1
|
Nedo AO, Liang H, Sriram J, Razzak MA, Lee JY, Kambhamettu C, Dinesh-Kumar SP, Caplan JL. CHUP1 restricts chloroplast movement and effector-triggered immunity in epidermal cells. THE NEW PHYTOLOGIST 2024. [PMID: 39415611 DOI: 10.1111/nph.20147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencing CHUP1-induced chloroplast stromules and amplified effector-triggered immunity (ETI); however, the underlying mechanisms remain largely unknown. CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast-associated actin (cp-actin) filaments for blue light-induced movement. To determine which function is critical for ETI, we developed an approach to quantify chloroplast anchoring and movement in epidermal cells. Our data show that silencing NbCHUP1 in Nicotiana benthamiana plants increased epidermal chloroplast de-anchoring and basal movement but did not fully disrupt blue light-induced chloroplast movement. Silencing NbCHUP1 auto-activated epidermal chloroplast defense (ECD) responses including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide (H2O2). These findings show chloroplast anchoring restricts a multifaceted ECD response. Our results also show that the accumulated chloroplastic H2O2 in NbCHUP1-silenced plants was not required for the increased basal epidermal chloroplast movement but was essential for increased stromules and enhanced ETI. This finding indicates that chloroplast de-anchoring and H2O2 play separate but essential roles during ETI.
Collapse
Affiliation(s)
- Alexander O Nedo
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Huining Liang
- Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jaya Sriram
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
| | - Md Abdur Razzak
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Chandra Kambhamettu
- Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Jeffrey L Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
2
|
Wu Y, Sun R, Huan T, Zhao Y, Yu D, Sun Y. An insight into the gene expression evolution in Gossypium species based on the leaf transcriptomes. BMC Genomics 2024; 25:179. [PMID: 38355396 PMCID: PMC10868065 DOI: 10.1186/s12864-024-10091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Gene expression pattern is associated with biological phenotype and is widely used in exploring gene functions. Its evolution is also crucial in understanding species speciation and divergence. The genus Gossypium is a bona fide model for studying plant evolution and polyploidization. However, the evolution of gene expression during cotton species divergence has yet to be extensively discussed. RESULTS Based on the seedling leaf transcriptomes, this work analyzed the transcriptomic content and expression patterns across eight cotton species, including six diploids and two natural tetraploids. Our findings indicate that, while the biological function of these cotton transcriptomes remains largely conserved, there has been significant variation in transcriptomic content during species divergence. Furthermore, we conducted a comprehensive analysis of expression distances across cotton species. This analysis lends further support to the use of G. arboreum as a substitute for the A-genome donor of natural cotton polyploids. Moreover, our research highlights the evolution of stress-responsive pathways, including hormone signaling, fatty acid degradation, and flavonoid biosynthesis. These processes appear to have evolved under lower selection pressures, presumably reflecting their critical role in the adaptations of the studied cotton species to diverse environments. CONCLUSIONS In summary, this study provided insights into the gene expression variation within the genus Gossypium and identified essential genes/pathways whose expression evolution was closely associated with the evolution of cotton species. Furthermore, the method of characterizing genes and pathways under unexpected high or slow selection pressure can also serve as a new strategy for gene function exploration.
