-independent and Na(+)-dependent HCO(3)(-) transport, likely through Na(+)/HCO(3)(-) symport, were employed to concentrate Ci internally. Combined transport of CO(2) and HCO(3)(-) required about 30 kJ mol(-1) of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40-50% of maximum values by 50 μmol m(-2) s(-1) PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 μmol m(-2) s(-1) PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 μmol m(-2) s(-1). Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 μmol photons m(-2) s(-1) and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO(2) and by internal CO(2)/HCO(3)(-) cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO(2) fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Biology, University of Toronto, Mississauga, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Kranz SA, Levitan O, Richter KU, Prásil O, Berman-Frank I, Rost B. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responses. PLANT PHYSIOLOGY 2010; 154:334-45. [PMID: 20625004 PMCID: PMC2938149 DOI: 10.1104/pp.110.159145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/11/2010] [Indexed: 05/19/2023]
Abstract
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO(2) partial pressure (pCO(2)) enhances N(2) fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO(2), its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO(2) (150 and 900 microatm) and irradiance (50 and 200 micromol photons m(-2) s(-1)). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO(2) and light levels in the cultures. The pCO(2)-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO(2) stimulated rates of N(2) fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO(2). HCO(3)(-) was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO(2) uptake was enhanced under high pCO(2). A comparison between carbon fluxes in vivo and those derived from (13)C fractionation indicates high internal carbon cycling, especially in the low-pCO(2) treatment under high light. Light-dependent oxygen uptake was only detected under low pCO(2) combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO(2) effect on N(2) fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO(2). These findings are supported by a complementary study looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.
Collapse
Affiliation(s)
- Sven A Kranz
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Jensen SI, Steunou AS, Bhaya D, Kühl M, Grossman AR. In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS. ISME JOURNAL 2010; 5:317-28. [PMID: 20740024 DOI: 10.1038/ismej.2010.131] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relative abundance of transcripts encoding proteins involved in inorganic carbon concentrating mechanisms (CCM), detoxification of reactive oxygen species (ROS) and photosynthesis in the thermophilic cyanobacterium Synechococcus OS-B' was measured in hot spring microbial mats over two diel cycles, and was coupled with in situ determinations of incoming irradiance and microenvironmental dynamics of O(2) and pH. Fluctuations in pH and O(2) in the mats were largely driven by the diel cycle of solar irradiance, with a pH variation from ∼7.0 to ∼9.5, and O(2) levels ranging from anoxia to supersaturation during night and day, respectively. Levels of various transcripts from mat cyanobacteria revealed several patterns that correlated with incident irradiance, O(2) and pH within the mat matrix. Transcript abundances for most genes increased during the morning dark-light transition. Some transcripts remained at a near constant level throughout the light period, whereas others showed an additional increase in abundance as the mat underwent transition from low-to-high light (potentially reflecting changes in O(2) concentration and pH), followed by either a decreased abundance in the early afternoon, or a gradual decline during the early afternoon and into the evening. One specific transcipt, psbA1, was the lowest during mid-day under high irradiance and increased when the light levels declined. We discuss these complex in situ transcriptional patterns with respect to environmental and endogenous cues that might impact and regulate transcription over the diel cycle.
Collapse
Affiliation(s)
- Sheila I Jensen
- Department of Biology, Marine Biological Laboratory, University of Copenhagen, Helsingør, Denmark.
| | | | | | | | | |
Collapse
|
13
|
Xu M, Bernát G, Singh A, Mi H, Rögner M, Pakrasi HB, Ogawa T. Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems. ACTA ACUST UNITED AC 2008; 49:1672-7. [DOI: 10.1093/pcp/pcn139] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Ogawa T, Kaplan A. Inorganic carbon acquisition systems in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2003; 77:105-15. [PMID: 16228369 DOI: 10.1023/a:1025865500026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This minireview focuses on the mechanism of inorganic carbon uptake in cyanobacteria and in particular the two CO(2)-uptake systems and two bicarbonate transporters recently identified in Synechocycstis PCC 6803, and their presence in other cyanobacterial strains.
