1
|
Ryan JM, Nebenführ A. Update on Myosin Motors: Molecular Mechanisms and Physiological Functions. PLANT PHYSIOLOGY 2018; 176:119-127. [PMID: 29162634 PMCID: PMC5761821 DOI: 10.1104/pp.17.01429] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/19/2017] [Indexed: 05/21/2023]
Abstract
Recent progress has revealed aspects of the molecular mechanisms that allow myosin motors to carry outtheir physiological functions.
Collapse
Affiliation(s)
- Jennifer M Ryan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840
| |
Collapse
|
2
|
Tu H, Li X, Yang Q, Peng L, Pan SQ. Real-Time Trafficking of Agrobacterium Virulence Protein VirE2 Inside Host Cells. Curr Top Microbiol Immunol 2018; 418:261-286. [PMID: 30182197 DOI: 10.1007/82_2018_131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A. tumefaciens delivers T-DNA and virulence proteins, including VirE2, into host plant cells, where T-DNA is proposed to be protected by VirE2 molecules as a nucleoprotein complex (T-complex) and trafficked into the nucleus. VirE2 is a protein that can self-aggregate and contains targeting sequences so that it can efficiently move from outside of a cell to the nucleus. We adopted a split-GFP approach and generated a VirE2-GFP fusion which retains the self-aggregating property and the targeting sequences. The fusion protein is fully functional and can move inside cells in real time in a readily detectable format: fluorescent and unique filamentous aggregates. Upon delivery mediated by the bacterial type IV secretion system (T4SS), VirE2-GFP is internalized into the plant cells via clathrin adaptor complex AP2-mediated endocytosis. Subsequently, VirE2-GFP binds to membrane structures such as the endoplasmic reticulum (ER) and is trafficked within the cell. This enables us to observe the highly dynamic activities of the cell. If a compound, a gene, or a condition affects the cell, the cellular dynamics shown by the VirE2-GFP will be affected and thus readily observed by confocal microscopy. This represents an excellent model to study the delivery and trafficking of an exogenously produced and delivered protein inside a cell in a natural setting in real time. The model may be used to explore the theoretical and applied aspects of natural protein delivery and targeting.
Collapse
Affiliation(s)
- Haitao Tu
- School of Stomatology and Medicine, Foshan Institute of Molecular Bio-Engineering, Foshan University, 528000, Foshan, China
| | - Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Qinghua Yang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Ling Peng
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
| |
Collapse
|
3
|
Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K-powered ER/actin network. Proc Natl Acad Sci U S A 2017; 114:2982-2987. [PMID: 28242680 DOI: 10.1073/pnas.1612098114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Agrobacterium tumefaciens causes crown gall tumors on various plants by delivering transferred DNA (T-DNA) and virulence proteins into host plant cells. Under laboratory conditions, the bacterium is widely used as a vector to genetically modify a wide range of organisms, including plants, yeasts, fungi, and algae. Various studies suggest that T-DNA is protected inside host cells by VirE2, one of the virulence proteins. However, it is not clear how Agrobacterium-delivered factors are trafficked through the cytoplasm. In this study, we monitored the movement of Agrobacterium-delivered VirE2 inside plant cells by using a split-GFP approach in real time. Agrobacterium-delivered VirE2 trafficked via the endoplasmic reticulum (ER) and F-actin network inside plant cells. During this process, VirE2 was aggregated as filamentous structures and was present on the cytosolic side of the ER. VirE2 movement was powered by myosin XI-K. Thus, exogenously produced and delivered VirE2 protein can use the endogenous host ER/actin network for movement inside host cells. The A. tumefaciens pathogen hijacks the conserved host infrastructure for virulence trafficking. Well-conserved infrastructure may be useful for Agrobacterium to target a wide range of recipient cells and achieve a high efficiency of transformation.
