1
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
2
|
Gerotto C, Trotta A, Bajwa AA, Mancini I, Morosinotto T, Aro EM. Thylakoid Protein Phosphorylation Dynamics in a Moss Mutant Lacking SERINE/THREONINE PROTEIN KINASE STN8. PLANT PHYSIOLOGY 2019; 180:1582-1597. [PMID: 31061101 PMCID: PMC6752907 DOI: 10.1104/pp.19.00117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/20/2019] [Indexed: 05/08/2023]
Abstract
In all eukaryotes, protein phosphorylation is a key regulatory mechanism in several cellular processes, including the acclimation of photosynthesis to environmental cues. Despite being a well-conserved regulatory mechanism in the chloroplasts of land plants, distinct differences in thylakoid protein phosphorylation patterns have emerged from studies on species of different phylogenetic groups. Here, we analyzed thylakoid protein phosphorylation in the moss Physcomitrella patens, assessing the thylakoid phospho-protein profile and dynamics in response to changes in white light intensity. Compared with Arabidopsis (Arabidopsis thaliana), parallel characterization of wild-type P patens and the knockout mutant stn8 (depleted in SER/THR PROTEIN KINASE8 [STN8]) disclosed a moss-specific pattern of thylakoid protein phosphorylation, both with respect to specific targets and to their dynamic phosphorylation in response to environmental cues. Unlike vascular plants, (1) phosphorylation of the PSII protein D1 in P patens was negligible under all light conditions, (2) phosphorylation of the PSII core subunits CP43 and D2 showed only minor changes upon fluctuations in light intensity, and (3) absence of STN8 completely abolished all PSII core protein phosphorylation. Further, we detected light-induced phosphorylation in the minor light harvesting complex (LHC) antenna protein LHCB6, which was dependent on STN8 kinase activity, and found specific phosphorylations on LHCB3. Data presented here provide further insights into the appearance and physiological role of thylakoid protein phosphorylation during evolution of oxygenic photosynthetic organisms and their colonization of land.
Collapse
Affiliation(s)
- Caterina Gerotto
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku 20014, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku 20014, Finland
| | - Azfar Ali Bajwa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku 20014, Finland
| | - Ilaria Mancini
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku 20014, Finland
| | | | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku 20014, Finland
| |
Collapse
|
3
|
Moejes FW, Matuszynska A, Adhikari K, Bassi R, Cariti F, Cogne G, Dikaios I, Falciatore A, Finazzi G, Flori S, Goldschmidt-Clermont M, Magni S, Maguire J, Le Monnier A, Müller K, Poolman M, Singh D, Spelberg S, Stella GR, Succurro A, Taddei L, Urbain B, Villanova V, Zabke C, Ebenhöh O. A systems-wide understanding of photosynthetic acclimation in algae and higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2667-2681. [PMID: 28830099 DOI: 10.1093/jxb/erx137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 05/27/2023]
Abstract
The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drastically different timescales from picoseconds to hours. Efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes, including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project, AccliPhot, placing the results in a wider context. The review also highlights the applicability of photosynthetic organisms for industry, particularly with regards to the cultivation of microalgae. It intends to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology.
