1
|
Pohland AC, Bernát G, Geimer S, Schneider D. Mg 2+ limitation leads to a decrease in chlorophyll, resulting in an unbalanced photosynthetic apparatus in the cyanobacterium Synechocytis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2024; 162:13-27. [PMID: 39037691 DOI: 10.1007/s11120-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Mg2+, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg2+ limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg2+ deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg2+ deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg2+ deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.
Collapse
Affiliation(s)
- Anne-Christin Pohland
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Gábor Bernát
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany.
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Gates C, Williams JM, Ananyev G, Dismukes GC. How chloride functions to enable proton conduction in photosynthetic water oxidation: Time-resolved kinetics of intermediates (S-states) in vivo and bromide substitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148998. [PMID: 37499962 DOI: 10.1016/j.bbabio.2023.148998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Chloride (Cl-) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA-), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (-20 %) and proton release (-36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0') slow with increasing light intensity and during O2/water exchange (S0' → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl- cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br-. The Cl- advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl- in dry water channels vs. separated Br- and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br- cultures for both proton evolution and less PSII charge recombination. In Br- cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br- with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Computational Biology and Molecular Biophysics, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Biochemistry, Loyola University Chicago, IL 60660, USA
| | - Jonah M Williams
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
3
|
Wilson S, Johnson MP, Ruban AV. Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light. PLANT PHYSIOLOGY 2021; 187:263-275. [PMID: 34618143 PMCID: PMC8418402 DOI: 10.1093/plphys/kiab270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/23/2021] [Indexed: 05/08/2023]
Abstract
The proton motive force (pmf) across the thylakoid membrane couples photosynthetic electron transport and ATP synthesis. In recent years, the electrochromic carotenoid and chlorophyll absorption band shift (ECS), peaking ∼515 nm, has become a widely used probe to measure pmf in leaves. However, the use of this technique to calculate the parsing of the pmf between the proton gradient (ΔpH) and electric potential (Δψ) components remains controversial. Interpretation of the ECS signal is complicated by overlapping absorption changes associated with violaxanthin de-epoxidation to zeaxanthin (ΔA505) and energy-dependent nonphotochemical quenching (qE; ΔA535). In this study, we used Arabidopsis (Arabidopsis thaliana) plants with altered xanthophyll cycle activity and photosystem II subunit S (PsbS) content to disentangle these overlapping contributions. In plants where overlap among ΔA505, ΔA535, and ECS is diminished, such as npq4 (lacking ΔA535) and npq1npq4 (also lacking ΔA505), the parsing method implies the Δψ contribution is virtually absent and pmf is solely composed of ΔpH. Conversely, in plants where ΔA535 and ECS overlap is enhanced, such as L17 (a PsbS overexpressor) and npq1 (where ΔA535 is blue-shifted to 525 nm) the parsing method implies a dominant contribution of Δψ to the total pmf. These results demonstrate the vast majority of the pmf attributed by the ECS parsing method to Δψ is caused by ΔA505 and ΔA535 overlap, confirming pmf is dominated by ΔpH following the first 60 s of continuous illumination under both low and high light conditions. Further implications of these findings for the regulation of photosynthesis are discussed.