Collapse
|
4
|
Kozgunova E, Higashiyama T, Kurihara D. Cytokinesis defect in BY-2 cells caused by ATP-competitive kinase inhibitors. PLANT SIGNALING & BEHAVIOR 2016; 11:e1238547. [PMID: 27662076 PMCID: PMC5257169 DOI: 10.1080/15592324.2016.1238547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Cytokinesis is last but not least in cell division as it completes the formation of the two cells. The main role in cell plate orientation and expansion have been assigned to microtubules and kinesin proteins. However, recently we reported severe cytokinesis defect in BY-2 cells not accompanied by changes in microtubules dynamics. Here we also confirmed that distribution of kinesin NACK1 is not the cause of cytokinesis defect. We further explored inhibition of the cell plate expansion by ATP-competitive inhibitors. Two different inhibitors, 5-Iodotubercidin and ML-7 resulted in a very similar phenotype, which indicates that they target same protein cascade. Interestingly, in our previous study we showed that 5-Iodotubercidin treatment affects concentration of actin filaments on the cell plate, while ML-7 is inhibitor of myosin light chain kinase. Although not directly, it indicates importance of actomyosin complex in plant cytokinesis.
Collapse
Affiliation(s)
- Elena Kozgunova
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Tominaga M, Ito K. The molecular mechanism and physiological role of cytoplasmic streaming. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:104-110. [PMID: 26202096 DOI: 10.1016/j.pbi.2015.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 05/20/2023]
Abstract
Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size.
Collapse
Affiliation(s)
- Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
6
|
The circular F-actin bundles provide a track for turnaround and bidirectional movement of mitochondria in Arabidopsis root hair. PLoS One 2014; 9:e91501. [PMID: 24626218 PMCID: PMC3953408 DOI: 10.1371/journal.pone.0091501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/10/2014] [Indexed: 12/20/2022] Open
Abstract
Background The movement of organelles in root hairs primarily occurs along the actin cytoskeleton. Circulation and “reverse fountain” cytoplasmic streaming constitute the typical forms by which most organelles (such as mitochondria and the Golgi apparatus) in plant root hair cells engage in bidirectional movement. However, there remains a lack of in-depth research regarding the relationship between the distribution of the actin cytoskeleton and turnaround organelle movement in plant root hair cells. Results In this paper, Arabidopsis seedlings that had been stably transformed with a GFP-ABD2-GFP (green fluorescent protein-actin-binding domain 2-green fluorescent protein) construct were utilized to study the distribution of bundles of filamentous (F)-actin and the directed motion of mitochondria along these bundles in root hairs. Observations with a confocal laser scanning microscope revealed that there were widespread circular F-actin bundles in the epidermal cells and root hairs of Arabidopsis roots. In root hairs, these circular bundles primarily start at the sub-apical region, which is the location where the turnaround movement of organelles occurs. MitoTracker probes were used to label mitochondria, and the dynamic observation of root hair cells with a confocal laser scanning microscope indicated that turnaround mitochondrial movement occurred along circular F-actin bundles. Conclusions Relevant experimental results demonstrated that the circular F-actin bundles provide a track for the turnaround and bidirectional movement of mitochondria.
Collapse
|
7
|
Cytoplasmic streaming velocity as a plant size determinant. Dev Cell 2014; 27:345-52. [PMID: 24229646 DOI: 10.1016/j.devcel.2013.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/23/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
Abstract
Cytoplasmic streaming is active transport widely occurring in plant cells ranging from algae to angiosperms. Although it has been revealed that cytoplasmic streaming is generated by organelle-associated myosin XI moving along actin bundles, the fundamental function in plants remains unclear. We generated high- and low-speed chimeric myosin XI by replacing the motor domains of Arabidopsis thaliana myosin XI-2 with those of Chara corallina myosin XI and Homo sapiens myosin Vb, respectively. Surprisingly, the plant sizes of the transgenic Arabidopsis expressing high- and low-speed chimeric myosin XI-2 were larger and smaller, respectively, than that of the wild-type plant. This size change correlated with acceleration and deceleration, respectively, of cytoplasmic streaming. Our results strongly suggest that cytoplasmic streaming is a key determinant of plant size. Furthermore, because cytoplasmic streaming is a common system for intracellular transport in plants, our system could have applications in artificial size control in plants.
Collapse
|
8
|
Tominaga M, Kojima H, Yokota E, Nakamori R, Anson M, Shimmen T, Oiwa K. Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI. J Biol Chem 2012; 287:30711-8. [PMID: 22740687 PMCID: PMC3436315 DOI: 10.1074/jbc.m112.346668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/19/2012] [Indexed: 11/25/2022] Open
Abstract
Plant myosin XI functions as a motor that generates cytoplasmic streaming in plant cells. Although cytoplasmic streaming is known to be regulated by intracellular Ca(2+) concentration, the molecular mechanism underlying this control is not fully understood. Here, we investigated the mechanism of regulation of myosin XI by Ca(2+) at the molecular level. Actin filaments were easily detached from myosin XI in an in vitro motility assay at high Ca(2+) concentration (pCa 4) concomitant with the detachment of calmodulin light chains from the neck domains. Electron microscopic observations showed that myosin XI at pCa 4 shortened the neck domain by 30%. Single-molecule analysis revealed that the step size of myosin XI at pCa 4 was shortened to 27 nm under low load and to 22 nm under high load compared with 35 nm independent of the load for intact myosin XI. These results indicate that modulation of the mechanical properties of the neck domain is a key factor for achieving the Ca(2+)-induced regulation of cytoplasmic streaming.