Collapse
Affiliation(s)
- Fiona Wanjiku Moejes
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
- Bantry Marine Research Station, Gearhies, Bantry, Co. Cork, Ireland P75 AX07
| | - Anna Matuszynska
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
| | - Kailash Adhikari
- Department of Biological and Medical Sciences, Oxford Brookes University, United Kingdom
| | - Roberto Bassi
- University of Verona, Department of Biotechnology, Italy
| | - Federica Cariti
- Department of Botany and Plant Biology, University of Geneva, Switzerland
| | | | | | - Angela Falciatore
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), Université Grenoble Alpes (UGA), Grenoble 38100, France
| | - Serena Flori
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), Université Grenoble Alpes (UGA), Grenoble 38100, France
| | | | - Stefano Magni
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
| | - Julie Maguire
- Bantry Marine Research Station, Gearhies, Bantry, Co. Cork, Ireland P75 AX07
| | | | - Kathrin Müller
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mark Poolman
- Bantry Marine Research Station, Gearhies, Bantry, Co. Cork, Ireland P75 AX07
| | - Dipali Singh
- Bantry Marine Research Station, Gearhies, Bantry, Co. Cork, Ireland P75 AX07
| | - Stephanie Spelberg
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
| | - Giulio Rocco Stella
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Antonella Succurro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lucilla Taddei
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Brieuc Urbain
- LUNAM, University of Nantes, GEPEA, UMR-CNRS 6144, France
| | | | | | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
4
|
Samol I, Shapiguzov A, Ingelsson B, Fucile G, Crèvecoeur M, Vener AV, Rochaix JD, Goldschmidt-Clermont M. Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. THE PLANT CELL 2012; 24:2596-609. [PMID: 22706287 PMCID: PMC3406908 DOI: 10.1105/tpc.112.095703] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 05/19/2023]
Abstract
Reversible protein phosphorylation plays a major role in the acclimation of the photosynthetic apparatus to changes in light. Two paralogous kinases phosphorylate subsets of thylakoid membrane proteins. STATE TRANSITION7 (STN7) phosphorylates LHCII, the light-harvesting antenna of photosystem II (PSII), to balance the activity of the two photosystems through state transitions. STN8, which is mainly involved in phosphorylation of PSII core subunits, influences folding of the thylakoid membranes and repair of PSII after photodamage. The rapid reversibility of these acclimatory responses requires the action of protein phosphatases. In a reverse genetic screen, we identified the chloroplast PP2C phosphatase, PHOTOSYSTEM II CORE PHOSPHATASE (PBCP), which is required for efficient dephosphorylation of PSII proteins. Its targets, identified by immunoblotting and mass spectrometry, largely coincide with those of the kinase STN8. The recombinant phosphatase is active in vitro on a synthetic substrate or on isolated thylakoids. Thylakoid folding is affected in the absence of PBCP, while its overexpression alters the kinetics of state transitions. PBCP and STN8 form an antagonistic kinase and phosphatase pair whose substrate specificity and physiological functions are distinct from those of STN7 and the counteracting phosphatase PROTEIN PHOSPHATASE1/THYLAKOID-ASSOCIATED PHOSPHATASE38, but their activities may overlap to some degree.
Collapse
Affiliation(s)
- Iga Samol
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Alexey Shapiguzov
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Björn Ingelsson
- Department of Clinical and Experimental Medicine, Linköping University, se-581 85 Linköping, Sweden
| | - Geoffrey Fucile
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Michèle Crèvecoeur
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Alexander V. Vener
- Department of Clinical and Experimental Medicine, Linköping University, se-581 85 Linköping, Sweden
| | - Jean-David Rochaix
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
- Address correspondence to
| |
Collapse
|
5
|
Mitra M, Dewez D, García-Cerdán JG, Melis A. Polyclonal antibodies against the TLA1 protein also recognize with high specificity the D2 reaction center protein of PSII in the green alga Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2012; 112:39-47. [PMID: 22442055 DOI: 10.1007/s11120-012-9733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
The Chlamydomonas reinhardtii DNA-insertional transformant truncated light-harvesting antenna 1 (tla1) mutant, helped identify the novel TLA1 gene (GenBank Accession # AF534570-71) as an important genetic determinant in the chlorophyll antenna size of photosynthesis. Down-regulation in the amount of the TLA1 23 kDa protein in the cell resulted in smaller chlorophyll antenna size for both photosystems (in Tetali et al. Planta 225:813-829, 2007). Specific polyclonal antibodies, raised against the recombinant TLA1 protein, showed a cross-reaction with the predicted 23 kDa TLA1 protein in C. reinhardtii protein extracts, but also showed a strong cross-reaction with a protein band migrating to 28.5 kDa. Questions of polymorphism, or posttranslational modification of the TLA1 protein were raised as a result of the unexpected 28.5 kDa cross-reaction. Work in this paper aimed to elucidate the nature of the unexpected 28.5 kDa cross-reaction, as this was deemed to be important in terms of the functional role of the TLA1 protein in the regulation of the chlorophyll antenna size of photosynthesis. Immuno-precipitation of the 28.5 kDa protein, followed by LC-mass spectrometry, showed amino acid sequences ascribed to the psbD/D2 reaction center protein of PSII. The common antigenic determinant between TLA1 and D2 was shown to be a stretch of nine conserved amino acids V-F-L(V)LP-GNAL in the C-terminus of the two proteins, constituting a high antigenicity "GNAL" domain. Antibodies raised against the TLA1 protein containing this domain recognized both the TLA1 and the D2 protein. Conversely, antibodies raised against the TLA1 protein minus the GNAL domain specifically recognized the 23 kDa TLA1 protein and failed to recognize the 28.5 kDa D2 protein. D2 antibodies raised against an oligopeptide containing this domain also cross-reacted with the TLA1 protein. It is concluded that the 28.5 kDa cross-reaction of C. reinhardtii protein extracts with antiTLA1 antibodies is due to antibody affinity for the GNAL domain of the D2 protein and has no bearing on the identity or function of the TLA1 protein.