Collapse
Affiliation(s)
- Teruo Ogawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan,
| | | |
Collapse
|
15
|
Berry S, Bolychevtseva YV, Rögner M, Karapetyan NV. Photosynthetic and respiratory electron transport in the alkaliphilic cyanobacterium Arthrospira (Spirulina) platensis. PHOTOSYNTHESIS RESEARCH 2003; 78:67-76. [PMID: 16245065 DOI: 10.1023/a:1026012719612] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photosynthetic and respiratory electron transport and their interplay with ion transport have been studied in Arthrospira platensis, a filamentous alkaliphilic cyanobacterium living in hypersaline lakes. As typical for alkaliphiles, A. platensis apparently does not maintain an outward positive pH gradient at its plasma membrane. Accordingly, sodium extrusion occurs via an ATP-dependent primary sodium pump, in contrast to the Na(+)/H(+) antiport in most cyanobacteria. A. platensis is strongly dependent on sodium/bicarbonate symport for the uptake of inorganic carbon. Sodium extrusion in the presence of the Photosystem II inhibitor diuron indicates that a significant amount of ATP is supplied by cyclic electron transport around Photosystem I, the content of which in A. platensis is exceptionally high. Plastoquinol is oxidized by two parallel pathways, via the cytochrome b (6) f complex and a putative cytochrome bd complex, both of which are active in the light and in the dark.
Collapse
Affiliation(s)
- S Berry
- Faculty of Biology, Ruhr University - Bochum, Universitätsstr. 150, 44780, Bochum, Germany,
| | | | | | | |
Collapse
|
16
|
Tchernov D, Silverman J, Luz B, Reinhold L, Kaplan A. Massive light-dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings. PHOTOSYNTHESIS RESEARCH 2003; 77:95-103. [PMID: 16228368 DOI: 10.1023/a:1025869600935] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane inlet mass spectrometry indicated massive light-dependent cycling of inorganic carbon between the medium and the cells of various phytoplankton species representing the main groups of aquatic primary producers. These included diatoms, symbiotic and free living dinoflagellates, a coccolithophorid, a green alga and filamentous and single cell cyanobacteria. These organisms could maintain an ambient CO(2) concentration substantially above or below that expected at chemical equilibrium with HCO(3) (-). The coccolithophorid Emiliania huxleyi shifted from net CO(2) uptake to net CO(2) efflux with rising light intensity. Differing responses of CO(2) uptake and CO(2) fixation to changing light intensity supported the notion that these two processes are not compulsorily linked. Simultaneous measurements of CO(2) and O(2) exchange and of the fluorescence parameters in Synechococcus sp. strain PCC 7942, showed that CO(2) uptake can serve as a sensitive probe of the energy status of the photosynthetic reaction centers. However, during transitions in light intensity, changes in CO(2) uptake did not accord with those expected from fluorescence change. Quantification of the net fluxes of CO(2), HCO(3) (-) and of photosynthesis at steady-state revealed that substantial HCO(3) (-) efflux accompanied CO(2) uptake and fixation in the case of 'CO(2) users'. On the other hand, 'HCO(3) (-) users' were characterized by a rate of net CO(2) uptake below that of CO(2) fixation. The results support the notion that entities associated with the CCM function not only in raising the CO(2) concentration at the site of Rubisco; they may also serve as a means of diminishing photodynamic damage by dissipating excess light energy.