Collapse
Affiliation(s)
- Motoki Tominaga
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Hiroaki Kojima
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Etsuo Yokota
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan, and
| | - Rinna Nakamori
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Michael Anson
- the Division of Physical Biochemistry, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Teruo Shimmen
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan, and
| | - Kazuhiro Oiwa
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan, and
| |
Collapse
|
9
|
Furt F, Lemoi K, Tüzel E, Vidali L. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC PLANT BIOLOGY 2012; 12:70. [PMID: 22594499 PMCID: PMC3476433 DOI: 10.1186/1471-2229-12-70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/17/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND In the last decade, the moss Physcomitrella patens has emerged as a powerful plant model system, amenable for genetic manipulations not possible in any other plant. This moss is particularly well suited for plant polarized cell growth studies, as in its protonemal phase, expansion is restricted to the tip of its cells. Based on pollen tube and root hair studies, it is well known that tip growth requires active secretion and high polarization of the cellular components. However, such information is still missing in Physcomitrella patens. To gain insight into the mechanisms underlying the participation of organelle organization in tip growth, it is essential to determine the distribution and the dynamics of the organelles in moss cells. RESULTS We used fluorescent protein fusions to visualize and track Golgi dictyosomes, mitochondria, and peroxisomes in live protonemal cells. We also visualized and tracked chloroplasts based on chlorophyll auto-fluorescence. We showed that in protonemata all four organelles are distributed in a gradient from the tip of the apical cell to the base of the sub-apical cell. For example, the density of Golgi dictyosomes is 4.7 and 3.4 times higher at the tip than at the base in caulonemata and chloronemata respectively. While Golgi stacks are concentrated at the extreme tip of the caulonemata, chloroplasts and peroxisomes are totally excluded. Interestingly, caulonemata, which grow faster than chloronemata, also contain significantly more Golgi dictyosomes and fewer chloroplasts than chloronemata. Moreover, the motility analysis revealed that organelles in protonemata move with low persistency and average instantaneous speeds ranging from 29 to 75 nm/s, which are at least three orders of magnitude slower than those of pollen tube or root hair organelles. CONCLUSIONS To our knowledge, this study reports the first quantitative analysis of organelles in Physcomitrella patens and will make possible comparisons of the distribution and dynamics of organelles from different tip growing plant cells, thus enhancing our understanding of the mechanisms of plant polarized cell growth.
Collapse
Affiliation(s)
- Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Kyle Lemoi
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| |
Collapse
|
10
|
KAKEI T, SUMIYOSHI H, HIGASHI-FUJIME S. Characteristics of light chains of Chara myosin revealed by immunological investigation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:201-211. [PMID: 22687741 PMCID: PMC3410491 DOI: 10.2183/pjab.88.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/29/2012] [Indexed: 06/01/2023]
Abstract
Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca⁺⁺-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively.
Collapse
Affiliation(s)
- Toshihito KAKEI
- Department of Molecular Biology, Faculty of Science, Nagoya University, Nagoya, Japan
| | - Hiroki SUMIYOSHI
- Department of Molecular Biology, Faculty of Science, Nagoya University, Nagoya, Japan
| | - Sugie HIGASHI-FUJIME
- Department of Molecular Biology, Faculty of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Tominaga M, Nakano A. Plant-Specific Myosin XI, a Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2012; 3:211. [PMID: 22973289 PMCID: PMC3437519 DOI: 10.3389/fpls.2012.00211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/21/2012] [Indexed: 05/04/2023]
Abstract
In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actin-myosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear. To achieve a better understanding of the plant-specific actin-myosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana. Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation.