Collapse
Affiliation(s)
- Mautusi Mitra
- Department of Biology, University of West Georgia, 1601 Maple Drive, Carrollton, GA 30118, USA
| | | | | | | |
Collapse
|
6
|
Heintz D, Gallien S, Compagnon V, Berna A, Suzuki M, Yoshida S, Muranaka T, Van Dorsselaer A, Schaeffer C, Bach TJ, Schaller H. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis. J Proteome Res 2012; 11:1228-39. [PMID: 22182420 DOI: 10.1021/pr201127u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sterols are membrane-bound isoprenoid lipids that are required for cell viability and growth. In plants, it is generally assumed that 3-hydroxy-3-methylglutaryl-CoA-reductase (HMGR) is a key element of their biosynthesis, but the molecular regulation of that pathway is largely unknown. In an attempt to identify regulators of the biosynthetic flux from acyl-CoA toward phytosterols, we compared the membrane phosphoproteome of wild-type Arabidopsis thaliana and of a mutant being deficient in HMGR1. We performed a N-terminal labeling of microsomal peptides with a trimethoxyphenyl phosphonium (TMPP) derivative, followed by a quantitative assessment of phosphopeptides with a spectral counting method. TMPP derivatization of peptides resulted in an improved LC-MS/MS detection due to increased hydrophobicity in chromatography and ionization efficiency in electrospray. The phosphoproteome coverage was 40% higher with this methodology. We further found that 31 proteins were in a different phosphorylation state in the hmgr1-1 mutant as compared with the wild-type. One-third of these proteins were identified based on novel phosphopeptides. This approach revealed that phosphorylation changes in the Arabidopsis membrane proteome targets major cellular processes such as transports, calcium homeostasis, photomorphogenesis, and carbohydrate synthesis. A reformatting of these processes appears to be a response of a genetically reduced sterol biosynthesis.
Collapse
Affiliation(s)
- Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-Unité Propre de Recherche 2357, Université de Strasbourg , 28 rue Goethe, 67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Minagawa J. State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:897-905. [PMID: 21108925 DOI: 10.1016/j.bbabio.2010.11.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 11/29/2022]
Abstract
In oxygen-evolving photosynthesis, the two photosystems-photosystem I and photosystem II-function in parallel, and their excitation levels must be balanced to maintain an optimal photosynthetic rate under natural light conditions. State transitions in photosynthetic organisms balance the absorbed light energy between the two photosystems in a short time by relocating light-harvesting complex II proteins. For over a decade, the understanding of the physiological consequences, the molecular mechanism, and its regulation has increased considerably. After providing an overview of the general understanding of state transitions, this review focuses on the recent advances of the molecular aspects of state transitions with a particular emphasis on the studies using the green alga Chlamydomonas reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Jun Minagawa
- Nattional Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
8
|
Pesaresi P, Hertle A, Pribi M, Schneider A, Kleine T, Leister D. Optimizing photosynthesis under fluctuating light: the role of the Arabidopsis STN7 kinase. PLANT SIGNALING & BEHAVIOR 2010; 5:21-5. [PMID: 20592803 PMCID: PMC2835952 DOI: 10.4161/psb.5.1.10198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 05/18/2023]
Abstract