Collapse
Affiliation(s)
- Dan Tchernov
- Department of Plant Sciences and The Minerva Center for Photosynthesis under Stress, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel,
| | | | | | | | | |
Collapse
|
17
|
Huertas IE, Colman B, Espie GS. Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga. PLANT PHYSIOLOGY 2002; 130:284-91. [PMID: 12226508 PMCID: PMC166561 DOI: 10.1104/pp.004598] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2002] [Revised: 03/22/2002] [Accepted: 05/27/2002] [Indexed: 05/19/2023]
Abstract
The CO(2)-concentrating mechanism (CCM) of the marine eustigmatophycean microalga Nannochloropsis gaditana consists of an active HCO(3)(-) transport system and an internal carbonic anhydrase to facilitate accumulation and conversion of HCO(3)(-) to CO(2) for photosynthetic fixation. Aqueous inlet mass spectrometry revealed that a portion of the CO(2) generated within the cells leaked to the medium, resulting in a significant rise in the extracellular CO(2) concentration to a level above its chemical equilibrium that was diagnostic for active HCO(3)(-) transport. The transient rise in extracellular CO(2) occurred in the light and the dark and was resolved from concurrent respiratory CO(2) efflux using H(13)CO(3)(-) stable isotope techniques. H(13)CO(3)(-) pump-(13)CO(2) leak activity of the CCM was unaffected by 10 microM 3(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of chloroplast linear electron transport, although photosynthetic O(2) evolution was reduced by 90%. However, low concentrations of cyanide, azide, and rotenone along with anoxia significantly reduced or abolished (13)CO(2) efflux in the dark and light. These results indicate that H(13)CO(3)(-) transport was supported by mitochondrial energy production in contrast to other algae and cyanobacteria in which it is supported by photosynthetic electron transport. This is the first report of a direct role for mitochondria in the energization and functioning of the CCM in a photosynthetic organism.
Collapse
Affiliation(s)
- I Emma Huertas
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
18
|
Thoquet P, Ghérardi M, Journet EP, Kereszt A, Ané JM, Prosperi JM, Huguet T. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC PLANT BIOLOGY 2002; 2:1. [PMID: 11825338 PMCID: PMC65051 DOI: 10.1186/1471-2229-2-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Accepted: 01/02/2002] [Indexed: 05/19/2023]
Abstract
BACKGROUND The legume Medicago truncatula has emerged as a model plant for the molecular and genetic dissection of various plant processes involved in rhizobial, mycorrhizal and pathogenic plant-microbe interactions. Aiming to develop essential tools for such genetic approaches, we have established the first genetic map of this species. Two parental homozygous lines were selected from the cultivar Jemalong and from the Algerian natural population (DZA315) on the basis of their molecular and phenotypic polymorphism. RESULTS An F2 segregating population of 124 individuals between these two lines was obtained using an efficient manual crossing technique established for M. truncatula and was used to construct a genetic map. This map spans 1225 cM (average 470 kb/cM) and comprises 289 markers including RAPD, AFLP, known genes and isoenzymes arranged in 8 linkage groups (2n = 16). Markers are uniformly distributed throughout the map and segregation distortion is limited to only 3 linkage groups. By mapping a number of common markers, the eight linkage groups are shown to be homologous to those of diploid alfalfa (M. sativa), implying a good level of macrosynteny between the two genomes. Using this M. truncatula map and the derived F3 populations, we were able to map the Mtsym6 symbiotic gene on linkage group 8 and the SPC gene, responsible for the direction of pod coiling, on linkage group 7. CONCLUSIONS These results demonstrate that Medicago truncatula is amenable to diploid genetic analysis and they open the way to map-based cloning of symbiotic or other agronomically-important genes using this model plant.
Collapse
Affiliation(s)
- Philippe Thoquet
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Michele Ghérardi
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Etienne-Pascal Journet
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Attila Kereszt
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, 6701 Szeged, Hungary
| | - Jean-Michel Ané
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Jean-Marie Prosperi
- Station de Génétique et d'Amélioration des Plantes, INRA, Domaine de Melgueil, 34130 Mauguio, France
| | - Thierry Huguet
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| |
Collapse
|
19
|
Maeda SI, Badger MR, Price GD. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol Microbiol 2002; 43:425-35. [PMID: 11985719 DOI: 10.1046/j.1365-2958.2002.02753.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyanobacteria possess light-dependent CO2 uptake activity that results in the net hydration of CO2 to HCO3- and may involve a protein-mediated carbonic anhydrase (CA)-like activity. This process is vital for the survival of cyanobacteria and may be a contributing factor in the ecological success of this group of organisms. Here, via isolation of mutants of Synechococcus sp. PCC7942 that cannot grow under low-CO2 conditions, we have identified two novel genes, chpX and chpY, that are involved in light-dependent CO2 hydration and CO2 uptake reactions; co-inactivation of both these genes abolished both activities. The function and mechanism of the CO2 uptake systems supported by each chp gene product differs, with each associated with functionally distinct NAD(P)H dehydrogenase (NDH-1) complexes. The ChpX system has a low affinity for CO2 and is dependent on photosystem I cyclic electron transport, whereas the inducible ChpY system has a high affinity for CO2 and is dependent on linear electron transport. We believe that ChpX and ChpY are involved in a unique, net hydration of CO2 to HCO3-, that is coupled electron flow within the NDH-1 complex on the thylakoid membrane.