Collapse
Affiliation(s)
- Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew P. Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
4
|
Gates C, Ananyev G, Dismukes GC. Realtime kinetics of the light driven steps of photosynthetic water oxidation in living organisms by "stroboscopic" fluorometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148212. [PMID: 32320684 DOI: 10.1016/j.bbabio.2020.148212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
We develop a rapid "stroboscopic" fluorescence induction method, using the fast repetition rate fluorometry (FRRF) technique, to measure changes in the quantum yield of light emission from chlorophyll in oxygenic photosynthesis arising from competition with primary photochemical charge separation (P680* ➔ P680+QA-). This method determines the transit times of electrons that pass through PSII during the successive steps in the catalytic cycle of water oxidation/O2 formation (S states) and plastoquinone reduction in any oxygenic phototroph (in vivo or in vitro). We report the first measurements from intact living cells, illustrated by a eukaryotic alga (Nannochloropsis oceanica). We demonstrate that S state transition times depend strongly on the redox state of the PSII acceptor side, at both QB and the plastoquinone pool which serve as the major locus of regulation of PSII electron flux. We provide evidence for a kinetic intermediate S3' state (lifetime 220 μs) following formation of S3 and prior to the release of O2. We compare the FRRF-detected kinetics to other previous spectroscopic methods (optical absorbance, EPR, and XES) that are applicable only to in vitro samples.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, United States of America; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States of America; Department of Computational Biology and Molecular Biophysics, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, United States of America; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States of America
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, United States of America; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
5
|
Kansy M, Gurowietz A, Wilhelm C, Goss R. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. BMC PLANT BIOLOGY 2017; 17:221. [PMID: 29178846 PMCID: PMC5702237 DOI: 10.1186/s12870-017-1154-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/07/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND The preparation of functional thylakoid membranes from diatoms with a silica cell wall is still a largely unsolved challenge. Therefore, an optimized protocol for the isolation of oxygen evolving thylakoid membranes of the centric diatom Cyclotella meneghiniana has been developed. The buffer used for the disruption of the cells was supplemented with polyethylene glycol based on its stabilizing effect on plastidic membranes. Disruption of the silica cell walls was performed in a French Pressure cell and subsequent linear sorbitol density gradient centrifugation was used to isolate the thylakoid membrane fraction. RESULTS Spectroscopic characterization of the thylakoids by absorption and 77 K fluorescence spectroscopy showed that the photosynthetic pigment protein complexes in the isolated thylakoid membranes were intact. This was supported by oxygen evolution measurements which demonstrated high electron transport rates in the presence of the artificial electron acceptor DCQB. High photosynthetic activity of photosystem II was corroborated by the results of fast fluorescence induction measurements. In addition to PSII and linear electron transport, indications for a chlororespiratory electron transport were observed in the isolated thylakoid membranes. Photosynthetic electron transport also resulted in the establishment of a proton gradient as evidenced by the quenching of 9-amino-acridine fluorescence. Because of their ability to build-up a light-driven proton gradient, de-epoxidation of diadinoxanthin to diatoxanthin and diatoxanthin-dependent non-photochemical quenching of chlorophyll fluorescence could be observed for the first time in isolated thylakoid membranes of diatoms. However, the ∆pH, diadinoxanthin de-epoxidation and diatoxanthin-dependent NPQ were weak compared to intact diatom cells or isolated thylakoids of higher plants. CONCLUSIONS The present protocol resulted in thylakoids with a high electron transport capacity. These thylakoids can thus be used for experiments addressing various aspects of the photosynthetic electron transport by, e.g., employing artificial electron donors and acceptors which do not penetrate the diatom cell wall. In addition, the present isolation protocol yields diatom thylakoids with the potential for xanthophyll cycle and non-photochemical quenching measurements. However, the preparation has to be further refined before these important topics can be addressed systematically.
Collapse
Affiliation(s)
- Marcel Kansy
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Alexandra Gurowietz
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Christian Wilhelm
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Reimund Goss
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| |
Collapse
|
6
|
Tikhonov AN. Photosynthetic Electron and Proton Transport in Chloroplasts: EPR Study of ΔpH Generation, an Overview. Cell Biochem Biophys 2017; 75:421-432. [PMID: 28488221 DOI: 10.1007/s12013-017-0797-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Abstract
This is a brief overview focused on the electron paramagnetic resonance applications to the study of the proton transport processes in chloroplasts. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the measurements of trans-thylakoid pH difference (ΔpH) with pH-sensitive spin-probes. The use of spin-probes is based either (i) on measuring the ΔpH-partitioning of spin-probes between the thylakoid lumen and external volume, or (ii) on monitoring changes in the electron paramagnetic resonance spectra of pH-sensitive nitroxide radicals located in the lumen. Along with the use of spin-probes, the intra-thylakoid pH (pHin) can be determined by the "kinetic" method, which relies on the fact that the rate-limiting step in the chain of photosynthetic electron transfer (plastoquinol oxidation by the cytochrome b 6 f complex) is controlled by pHin. The results of ΔpH determinations in chloroplasts based on the use of pH-sensitive spin-probes and measurements of post-illumination reduction of photoreaction centers of Photosystem I are discussed in the context of the problem of energy coupling in laterally heterogeneous lamellar system of chloroplasts.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov, Moscow State University, Moscow, Russia.