Collapse
Affiliation(s)
- Motoki Tominaga
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
- Japan Science and Technology Agency, PRESTOKawaguchi, Saitama, Japan
- *Correspondence: Motoki Tominaga, Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. e-mail:
| | - Akihiko Nakano
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, University of TokyoBunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Yokota E, Ueda H, Hashimoto K, Orii H, Shimada T, Hara-Nishimura I, Shimmen T. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells. PLANT PHYSIOLOGY 2011; 156:129-43. [PMID: 21427277 PMCID: PMC3091044 DOI: 10.1104/pp.111.175018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/18/2011] [Indexed: 05/17/2023]
Abstract
The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.
Collapse
Affiliation(s)
- Etsuo Yokota
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci U S A 2010; 107:6894-9. [PMID: 20351265 DOI: 10.1073/pnas.0911482107] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants exhibit an ultimate case of the intracellular motility involving rapid organelle trafficking and continuous streaming of the endoplasmic reticulum (ER). Although it was long assumed that the ER dynamics is actomyosin-driven, the responsible myosins were not identified, and the ER streaming was not characterized quantitatively. Here we developed software to generate a detailed velocity-distribution map for the GFP-labeled ER. This map revealed that the ER in the most peripheral plane was relatively static, whereas the ER in the inner plane was rapidly streaming with the velocities of up to approximately 3.5 microm/sec. Similar patterns were observed when the cytosolic GFP was used to evaluate the cytoplasmic streaming. Using gene knockouts, we demonstrate that the ER dynamics is driven primarily by the ER-associated myosin XI-K, a member of a plant-specific myosin class XI. Furthermore, we show that the myosin XI deficiency affects organization of the ER network and orientation of the actin filament bundles. Collectively, our findings suggest a model whereby dynamic three-way interactions between ER, F-actin, and myosins determine the architecture and movement patterns of the ER strands, and cause cytosol hauling traditionally defined as cytoplasmic streaming.
Collapse
|
14
|
Gao F, Zhang H, Wang H, Gao H, Li Z. Comparative transcriptional profiling under drought stress between upland and lowland rice (Oryza sativa L.) using cDNA-AFLP. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Higashi-Fujime S, Nakamura A. Cell and molecular biology of the fastest myosins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:301-47. [PMID: 19584016 DOI: 10.1016/s1937-6448(09)76007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chara myosin is a class XI plant myosin in green algae Chara corallina and responsible for fast cytoplasmic streaming. The Chara myosin exhibits the fastest sliding movement of F-actin at 60 mum/s as observed so far, 10-fold of the shortening speed of muscle. It has some distinct properties differing from those of muscle myosin. Although knowledge about Chara myosin is very limited at present, we have tried to elucidate functional bases of its characteristics by comparing with those of other myosins. In particular, we have built the putative atomic model of Chara myosin by using the homology-based modeling system and databases. Based on the putative structure of Chara myosin obtained, we have analyzed the relationship between structure and function of Chara myosin to understand its distinct properties from various aspects by referring to the accumulated knowledge on mechanochemical and structural properties of other classes of myosin, particularly animal and fungal myosin V. We will also discuss the functional significance of Chara myosin in a living cell.
Collapse
Affiliation(s)
- Sugie Higashi-Fujime
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
16
|
Yokota E, Ueda S, Tamura K, Orii H, Uchi S, Sonobe S, Hara-Nishimura I, Shimmen T. An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:197-212. [PMID: 19039101 PMCID: PMC3071767 DOI: 10.1093/jxb/ern280] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/14/2008] [Accepted: 10/16/2008] [Indexed: 05/18/2023]
Abstract
The involvement of myosin XI in generating the motive force for cytoplasmic streaming in plant cells is becoming evident. For a comprehensive understanding of the physiological roles of myosin XI isoforms, it is necessary to elucidate the properties and functions of each isoform individually. In tobacco cultured BY-2 cells, two types of myosins, one composed of 175 kDa heavy chain (175 kDa myosin) and the other of 170 kDa heavy chain (170 kDa myosin), have been identified biochemically and immunocytochemically. From sequence analyses of cDNA clones encoding heavy chains of 175 kDa and 170 kDa myosin, both myosins have been classified as myosin XI. Immunocytochemical studies using a polyclonal antibody against purified 175 kDa myosin heavy chain showed that the 175 kDa myosin is distributed throughout the cytoplasm as fine dots in interphase BY-2 cells. During mitosis, some parts of 175 kDa myosin were found to accumulate in the pre-prophase band (PPB), spindle, the equatorial plane of a phragmoplast and on the circumference of daughter nuclei. In transgenic BY-2 cells, in which an endoplasmic reticulum (ER)-specific retention signal, HDEL, tagged with green fluorescent protein (GFP) was stably expressed, ER showed a similar behaviour to that of 175 kDa myosin. Furthermore, this myosin was co-fractionated with GFP-ER by sucrose density gradient centrifugation. From these findings, it was suggested that the 175 kDa myosin is a molecular motor responsible for translocating ER in BY-2 cells.