Collapse
Affiliation(s)
- Shin-ichi Maeda
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT
| | | | | |
Collapse
|
20
|
Tchernov D, Helman Y, Keren N, Luz B, Ohad I, Reinhold L, Ogawa T, Kaplan A. Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3- in cyanobacteria are driven by a photosystem I-generated deltamuH+. J Biol Chem 2001; 276:23450-5. [PMID: 11297562 DOI: 10.1074/jbc.m101973200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CO(2) entry into Synechococcus sp. PCC7942 cells was drastically inhibited by the water channel blocker p-chloromercuriphenylsulfonic acid suggesting that CO(2) uptake is, for the most part, passive via aquaporins with subsequent energy-dependent conversion to HCO3(-). Dependence of CO(2) uptake on photosynthetic electron transport via photosystem I (PSI) was confirmed by experiments with electron transport inhibitors, electron donors and acceptors, and a mutant lacking PSI activity. CO(2) uptake was drastically inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ammonia but substantially less so by the inhibitors of ATP formation arsenate and N, N,-dicyclohexylcarbodiimide (DCCD). Thus a DeltamuH(+) generated by photosynthetic PSI electron transport apparently serves as the direct source of energy for CO(2) uptake. Under low light intensity, the rate of CO(2) uptake by a high-CO(2)-requiring mutant of Synechococcus sp. PCC7942, at a CO(2) concentration below its threshold for CO(2) fixation, was higher than that of the wild type. At saturating light intensity, net CO(2) uptake was similar in the wild type and in the mutant IL-3 suggesting common limitation by the rate of conversion of CO(2) to HCO3(-). These findings are consistent with a model postulating that electron transport-dependent formation of alkaline domains on the thylakoid membrane energizes intracellular conversion of CO(2) to HCO3(-).
Collapse
Affiliation(s)
- D Tchernov
- Faculty of Science and Mathematics and The Minerva Center for Photosynthesis under Stress, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Badger MR, von Caemmerer S, Ruuska S, Nakano H. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B Biol Sci 2000; 355:1433-46. [PMID: 11127997 PMCID: PMC1692866 DOI: 10.1098/rstb.2000.0704] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Linear electron transport in chloroplasts produces a number of reduced components associated with photosystem I (PS I) that may subsequently participate in reactions that reduce O2. The two primary reactions that have been extensively studied are: first, the direct reduction of O2 to superoxide by reduced donors associated with PS I (the Mehler reaction), and second, the rubisco oxygenase (ribulose 1,5-bisphosphate carboxylase oxygenase EC 4.1.1.39) reaction and associated peroxisomal and mitochondrial reactions of the photorespiratory pathway. This paper reviews a number of recent and past studies with higher plants, algae and cyanobacteria that have attempted to quantify O2 fluxes under various conditions and their contributions to a number of roles, including photon energy dissipation. In C3 and Crassulacean acid metabolism (CAM) plants, a Mehler O2 uptake reaction is unlikely to support a significant flow of electron transport (probably less than 10%). In addition, if it were present it would appear to scale with photosynthetic carbon oxidation cycle (PCO) and photosynthetic carbon reduction cycle (PCR) activity This is supported by studies with antisense tobacco plants with reduced rubisco at low and high temperatures and high light, as well as studies with potatoes, grapes and madrone during water stress. The lack of significant Mehler in these plants directly argues for a strong control of Mehler reaction in the absence of ATP consumption by the PCR and PCO cycles. The difference between C3 and C4 plants is primarily that the level of light-dependent O2 uptake is generally much lower in C4 plants and is relatively insensitive to the external CO2 concentration. Such a major difference is readily attributed to the operation of the C4 CO2 concentrating mechanism. Algae show a range of light-dependent O2 uptake rates, similar to C4 plants. As in C4 plants, the O2 uptake