| |
Collapse
|
7
|
Su PH, Lai YH. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe. FRONTIERS IN PLANT SCIENCE 2017; 8:2079. [PMID: 29259618 PMCID: PMC5723387 DOI: 10.3389/fpls.2017.02079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/21/2017] [Indexed: 05/08/2023]
Abstract
The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpHenv), whether the concentration of ionophores used can effectively abolish the ΔpHenv is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpHenv can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6)-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma), BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r-square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpHenv can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore nigericin required to collapse the ΔpHenv was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpHenv in chloroplast physiology.
Collapse
Affiliation(s)
- Pai-Hsiang Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- *Correspondence: Pai-Hsiang Su,
| | - Yen-Hsun Lai
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
8
|
Carrillo LR, Froehlich JE, Cruz JA, Savage LJ, Kramer DM. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:654-63. [PMID: 27233821 DOI: 10.1111/tpj.13226] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 05/26/2023]
Abstract
The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ-subunit through the ferredoxin-thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild-type levels as irradiance was increased. This effect was caused by an altered redox state of the γ-subunit under low, but not high, light. The low light-specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non-photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin-thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions.
Collapse
Affiliation(s)
- L Ruby Carrillo
- Biochemistry & Molecular Biology, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Biochemistry & Molecular Biology, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - Jeffrey A Cruz
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - Linda J Savage
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - David M Kramer
- Biochemistry & Molecular Biology, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA.
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Bhattacharya A, Chakraborty M, Raja SO, Ghosh A, Dasgupta M, Dasgupta AK. Static magnetic field (SMF) sensing of the P(723)/P(689) photosynthetic complex. Photochem Photobiol Sci 2014; 13:1719-29. [PMID: 25314902 DOI: 10.1039/c4pp00295d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Moderate intensity SMF have been shown to act as a controller of the protic potential in the coherent milieu of the thylakoid membranes. SMF of the order of 60-500 mT induces memory-like effect in photosystem I (PSI, P723) emission with a correlated oscillation of photosystem II (PSII, P689) fluorescence emission at a temperature of 77 K. The observed magnetic perturbation that affects the thylakoid photon capture circuitry was also found to be associated with the bio-energetic machinery of the thylakoid membranes. At normal pH, SMF causes an enhancement of PSI fluorescence emission intensity (P723/P689 > 1), followed by a slow relaxation on the removal of SMF. The enhancement of the PSI fluorescence intensity also occurs under no-field condition, if either the pH of the medium is lowered, or protonophores, such as carbonyl cyanide chlorophenylhydrazine or nigericin are added (P723/P689≥ 2). If SMF was applied under such a low pH condition or in the presence of protonophore, a reverse effect, particularly, a reduction of the enhanced PSI emission was observed. Because SMF is essentially equivalent to a spin perturbation, the observed effects can be explained in terms of spin re-organization, illustrating a memory effect via membrane re-alignment and assembly. The mimicry of conventional uncouplers by SMF is also notable; the essential difference being the reversibility and manoeuvrability of the latter (SMF). Finally, the effect implies numerous possibilities of externally regulating the photon capture and proton circulation in the thylakoid membranes using controlled SMF.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | | | | | | | | | | |
Collapse
|
10
|
Taira Y, Okegawa Y, Sugimoto K, Abe M, Miyoshi H, Shikanai T. Antimycin A-like molecules inhibit cyclic electron transport around photosystem I in ruptured chloroplasts. FEBS Open Bio 2013; 3:406-10. [PMID: 24251103 PMCID: PMC3821020 DOI: 10.1016/j.fob.2013.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 01/13/2023] Open
Abstract
Antimycin A3 (AA) is used as an inhibitor of cyclic electron transport around photosystem I. However, the high concentrations of AA that are needed for inhibition have secondary effects, even in chloroplasts. Here, we screened for chemicals that inhibited ferredoxin-dependent plastoquinone reduction in ruptured chloroplasts at lower concentrations than those required for AA. We identified two AA-like compounds: AAL1 and AAL2. AAL1 likely shares an inhibitory site with AA, most probably in the PGR5–PGRL1 protein complex, and enhances O2 evolution in photosystem II, most likely via an uncoupler-like effect. AAL1 and AAL2 are unlikely to penetrate intact leaves. In ruptured chloroplasts, AALs are superior to AA as inhibitors of cyclic electron transport. Antimycin A3 (AA) inhibits PSI cyclic electron transport. AA-like compounds inhibit PSI cyclic electron transport at lower concentrations than AA. AAL1 targets the same site as AA to inhibit PSI cyclic electron transport. V3K alteration in PGR5 does not confer resistance to AAL2.