Collapse
Affiliation(s)
- Etsuo Yokota
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sparkes IA, Teanby NA, Hawes C. Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2499-512. [PMID: 18503043 PMCID: PMC2423659 DOI: 10.1093/jxb/ern114] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/11/2008] [Accepted: 03/28/2008] [Indexed: 05/18/2023]
Abstract
Although organelle movement in higher plants is predominantly actin-based, potential roles for the 17 predicted Arabidopsis myosins in motility are only just emerging. It is shown here that two Arabidopsis myosins from class XI, XIE, and XIK, are involved in Golgi, peroxisome, and mitochondrial movement. Expression of dominant negative forms of the myosin lacking the actin binding domain at the amino terminus perturb organelle motility, but do not completely inhibit movement. Latrunculin B, an actin destabilizing drug, inhibits organelle movement to a greater extent compared to the effects of AtXIE-T/XIK-T expression. Amino terminal YFP fusions to XIE-T and XIK-T are dispersed throughout the cytosol and do not completely decorate the organelles whose motility they affect. XIE-T and XIK-T do not affect the global actin architecture, but their movement and location is actin-dependent. The potential role of these truncated myosins as genetically encoded inhibitors of organelle movement is discussed.
Collapse
Affiliation(s)
- Imogen A Sparkes
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK.
| | | | | |
Collapse
|
18
|
Hachikubo Y, Ito K, Schiefelbein J, Manstein DJ, Yamamoto K. Enzymatic Activity and Motility of Recombinant Arabidopsis Myosin XI, MYA1. ACTA ACUST UNITED AC 2007; 48:886-91. [PMID: 17504816 DOI: 10.1093/pcp/pcm054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We expressed recombinant Arabidopsis myosin XI (MYA1), in which the motor domain of MYA1 was connected to an artificial lever arm composed of triple helical repeats of Dictyostelium alpha-actinin, in order to understand its motor activity and intracellular function. The V(max) and K(actin) of the actin-activated Mg(2+) ATPase activity of the recombinant MYA1 were 50.7 Pi head(-1) s(-1) and 30.2 microM, respectively, at 25 degrees C. The recombinant MYA1 could translocate actin filament at the maximum velocity of 1.8 microm s(-1) at 25 degrees C in the in vitro motility assay. The value corresponded to a motility of 3.2 microm s(-1) for native MYA1 if we consider the difference in the lever arm length, and this value was very close to the velocity of cytoplasmic streaming in Arabidopsis hypocotyl epidermal cells. The extent of inhibition by ADP of the motility of MYA1 was similar to that of the well-known processive motor, myosin V, suggesting that MYA1 is a processive motor. The dissociation rate of the actin-MYA1-ADP complex induced by ATP (73.5 s(-1)) and the V(max) value of the actin-activated Mg(2+) ATPase activity revealed that MYA1 stays in the actin-bound state for about 70% of its mechanochemical cycle time. This high ratio of actin-bound states is also a characteristic of processive motors. Our results strongly suggest that MYA1 is a processive motor and involved in vesicle transport and/or cytoplasmic streaming.