appears to be largely insensitive to CO2, even in species that lack a CO2 concentrating mechanism and under conditions that are clearly limiting with respect to inorganic carbon supply. A part explanation for this could be that many algal rubsicos have considerably different oxygenase kinetic properties and exhibit far less oxygenase activity in air. This would lead to the conclusion that perhaps a greater proportion of the observed O2 uptake may be due to a Mehler reaction and less to rubisco, compared with C3 plants. In contrast to algae and higher plants, cyanobacteria appear to have a high capacity for Mehler O2 uptake, which appears to be not well coupled or limited by ATP consumption. It is likely that in all higher plants and algae, which have a well-developed non-photochemical quenching mechanism, non-radiative energy dissipation is the major mechanism for dissipating excess photons absorbed by the light-harvesting complexes under stressful conditions. However, for cyanobacteria, with a lack of significant non-photochemical quenching, the situation may well be different.
Collapse
Affiliation(s)
- M R Badger
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra City, ACT.
| | | | | | | |
Collapse
|
22
|
Abstract
Carbonic anhydrases catalyze the reversible hydration of CO(2) [CO(2)+H(2)Oright harpoon over left harpoon HCO(3)(-)+H(+)]. Since the discovery of this zinc (Zn) metalloenzyme in erythrocytes over 65 years ago, carbonic anhydrase has not only been found in virtually all mammalian tissues but is also abundant in plants and green unicellular algae. The enzyme is important to many eukaryotic physiological processes such as respiration, CO(2) transport and photosynthesis. Although ubiquitous in highly evolved organisms from the Eukarya domain, the enzyme has received scant attention in prokaryotes from the Bacteria and Archaea domains and has been purified from only five species since it was first identified in Neisseria sicca in 1963. Recent work has shown that carbonic anhydrase is widespread in metabolically diverse species from both the Archaea and Bacteria domains indicating that the enzyme has a more extensive and fundamental role in prokaryotic biology than previously recognized. A remarkable feature of carbonic anhydrase is the existence of three distinct classes (designated alpha, beta and gamma) that have no significant sequence identity and were invented independently. Thus, the carbonic anhydrase classes are excellent examples of convergent evolution of catalytic function. Genes encoding enzymes from all three classes have been identified in the prokaryotes with the beta and gamma classes predominating. All of the mammalian isozymes (including the 10 human isozymes) belong to the alpha class; however, only nine alpha class carbonic anhydrase genes have thus far been found in the Bacteria domain and none in the Archaea domain. The beta class is comprised of enzymes from the chloroplasts of both monocotyledonous and dicotyledonous plants as well as enzymes from phylogenetically diverse species from the Archaea and Bacteria domains. The only gamma class carbonic anhydrase that has thus far been isolated and characterized is from the methanoarchaeon Methanosarcina thermophila. Interestingly, many prokaryotes contain carbonic anhydrase genes from more than one class; some even contain genes from all three known classes. In addition, some prokaryotes contain multiple genes encoding carbonic anhydrases from the same class. The presence of multiple carbonic anhydrase genes within a species underscores the importance of this enzyme in prokaryotic physiology; however, the role(s) of this enzyme is still largely unknown. Even though most of the information known about the function(s) of carbonic anhydrase primarily relates to its role in cyanobacterial CO(2) fixation, the prokaryotic enzyme has also been shown to function in cyanate degradation and the survival of intracellular pathogens within their host. Investigations into prokaryotic carbonic anhydrase have already led to the identification of a new class (gamma) and future research will undoubtedly reveal novel functions for carbonic anhydrase in prokaryotes.