Collapse
Affiliation(s)
- Yoshichika Taira
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Dhir B, Sharmila P, Pardha Saradhi P, Sharma S, Kumar R, Mehta D. Heavy metal induced physiological alterations in Salvinia natans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1678-84. [PMID: 21724257 DOI: 10.1016/j.ecoenv.2011.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 05/21/2023]
Abstract
Salvinia possess inherent capacity to accumulate high levels of various heavy metals. Accumulation of Cr, Fe, Ni, Cu, Pb and Cd ranged between 6 and 9 mg g(-1)dry wt., while accumulation of Co, Zn and Mn was ∼4 mg g(-1)dry wt. Heavy metal accumulation affected the physiological status of plants. Photosystem II activity noted to decline in Ni, Co, Cd, Pb, Zn and Cu exposed plants, while Photosystem I activity showed enhancement under heavy metal stress in comparison to control. The increase in PS I activity supported build up of transthylakoidal proton gradient (ΔpH), which subsequently helped in maintaining the photophosphorylation potential. Ribulose 1,5 dicarboxylase/oxygenase (Rubisco) activity noted a decline. Alterations in photosynthetic potential of Salvinia result primarily from changes in carbon assimilation efficiency with slight variations in primary photochemical activities and photophosphorylation potential. Studies suggest that Salvinia possess efficient photosynthetic machinery to withstand heavy metal stress.
Collapse
Affiliation(s)
- Bhupinder Dhir
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India.
| | | | | | | | | | | |
Collapse
|
12
|
Buchert F, Forreiter C. Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo. FEBS Lett 2010; 584:147-52. [PMID: 19925794 DOI: 10.1016/j.febslet.2009.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/30/2009] [Accepted: 11/12/2009] [Indexed: 11/26/2022]
Abstract
Singlet oxygen ((1)O(2)) produced in plants during photosynthesis has a strong damaging effect not only on both photosystems but also on the whole photosynthetic machinery. This is also applicable for the adenosine triphosphate (ATP) synthase. Here we describe the impact of (1)O(2) generated by the photosensitizer Rose Bengal on the ATP hydrolysis and ATP-driven proton translocation activity of CF1CFo. Both activities were reduced dramatically within 1min of exposure. Interestingly, it is shown that oxidized thylakoid ATP synthase is more susceptible to (1)O(2) than CF1CFo in its reduced state, a new insight on the mechanism of (1)O(2) interaction with the gamma subunit.
Collapse
Affiliation(s)
- Felix Buchert
- Pflanzenphysiologie, Justus-Liebig Universität, Zeughaus, Giessen, Germany
| | | |
Collapse
|
13
|
Pennisi CP, Greenbaum E, Yoshida K. Analysis of light-induced transmembrane ion gradients and membrane potential in Photosystem I proteoliposomes. Biophys Chem 2009; 146:13-24. [PMID: 19854559 DOI: 10.1016/j.bpc.2009.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/25/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
Abstract
Photosystem I (PSI) complexes can support a light-driven electrochemical gradient for protons, which is the driving force for energy-conserving reactions across biological membranes. In this work, a computational model that enables a quantitative description of the light-induced proton gradients across the membrane of PSI proteoliposomes is presented. Using a set of electrodiffusion equations, a compartmental model of a vesicle suspended in aqueous medium was studied. The light-mediated proton movement was modeled as a single proton pumping step with backpressure of the electric potential. The model fits determinations of pH obtained from PSI proteoliposomes illuminated in the presence of mediators of cyclic electron transport. The model also allows analysis of the proton gradients in relation to the transmembrane ion fluxes and electric potential. Sensitivity analysis enabled a determination of the parameters that have greater influence on steady-state levels and onset/decay rates of transmembrane pH and electric potential. This model could be used as a tool for optimizing PSI proteoliposomes for photo-electrochemical applications.