Collapse
Affiliation(s)
- You Hachikubo
- Department of Biology, Chiba University, Inageku, Chiba, 263-8522 Japan
| | | | | | | | | |
Collapse
|
19
|
Jiang SY, Cai M, Ramachandran S. ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations. Dev Biol 2007; 304:579-92. [PMID: 17289016 DOI: 10.1016/j.ydbio.2007.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/29/2006] [Accepted: 01/04/2007] [Indexed: 11/22/2022]
Abstract
Myosins are actin-based motor proteins responsible for various motility and signal transduction. Only a small set of myosin classes is present inplants, and little is known about their functions. Here we showed how a rice myosin gene controlled pollen development by sensing changed environmental factors. The analysis is based on a gene-trapped Ds insertion mutant Oryza sativa myosin XI B (osmyoXIB). This mutant showed male sterility under short day length (SD) conditions and fertility under long day length (LD) conditions. Under both SD and LD conditions, the OSMYOXIB transcript was detected in whole anthers. However, under SD conditions, the OSMYOXIB-GUS fusion protein was localized only in the epidermal layer of anthers due to the lack of 3'-untranslated region (3'-UTR) and to dilute (DIL) domain sequences following the Ds insertion. As a result, mutant pollen development was affected, leading to male sterility. By contrast, under LD conditions, the fusion protein was localized normally in anthers. Despite normal localization, the protein was only partially functional due to the lack of DIL domain sequences, resulting in limited recovery of pollen fertility. This study also provides a case for a novel molecular aspect of gene expression, i.e., cell layer-specific translation in anthers.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore 117604, Singapore
| | | | | |
Collapse
|
20
|
Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M. Microtubule- and Actin Filament-Dependent Motors are Distributed on Pollen Tube Mitochondria and Contribute Differently to Their Movement. ACTA ACUST UNITED AC 2007; 48:345-61. [PMID: 17204488 DOI: 10.1093/pcp/pcm001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.
Collapse
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, via Mattioli 4, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Shimmen T. The sliding theory of cytoplasmic streaming: fifty years of progress. JOURNAL OF PLANT RESEARCH 2007; 120:31-43. [PMID: 17252175 DOI: 10.1007/s10265-006-0061-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 11/22/2006] [Indexed: 05/08/2023]
Abstract
Fifty years ago, an important paper appeared in Botanical Magazine Tokyo. Kamiya and Kuroda proposed a sliding theory for the mechanism of cytoplasmic streaming. This pioneering study laid the basis for elucidation of the molecular mechanism of cytoplasmic streaming--the motive force is generated by the sliding of myosin XI associated with organelles along actin filaments, using the hydrolysis energy of ATP. The role of the actin-myosin system in various plant cell functions is becoming evident. The present article reviews progress in studies on cytoplasmic streaming over the past 50 years.
Collapse
Affiliation(s)
- Teruo Shimmen
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| |
Collapse
|
22
|
Hamada S, Sekimoto H, Tanabe Y, Tsuchikane Y, Ito M. Isolation of myosin XI genes from the Closterium peracerosum-strigosum-littorale complex and analysis of their expression during sexual reproduction. JOURNAL OF PLANT RESEARCH 2006; 119:105-13. [PMID: 16456621 DOI: 10.1007/s10265-005-0249-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/21/2005] [Indexed: 05/06/2023]
Abstract
Myosins comprise a large superfamily of molecular motors that generate mechanical force in ATP-dependent interactions with actin filaments. On the basis of their conserved motor domain sequences, myosins can be divided into at least 17 classes, 3 of which (VIII, XI, XIII) are found in plants. Although full sequences of myosins are available from several species of green plants, little is known about the functions of these proteins. Additionally, sequence information for algal myosin is incomplete, and little attention has been given to the molecular evolution of myosin from green plants. In the present study, the Closterium peracerosum-strigosum-littorale complex was used as a model system for investigating a unicellular basal charophycean alga. This organism has been well studied with respect to sexual reproduction between its two mating types. Three types of partial sequences belonging to class XI myosins were obtained using degenerate primers designed to amplify motor domain sequences. Real-time polymerase chain reaction analysis of the respective myosin genes during various stages of the algal life cycle showed that one of the genes was more highly expressed during sexual reproduction, and that expression was cell-cycle-dependent in vegetatively grown cells.
Collapse
Affiliation(s)
- Saeko Hamada
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
23
|
Hashimoto K, Igarashi H, Mano S, Nishimura M, Shimmen T, Yokota E. Peroxisomal localization of a myosin XI isoform in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2005; 46:782-9. [PMID: 15792961 DOI: 10.1093/pcp/pci085] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genome of Arabidopsis thaliana contains 13 myosin XI isoforms. Here we prepared a specific antibody against a peptide that mimics a unique C-terminal region from the myosin XI isoform, MYA2. The resulting antibody was used to demonstrate that MYA2 in Arabidopsis protein extracts co-sedimented with actin filaments and dissociated from the filaments with ATP treatment. Immunolocalization studies showed that MYA2 co-localized predominantly with actin filaments in clustered punctuate dots in leaf epidermal cells, root hair cells and suspension-cultured cells. In a transgenic plant in which peroxisomes are labeled with green fluorescent protein, some MYA2 signals were localized on peroxisomes in an actin-dependent manner. We propose that the peroxisome is one of the cargos translocated by MYA2 on actin filaments.