Collapse
Affiliation(s)
- K S Smith
- Department of Biochemistry and Molecular Biology, 204 South Frear Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
23
|
Ohkawa H, Price GD, Badger MR, Ogawa T. Mutation of ndh genes leads to inhibition of CO(2) uptake rather than HCO(3)(-) uptake in Synechocystis sp. strain PCC 6803. J Bacteriol 2000; 182:2591-6. [PMID: 10762263 PMCID: PMC111325 DOI: 10.1128/jb.182.9.2591-2596.2000] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six mutants (B1 to B6) that grew poorly in air on BG11 agar plates buffered at pH 8.0 were rescued after mutations were introduced into ndhB of wild-type (WT) Synechocystis sp. strain PCC 6803. In these mutants and a mutant (M55) lacking ndhB, CO(2) uptake was much more strongly inhibited than HCO(3)(-) uptake, i.e., the activities of CO(2) and HCO(3)(-) uptake in B1 were 9 and 85% of those in the WT, respectively. Most of the mutants grew very slowly or did not grow at all at pH 6.5 or 7.0 in air, and their ability to grow under these conditions was correlated with CO(2) uptake capacity. Detailed studies of B1 and M55 indicated that the mutants grew as fast as the WT in liquid at pH 8.0 under air, although they grew poorly on agar plates. The contribution of CO(2) uptake appears to be larger on solid medium. Five mutants were constructed by inactivating each of the five ndhD genes in Synechocystis sp. strain PCC 6803. The mutant lacking ndhD3 grew much more slowly than the WT at pH 6.5 under 50 ppm CO(2), although other ndhD mutants grew like the WT under these conditions and showed low affinity for CO(2) uptake. These results indicated the presence of multiple NAD(P)H dehydrogenase type I complexes with specific roles.
Collapse
Affiliation(s)
- H Ohkawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
24
|
Klughammer B, Sültemeyer D, Badger MR, Price GD. The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol Microbiol 1999; 32:1305-15. [PMID: 10383770 DOI: 10.1046/j.1365-2958.1999.01457.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Random gene tagging was used to obtain new mutants of the marine cyanobacterium, Synechococcus sp. PCC7002, with defects in the CO2-concentrating mechanism (CCM). Two of these mutants, K22 and A41, showed poor growth at limiting CO2. Isolation and sequencing of a 6. 6 kb genomic region revealed the existence of five potential protein-coding regions, all arranged in the same transcriptional direction. These regions code for an RbcR homologue, NdhF3 (subunit 5 of type 1 NAD(P)H dehydrogenase; NDH-1 complex), NdhD3 (subunit 4 of NDH-1), ORF427 and ORF133 (hypothetical proteins). Insertional mutants in ndhD3, ndhF3 and ORF427, like A41 and K22, were all incapable of inducing high-affinity CO2 uptake and were not fully capable of inducing high-affinity HCO3- transport. ndhD3 and ndhF3 mutants displayed P700 re-reduction rates identical to wild-type cells, suggesting that NdhD3 is part of a specific NDH-1 complex that is not involved in photosynthetic cyclic electron transport. Thus, it is feasible that NdhD3, NdhF3 and ORF427 might form part of a novel NDH-1 complex located on the cytoplasmic membrane and involved in tightly coupled energization of high-affinity CO2 transport. The possibility of multiple, functionally distinct NDH-1 complexes in cyanobacteria is discussed.
Collapse
Affiliation(s)
- B Klughammer
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, PO Box 475, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
25
|
Abstract
Many microorganisms possess inducible mechanisms that concentrate CO2 at the carboxylation site, compensating for the relatively low affinity of Rubisco for its substrate, and allowing acclimation to a wide range of CO2 concentrations. The organization of the carboxysomes in prokaryotes and of the pyrenoids in eukaryotes, and the presence of membrane mechanisms for inorganic carbon (Ci) transport, are central to the concentrating mechanism. The presence of multiple Ci transporting systems in cyanobacteria has been indicated. Certain genes involved in structural organization, Ci transport and the energization of the latter have been identified. Massive Ci fluxes associated with the CO2-concentrating mechanism have wide-reaching ecological and geochemical implications.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel; e-mail:
| | | |
Collapse
|