Cho K, Tiwari S, Agrawal SB, Torres NL, Agrawal M, Sarkar A, Shibato J, Agrawal GK, Kubo A, Rakwal R. Tropospheric ozone and plants: absorption, responses, and consequences.
REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011;
212:61-111. [PMID:
21432055 DOI:
10.1007/978-1-4419-8453-1_3]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ozone is now considered to be the second most important gaseous pollutant in our environment. The phytotoxic potential of O₃ was first observed on grape foliage by B.L. Richards and coworkers in 1958 (Richards et al. 1958). To date, unsustainable resource utilization has turned this secondary pollutant into a major component of global climate change and a prime threat to agricultural production. The projected levels to which O₃ will increase are critically alarming and have become a major issue of concern for agriculturalists, biologists, environmentalists and others plants are soft targets for O₃. Ozone enters plants through stomata, where it disolves in the apoplastic fluid. O₃ has several potential effects on plants: direct reaction with cell membranes; conversion into ROS and H₂O₂ (which alters cellular function by causing cell death); induction of premature senescence; and induction of and up- or down-regulation of responsive components such as genes , proteins and metabolites. In this review we attempt to present an overview picture of plant O₃ interactions. We summarize the vast number of available reports on plant responses to O₃ at the morphological, physiological, cellular, biochemical levels, and address effects on crop yield, and on genes, proteins and metabolites. it is now clear that the machinery of photosynthesis, thereby decreasing the economic yield of most plants and inducing a common morphological symptom, called the "foliar injury". The "foliar injury" symptoms can be authentically utilized for biomonitoring of O₃ under natural conditions. Elevated O₃ stress has been convincingly demonstrated to trigger an antioxidative defense system in plants. The past several years have seen the development and application of high-throughput omics technologies (transcriptomics, proteomics, and metabolomics) that are capable of identifying and prolifiling the O₃-responsive components in model and nonmodel plants. Such studies have been carried out ans have generated an inventory of O₃-Responsive components--a great resource to the scientific community. Recently, it has been shown that certain organic chemicals ans elevated CO₂ levels are effective in ameliorating O₃-generated stress. Both targeted and highthroughput approaches have advanced our knowledge concerning what O₃-triggerred signaling and metabolic pathways exist in plants. Moreover, recently generated information, and several biomarkers for O₃, may, in the future, be exploited to better screen and develop O₃-tolerant plants.
Collapse