Collapse
Affiliation(s)
- Kohsuke Hashimoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo, 678-1297 Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Plant cells are surrounded by a cell wall composed of polysaccharides and hence can change neither their form nor their position. However, active movement of organelles (cytoplasmic streaming or protoplasmic streaming) is observed in plant cells, and involvement of the actin/myosin system in these processes has been suggested. Successful biochemical and biophysical approaches to studying myosins have extensively promoted the understanding of the molecular mechanism underlying these phenomena.
Collapse
Affiliation(s)
- Teruo Shimmen
- Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Japan.
| | | |
Collapse
|
25
|
Holweg C, Nick P. Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. Proc Natl Acad Sci U S A 2004; 101:10488-93. [PMID: 15240891 PMCID: PMC478596 DOI: 10.1073/pnas.0403155101] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/18/2022] Open
Abstract
Myosins are eukaryotic molecular motors moving along actin filaments. Only a small set of myosin classes is present in plants, in which myosins have been found to play a role in cytoplasmic streaming and chloroplast movement. Whereas most studies have been done on green algae, more recent data suggest a role of higher plant myosin at the postcytokinetic cell wall. Here we characterize a loss-of-function mutation for a myosin of plant-specific class XI and demonstrate myosin functions during plant development in Arabidopsis. T-DNA insertion in MYA2 caused pleiotropic effects, including flower sterility and dwarf growth. Elongation of epidermal cells, such as in hypocotyls and anther filaments, was reduced by up to 50% of normal length. This effect on anther filaments is responsible for flower sterility. In the meristems of root tips, it was evident that cell division was delayed and that cell plates were mislocated. Like zwichel, a kinesin-related mutation causing two-branched trichomes, the mya2 knockout causes branching defects, but here the trichomes remained unbranched. Growth was also impaired in pollen tubes and root hairs, cells that are highly dependent on vesicle transport. A failure in vesicle flow could be directly confirmed, because cytoplasmic streaming of vesicles and, more so, of large endoplasmic reticulum-based organelles was slowed. The defect in vesicle trafficking was accompanied by failures in basipetal auxin transport, measured in stem segments of inflorescences. This result strongly suggests a causal link between auxin-dependent processes and the distribution of vesicles and membrane-bound molecules by plant myosin.
Collapse
Affiliation(s)
- Carola Holweg
- Institut für Botanik 1, Universität Karlsruhe, Kaiserstrasse 2, D-76128 Karlsruhe, Germany.
| | | |
Collapse
|
26
|
Jiang S, Ramachandran S. Identification and Molecular Characterization of Myosin Gene Family in Oryza sativa Genome. ACTA ACUST UNITED AC 2004; 45:590-9. [PMID: 15169941 DOI: 10.1093/pcp/pch061] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myosins play an important role in various developmental processes in plants. We have identified 14 myosin genes in rice (Oryza sativa cv. Nipponbare) genome using sequence information available in public databases. Phylogenetic analysis of these sequences with other plant and non-plant myosins revealed that two of the predicted sequences belonged to class VIII and the others to class XI. All of these genes were distributed on seven chromosomes in the rice genome. Domain searches on these sequences indicated that a typical rice myosin consisted of Myosin_N, head domain, neck (IQ motifs), tail, and dilute (DIL) domain. Based on the sequence information obtained from predicted myosins, we isolated and sequenced two full-length cDNAs, OsMyoVIIIA and OsMyoXIE, representing each of the two classes of myosins. These two cDNAs isolated from different organs existed in isoforms due to differential splicing and showed minor differences from the predicted myosin in exon organization. Out of 14 myosin genes 11 were expressed in three major organs: leaves, panicles, and roots, among which three myosins exhibited different expression levels. On the other hand, three of the total myosin sequences showed organ-specific expression. The existence of different myosin genes and their isoforms in different organs or tissues indicates the diversity of myosin functions in rice.