Collapse
Affiliation(s)
- Cristian Pablo Pennisi
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Denmark.
| | | | | |
Collapse
|
14
|
Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1790-7. [PMID: 19409614 DOI: 10.1016/j.ecoenv.2009.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 03/17/2009] [Accepted: 03/31/2009] [Indexed: 05/08/2023]
Abstract
Salvinia natans possess capacity to accumulate high concentrations of chromium (Cr). Studies were carried out to evaluate physiological efficiency and defensive potential of plant exposed to Cr-rich wastewater. Among photochemical reactions, photosystem I (PS I) and photosystem II (PS II) activity noted an increase in plants exposed to Cr-rich wastewater. Fluorescence ratio F(v)/F(m) depicted no alteration in plants exposed to Cr. The activity of ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) noted a decline, while transthylakoidal pH gradient (DeltapH) (correlative of photophosphorylation) showed increase in plants exposed to Cr-rich wastewater. Plants lacked the ability to produce malondialdehyde, but possessed efficient enzymic and non-enzymic antioxidant defense mechanisms that played important role in curtailing oxidative stress. The activities of antioxidant enzymes showed alleviation in plants exposed to Cr-rich wastewater. The levels of cellular antioxidants noted decline suggesting a defensive role in protection against oxidative stress caused by Cr. The present findings suggest that Salvinia possess efficient antioxidant machinery that curtails oxidative stress caused by Cr-rich wastewater and protects photosynthetic machinery from damage.
Collapse
Affiliation(s)
- Bhupinder Dhir
- Department of Environmental Biology, University of Delhi, Delhi 110007, India.
| | | | | | | |
Collapse
|
15
|
Evron Y, Johnson EA, McCarty RE. Regulation of proton flow and ATP synthesis in chloroplasts. J Bioenerg Biomembr 2009; 32:501-6. [PMID: 15254385 DOI: 10.1023/a:1005669008974] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chloroplast ATP synthase is strictly regulated so that it is very active in the light (rates of ATP synthesis can be higher than 5 micromol/min/mg protein), but virtually inactive in the dark. The subunits of the catalytic portion of the ATP synthase involved in activation, as well as the effects of nucleotides are discussed. The relation of activation to proton flux through the ATP synthase and to changes in the structure of enzyme induced by the proton electrochemical gradient are also presented. It is concluded that the gamma and epsilon subunits of CF(1) play key roles in both regulation of activity and proton translocation.
Collapse
Affiliation(s)
- Y Evron
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
16
|
Dabney-Smith C, Cline K. Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system. Mol Biol Cell 2009; 20:2060-9. [PMID: 19193764 PMCID: PMC2663938 DOI: 10.1091/mbc.e08-12-1189] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 11/11/2022] Open
Abstract
The chloroplast Twin arginine translocation (Tat) pathway uses three membrane proteins and the proton gradient to transport folded proteins across sealed membranes. Precursor proteins bind to the cpTatC-Hcf106 receptor complex, triggering Tha4 assembly and protein translocation. Tha4 is required only for the translocation step and is thought to be the protein-conducting component. The organization of Tha4 oligomers was examined by substituting pairs of cysteine residues into Tha4 and inducing disulfide cross-links under varying stages of protein translocation. Tha4 formed tetramers via its transmembrane domain in unstimulated membranes and octamers in membranes stimulated by precursor and the proton gradient. Tha4 formed larger oligomers of at least 16 protomers via its carboxy tail, but such C-tail clustering only occurred in stimulated membranes. Mutational studies showed that transmembrane domain directed octamers as well as C-tail clusters require Tha4's transmembrane glutamate residue and its amphipathic helix, both of which are necessary for Tha4 function. A novel double cross-linking strategy demonstrated that both transmembrane domain directed- and C-tail directed oligomerization occur in the translocase. These results support a model in which Tha4 oligomers dock with a precursor-receptor complex and undergo a conformational switch that results in activation for protein transport. This possibly involves accretion of additional Tha4 into a larger transport-active homo-oligomer.