Optimal photosynthetic performance requires that equal amounts of light are absorbed by photosystem II (PSII) and photosystem I (PSi), which are functionally linked through the photosynthetic electron transport chain. However, photosynthetic organisms must cope with light conditions that lead to the preferential stimulation of one or the other of the photosystems. Plants react to such imbalances by mounting acclimation responses that redistribute excitation energy between photosystems and restore the photosynthetic redox poise. in the short term, this involves the so-called state transition process, which, over periods of minutes, alters the antennal cross-sections of the photosystems through the reversible association of a mobile fraction of light-harvesting complex II (LHCII) with PSI or PSII. Longer-lasting changes in light quality initiate a long-term response (LTr), occurring on a timescale of hours to days, that redresses imbalances in excitation energy by changing the relative amounts of the two photosystems. Despite the differences in their timescales of action, state transitions and LTr are both triggered by the redox state of the plastoquinone (PQ) pool, via the activation of the thylakoid kinase STN7, which appears to act as a common redox sensor and/or signal transducer for both responses. This review highlights recent findings concerning the role of STN7 in coordinating short- and long-term photosynthetic acclimation responses.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Dipartimento di Scienze Biomolecolari e Biotecnologie; Università degli Studi di Milano; Milan, Italy
| | - Alexander Hertle
- Lehrstuhl für Botanik; Department Biologie I; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
| | - Mathias Pribi
- Dipartimento di Scienze Biomolecolari e Biotecnologie; Università degli Studi di Milano; Milan, Italy
- Lehrstuhl für Botanik; Department Biologie I; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
| | - Anja Schneider
- Lehrstuhl für Botanik; Department Biologie I; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Lehrstuhl für Botanik; Department Biologie I; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
| | - Dario Leister
- Lehrstuhl für Botanik; Department Biologie I; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Martín M, Funk HT, Serrot PH, Poltnigg P, Sabater B. Functional characterization of the thylakoid Ndh complex phosphorylation by site-directed mutations in the ndhF gene. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:920-8. [PMID: 19272354 DOI: 10.1016/j.bbabio.2009.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/19/2009] [Accepted: 03/02/2009] [Indexed: 01/24/2023]
Abstract
To investigate the phosphorylation of the NDH-F subunit of the thylakoid Ndh complex, we constructed three site-directed mutant transgenic tobaccos (Nicotiana tabacum) (T181A, T181S and T181D) in which the (541)ACT(543) triplet encoding the Thr-181 has been substituted by GCT, TCT or GAT encoding alanine, serine and aspartic acid, respectively. Western blots with phospho-threonine antibody detected the 73 kD NDH-F phosphorylated polypeptide in control but not in mutant tobaccos. Differences in Ndh activity, chlorophyll fluorescence and photosynthesis among mutants and control plant demonstrate the key role of the phosphorylation of conserved Thr-181 in the activity and function of the Ndh complex. The substitution of aspartic acid for threonine in T181D mimics the presumable activation effects of the threonine phosphorylation in Ndh activity, post-illumination increase of chlorophyll fluorescence and photosynthesis rapid responses to changing light intensities. A tentative role of the phosphorylation-activated Ndh complex is suggested to poise the redox level and, consequently, optimizing the rate of cyclic electron transport under field conditions.
Collapse
Affiliation(s)
- Mercedes Martín
- Departmento de Biología Vegetal. Universidad de Alcalá. Alcalá de Henares, 28871-Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Iwai M, Takahashi Y, Minagawa J. Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. THE PLANT CELL 2008; 20:2177-89. [PMID: 18757554 PMCID: PMC2553614 DOI: 10.1105/tpc.108.059352] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 08/04/2008] [Accepted: 08/07/2008] [Indexed: 05/18/2023]
Abstract
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits.