Collapse
Affiliation(s)
- ShuYe Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore, Singapore 117604
| | | |
Collapse
|
27
|
|
28
|
Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 2003; 22:1263-72. [PMID: 12628919 PMCID: PMC151065 DOI: 10.1093/emboj/cdg130] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Revised: 01/21/2003] [Accepted: 01/27/2003] [Indexed: 11/12/2022] Open
Abstract
High velocity cytoplasmic streaming is found in various plant cells from algae to angiosperms. We characterized mechanical and enzymatic properties of a higher plant myosin purified from tobacco bright yellow-2 cells, responsible for cytoplasmic streaming, having a 175 kDa heavy chain and calmodulin light chains. Sequence analysis shows it to be a class XI myosin and a dimer with six IQ motifs in the light chain-binding domains of each heavy chain. Electron microscopy confirmed these predictions. We measured its ATPase characteristics, in vitro motility and, using optical trap nanometry, forces and movement developed by individual myosin XI molecules. Single myosin XI molecules move processively along actin with 35 nm steps at 7 micro m/s, the fastest known processive motion. Processivity was confirmed by actin landing rate assays. Mean maximal force was approximately 0.5 pN, smaller than for myosin IIs. Dwell time analysis of beads carrying single myosin XI molecules fitted the ATPase kinetics, with ADP release being rate limiting. These results indicate that myosin XI is highly specialized for generation of fast processive movement with concomitantly low forces.
Collapse
Affiliation(s)
| | | | - Etsuo Yokota
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Hidefumi Orii
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | | | - Eisaku Katayama
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Michael Anson
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Teruo Shimmen
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Kazuhiro Oiwa
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| |
Collapse
|
29
|
Reddy AS, Day IS. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2001; 2:RESEARCH0024. [PMID: 11516337 PMCID: PMC55321 DOI: 10.1186/gb-2001-2-7-research0024] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2001] [Revised: 04/27/2001] [Accepted: 05/21/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants. RESULTS Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication. CONCLUSIONS Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
30
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
31
|
Reddy AS. Calcium: silver bullet in signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:381-404. [PMID: 11166425 DOI: 10.1016/s0168-9452(00)00386-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Accumulating evidence suggests that Ca(2+) serves as a messenger in many normal growth and developmental process and in plant responses to biotic and abiotic stresses. Numerous signals have been shown to induce transient elevation of [Ca(2+)](cyt) in plants. Genetic, biochemical, molecular and cell biological approaches in recent years have resulted in significant progress in identifying several Ca(2+)-sensing proteins in plants and in understanding the function of some of these Ca(2+)-regulated proteins at the cellular and whole plant level. As more and more Ca(2+)-sensing proteins are identified it is becoming apparent that plants have several unique Ca(2+)-sensing proteins and that the downstream components of Ca(2+) signaling in plants have novel features and regulatory mechanisms. Although the mechanisms by which Ca(2+) regulates diverse biochemical and molecular processes and eventually physiological processes in response to diverse signals are beginning to be understood, recent studies have raised many interesting questions. Despite the fact that Ca(2+) sensing proteins are being identified at a rapid pace, progress on the function(s) of many of them is limited. Studies on plant 'signalome' - the identification of all signaling components in all messengers mediated transduction pathways, analysis of their function and regulation, and cross talk among these components - should help in understanding the inner workings of plant cell responses to diverse signals. New functional genomics approaches such as reverse genetics, microarray analyses coupled with in vivo protein-protein interaction studies and proteomics should not only permit functional analysis of various components in Ca(2+) signaling but also enable identification of a complex network of interactions.
Collapse
Affiliation(s)
- A S.N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, 80523, Fort Collins, CO, USA
| |
Collapse
|
32
|
Abstract
Plants have developed finely tuned, cellular mechanisms to respond to a variety of intrinsic and extrinsic stimuli. In several examples, these responses necessitate rearrangements of the cytoplasm that are coordinated by a network of actin microfilaments and microtubules, dynamic polymers collectively known as the cytoskeleton. This review focuses on five different cellular responses in which the actin cytoskeleton redistributes following extracellular stimulation: pollen tube tip growth and the self-incompatibility response; root hair responses to bacterial nodulation factors; light-mediated plastid positioning; nonhost resistance to fungal attack; and guard cell shape and turgor changes. For each of these systems, there is reasonable knowledge about what signals induce the plant response and the function(s) of the actin rearrangement. This review aims to build beyond a description of cytoskeletal changes and look at specific actin-binding proteins that have been implicated as effectors of each response, as sites of action for second messengers, and as fundamental coordinators of actin dynamics.
Collapse
Affiliation(s)
- Chris J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392; e-mail:
| |
Collapse
|