Collapse
Affiliation(s)
- Carole Dabney-Smith
- Plant Molecular and Cellular Biology Program and Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611
| | - Kenneth Cline
- Plant Molecular and Cellular Biology Program and Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611
| |
Collapse
|
17
|
Dhir B, Sharmila P, Saradhi PP. Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. ACTA ACUST UNITED AC 2008. [DOI: 10.1590/s1677-04202008000100007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations were carried out to evaluate alterations in photosynthetic performance of Salvinia natans (L.) exposed to chromium (Cr) and zinc (Zn) rich wastewater. Accumulation of high levels of Cr and Zn in plants affected photosynthetic electron transport. Photosystem- (PS) II-mediated electron transport was enhanced in plants exposed to Cr rich wastewater while a decline was observed in Zn-exposed plants. Photosystem-I-mediated electron transport increased in plants exposed to Cr and Zn rich wastewater. Efficiency of photosystem II (Fv/Fm) measured by fluorescence did not show any significant change in Cr-exposed plants but a decrease was observed in Zn-exposed plants as compared to the control. The enhancement in PS I-induced cyclic electron transport in Cr and Zn exposed plants led to a build up of the transthylakoidal proton gradient (DpH) which subsequently helped in maintaining the photophosphorylation potential to meet the additional requirement of ATP under stress. The carbon assimilation potential was adversely affected as evident from the decrease in Rubisco (EC 4.1.1.39) activity. The alterations in photosynthetic electron transport affected stromal redox status and induced variations in the level of stromal components such as pyridine nucleotides in plants exposed to Cr and Zn rich wastewater. The present investigations revealed that alteration in the photosynthetic efficiency of Salvinia exposed to Cr could primarily be the result of a decline in carbon assimilation efficiency relative to light-mediated photosynthetic electron transport, though in the case of Zn-exposed plants both these factors were affected equally.
Collapse
|
18
|
Dall'Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R. Different Roles of α- and β-Branch Xanthophylls in Photosystem Assembly and Photoprotection. J Biol Chem 2007; 282:35056-68. [PMID: 17913714 DOI: 10.1074/jbc.m704729200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynthesis containing exclusively alpha-branch (chy1chy2lut5) or beta-branch (chy1chy2lut2) xanthophylls. Both mutants show complete lack of qE, the rapidly reversible component of nonphotochemical quenching, and high levels of photoinhibition and lipid peroxidation under photooxidative stress. Both mutants are much more photosensitive than npq1lut2, which contains high levels of viola- and neoxanthin and a higher stoichiometry of light-harvesting proteins with respect to photosystem II core complexes, suggesting that the content in light-harvesting complexes plays an important role in photoprotection. In addition, chy1chy2lut5, which has lutein as the only xanthophyll, shows unprecedented photosensitivity even in low light conditions, reduced electron transport rate, enhanced photobleaching of isolated LHCII complexes, and a selective loss of CP26 with respect to chy1chy2lut2, highlighting a specific role of beta-branch xanthophylls in photoprotection and in qE mechanism. The stronger photosystem II photoinhibition of both mutants correlates with the higher rate of singlet oxygen production from thylakoids and isolated light-harvesting complexes, whereas carotenoid composition of photosystem II core complex was not influential. In depth analysis of the mutant phenotypes suggests that alpha-branch (lutein) and beta-branch (zeaxanthin, violaxanthin, and neoxanthin) xanthophylls have distinct and complementary roles in antenna protein assembly and in the mechanisms of photoprotection.