Collapse
Affiliation(s)
- Masakazu Iwai
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo 060-0819, Japan
| | | | | |
Collapse
|
11
|
Meinnel T, Giglione C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 2008; 8:626-49. [DOI: 10.1002/pmic.200700592] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Vener AV. Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:449-57. [PMID: 17184728 DOI: 10.1016/j.bbabio.2006.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/01/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Recent advances in vectorial proteomics of protein domains exposed to the surface of photosynthetic thylakoid membranes of plants and the green alga Chlamydomonas reinhardtii allowed mapping of in vivo phosphorylation sites in integral and peripheral membrane proteins. In plants, significant changes of thylakoid protein phosphorylation are observed in response to stress, particularly in photosystem II under high light or high temperature stress. Thylakoid protein phosphorylation in the algae is much more responsive to the ambient redox and light conditions, as well as to CO(2) availability. The light-dependent multiple and differential phosphorylation of CP29 linker protein in the green algae is suggested to control photosynthetic state transitions and uncoupling of light harvesting proteins from photosystem II under high light. The similar role for regulation of the dynamic distribution of light harvesting proteins in plants is proposed for the TSP9 protein, which together with other recently discovered peripheral proteins undergoes specific environment- and redox-dependent phosphorylation at the thylakoid surface. This review focuses on the environmentally modulated reversible phosphorylation of thylakoid proteins related to their membrane dynamics and affinity towards particular photosynthetic protein complexes.
Collapse
Affiliation(s)
- Alexander V Vener
- Division of Cell Biology, Linköping University, Linköping SE-58185, Sweden.
| |
Collapse
|
13
|
Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV. Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 2006; 5:1412-25. [PMID: 16670252 DOI: 10.1074/mcp.m600066-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation.
Collapse
Affiliation(s)
- Maria V Turkina
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Klinkert B, Elles I, Nickelsen J. Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Res 2006; 34:386-94. [PMID: 16410618 PMCID: PMC1331992 DOI: 10.1093/nar/gkj433] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 11/28/2022] Open
Abstract
Translation initiation represents a key step during regulation of gene expression in chloroplasts. Here, we report on the identification and characterization of three suppressor point mutations which overcome a translational defect caused by the deletion of a U-rich element in the 5'-untranslated region (5'-UTR) of the psbD mRNA in the green alga Chlamydomonas reinhardtii. All three suppressors affect a secondary RNA structure encompassing the psbD AUG initiation codon within a double-stranded region as judged by the analysis of site-directed chloroplast mutants as well as in vitro RNA mapping experiments using RNase H. In conclusion, the data suggest that these new element serves as a negative regulator which mediates a rapid shut-down of D2 synthesis.
Collapse
Affiliation(s)
- Birgit Klinkert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150D-44780 Bochum, Germany
| | - Ingolf Elles
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150D-44780 Bochum, Germany
| | - Jörg Nickelsen
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150D-44780 Bochum, Germany
| |
Collapse
|
15
|
Abstract
Peptide deformylases (PDFs) have been discovered recently in eukaryotic genomes, and it appears that N-terminal methionine excision (NME) is a conserved pathway in all compartments where protein synthesis occurs. This work aimed at uncovering the function(s) of NME in a whole proteome, using the chloroplast-encoded proteins of both Arabidopsis thaliana and Chlamydomonas reinhardtii as model systems. Disruption of PDF1B in A.thaliana led to an albino phenotype, and an extreme sensitivity to the PDF- specific inhibitor actinonin. In contrast, a knockout line for PDF1A exhibited no apparent phenotype. Photosystem II activity in C.reinhardtii cells was substantially reduced by the presence of actinonin. Pulse-chase experiments revealed that PDF inhibition leads to destabilization of a crucial subset of chloroplast-encoded photosystem II components in C. reinhardtii. The same proteins were destabilized in pdf1b. Site-directed substitutions altering NME of the most sensitive target, subunit D2, resulted in similar effects. Thus, plastid NME is a critical mechanism specifically influencing the life-span of photosystem II polypeptides. A general role of NME in modulating the half-life of key subsets of proteins is suggested.
Collapse
Affiliation(s)
| | - Olivier Vallon
- Protein Maturation, Trafficking and Signaling, UPR2355, Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex and
Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, UPR1261, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, F-75005 Paris, France Present address: Department of Plant Biology, The Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Thierry Meinnel
- Protein Maturation, Trafficking and Signaling, UPR2355, Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex and
Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, UPR1261, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, F-75005 Paris, France Present address: Department of Plant Biology, The Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA Corresponding author e-mail:
| |
Collapse
|