Collapse
Affiliation(s)
- Luca Dall'Osto
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
19
|
McCallum JR, McCarty RE. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:974-9. [PMID: 17559799 DOI: 10.1016/j.bbabio.2007.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/02/2007] [Accepted: 04/23/2007] [Indexed: 11/21/2022]
Abstract
Electron transport, the proton gradient and ATP synthesis were determined in thylakoids that had been briefly exposed to a low concentration of trypsin during illumination. This treatment cleaves the gamma subunit of the ATP synthase into two large fragments that remain associated with the enzyme. Higher rates of electron transport are required to generate a given value of the proton gradient in the trypsin-treated membranes than in control membranes, indicating that the treated membranes are proton leaky. Since venturicidin restores electron transport and the proton gradient to control levels, the proton leak is through the ATP synthase. Remarkably, the synthesis of ATP by the trypsin-treated membranes at saturating light intensities is only slightly inhibited even though the proton gradient is significantly lower in the treated thylakoids. ATP synthesis and the proton gradient were determined as a function of light intensity in control and trypsin-treated thylakoids. The trypsin-treated membranes synthesized ATP at lower values of the proton gradient than the control membranes. Cleavage of the gamma subunit abrogates inhibition of the activity of the chloroplast ATP synthase by the epsilon subunit. Our results suggest that overcoming inhibition by the epsilon subunit costs energy.
Collapse
Affiliation(s)
- Jeremy R McCallum
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
20
|
McCarty RE. ATP synthase of chloroplast thylakoid membranes: a more in depth characterization of its ATPase activity. J Bioenerg Biomembr 2006; 37:289-97. [PMID: 16341773 DOI: 10.1007/s10863-005-8640-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75-80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the gamma subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the epsilon subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.
Collapse
Affiliation(s)
- Richard E McCarty
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| |
Collapse
|
21
|
Richter M, Daufenbach J, Drebing S, Vucetic V, Nguyen DT. Light-induced proton slip and proton leak at the thylakoid membrane. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1325-1337. [PMID: 15658803 DOI: 10.1016/j.jplph.2004.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A treatment of leaves of Spinacia oleracea L. with light or with the thiol reagent dithiothreitol in the dark led to partly uncoupled thylakoids. After induction in intact leaves, the partial uncoupling was irreversible at the level of isolated thylakoids. We distinguish between uncoupling by proton slip, which means a decrease of the H+/e(-) -ratio due to less efficient proton pumping, and proton leak as defined by enhanced kinetics of proton efflux. Proton slip and proton leak made about equal contributions to the total uncoupling. The enhanced proton efflux kinetics corresponded to reduction of subunit CF1-gamma of the ATP synthase as shown by fluorescence labeling of thylakoid proteins with the sulfhydryl probe 5-iodoacetamido fluorescein. The maximum value of the fraction of reduced CF1-gamma was only 36%, which indicates that in vivo the reduction of CF1-gamma could be limited by fast reoxidation and/or restricted accessibility of CF1-gamma to thioredoxin. Measurements of the ratio ATP/2e indicated that only the uncoupling related to less efficient proton pumping led to a decrease in the ATP yield.
Collapse
Affiliation(s)
- Michael Richter
- Institut für Allgemeine Botanik, Johannes Gutenberg Universität, D-55099 Mainz, Germany.
| | | | | | | | | |
Collapse
|
22
|
Richter ML. Gamma-epsilon Interactions Regulate the Chloroplast ATP Synthase. PHOTOSYNTHESIS RESEARCH 2004; 79:319-29. [PMID: 16328798 DOI: 10.1023/b:pres.0000017157.08098.36] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Current literature on the structure and function of the chloroplast ATP synthase is reviewed with an emphasis on the roles of the gamma and epsilon subunits. Together these two subunits are thought to couple, via rotation, the proton motive force to nucleotide synthesis and hydrolysis by the catalytic F(1) segment of the enzyme. These two subunits are also responsible for inducing the latent state of the enzyme that is necessary to prevent futile hydrolysis of ATP in the dark when electron transfer and ATP synthesis are inactive. A model is presented to explain how gamma and epsilon interact to achieve the transition between the active and latent states.
Collapse
Affiliation(s)
- Mark L Richter
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, 66045, USA,
| |
Collapse
|