Collapse
Affiliation(s)
- Yuqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rongnan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tong Huan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanyan Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yuqiang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Mueller-Schuessele SJ, Leterme S, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2024; 2776:107-134. [PMID: 38502500 DOI: 10.1007/978-1-0716-3726-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| |
Collapse
|
4
|
Won SY, Soundararajan P, Irulappan V, Kim JS. In-silico, evolutionary, and functional analysis of CHUP1 and its related proteins in Bienertia sinuspersici-a comparative study across C 3, C 4, CAM, and SCC 4 model plants. PeerJ 2023; 11:e15696. [PMID: 37456874 PMCID: PMC10348308 DOI: 10.7717/peerj.15696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Single-cell C4 (SCC4) plants with bienertioid anatomy carry out photosynthesis in a single cell. Chloroplast movement is the underlying phenomenon, where chloroplast unusual positioning 1 (CHUP1) plays a key role. This study aimed to characterize CHUP1 and CHUP1-like proteins in an SCC4 photosynthetic plant, Bienertia sinuspersici. Also, a comparative analysis of SCC4 CHUP1 was made with C3, C4, and CAM model plants including an extant basal angiosperm, Amborella. The CHUP1 gene exists as a single copy from the basal angiosperms to SCC4 plants. Our analysis identified that Chenopodium quinoa, a recently duplicated allotetraploid, has two copies of CHUP1. In addition, the numbers of CHUP1-like and its associated proteins such as CHUP1-like_a, CHUP1-like_b, HPR, TPR, and ABP varied between the species. Hidden Markov Model analysis showed that the gene size of CHUP1-like_a and CHUP1-like_b of SCC4 species, Bienertia, and Suaeda were enlarged than other plants. Also, we identified that CHUP1-like_a and CHUP1-like_b are absent in Arabidopsis and Amborella, respectively. Motif analysis identified several conserved and variable motifs based on the orders (monocot and dicot) as well as photosynthetic pathways. For instance, CAM plants such as pineapple and cactus shared certain motifs of CHUP1-like_a irrespective of their distant phylogenetic relationship. The free ratio model showed that CHUP1 maintained purifying selection, whereas CHUP1-like_a and CHUP1-like_b have adaptive functions between SCC4 plants and quinoa. Similarly, rice and maize branches displayed functional diversification on CHUP1-like_b. Relative gene expression data showed that during the subcellular compartmentalization process of Bienertia, CHUP1 and actin-binding proteins (ABP) genes showed a similar pattern of expression. Altogether, the results of this study provide insight into the evolutionary and functional details of CHUP1 and its associated proteins in the development of the SCC4 system in comparison with other C3, C4, and CAM model plants.
Collapse
Affiliation(s)
- So Youn Won
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Prabhakaran Soundararajan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Vadivelmurugan Irulappan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| |
Collapse
|
5
|
Li X, Liu M, Cai M, Chiasson D, Groth M, Heckmann AB, Wang TL, Parniske M, Downie JA, Xie F. RPG interacts with E3-ligase CERBERUS to mediate rhizobial infection in Lotus japonicus. PLoS Genet 2023; 19:e1010621. [PMID: 36735729 PMCID: PMC9931111 DOI: 10.1371/journal.pgen.1010621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/15/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Symbiotic interactions between rhizobia and legumes result in the formation of root nodules, which fix nitrogen that can be used for plant growth. Rhizobia usually invade legume roots through a plant-made tunnel-like structure called an infection thread (IT). RPG (Rhizobium-directed polar growth) encodes a coiled-coil protein that has been identified in Medicago truncatula as required for root nodule infection, but the function of RPG remains poorly understood. In this study, we identified and characterized RPG in Lotus japonicus and determined that it is required for IT formation. RPG was induced by Mesorhizobium loti or purified Nodulation factor and displayed an infection-specific expression pattern. Nodule inception (NIN) bound to the RPG promoter and induced its expression. We showed that RPG displayed punctate subcellular localization in L. japonicus root protoplasts and in root hairs infected by M. loti. The N-terminal predicted C2 lipid-binding domain of RPG was not required for this subcellular localization or for function. CERBERUS, a U-box E3 ligase which is also required for rhizobial infection, was found to be localized similarly in puncta. RPG co-localized and directly interacted with CERBERUS in the early endosome (TGN/EE) compartment and near the nuclei in root hairs after rhizobial inoculation. Our study sheds light on an RPG-CERBERUS protein complex that is involved in an exocytotic pathway mediating IT elongation.
Collapse
Affiliation(s)
- Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Miaoxia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Min Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - David Chiasson
- Faculty of Biology, University of Munich, Großhaderner Straße 2–4, Planegg-Martinsried, Germany
| | - Martin Groth
- Faculty of Biology, University of Munich, Großhaderner Straße 2–4, Planegg-Martinsried, Germany
| | - Anne B. Heckmann
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Trevor L. Wang
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Martin Parniske
- Faculty of Biology, University of Munich, Großhaderner Straße 2–4, Planegg-Martinsried, Germany
| | - J. Allan Downie
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. Phenotypic and Genotypic Diversity of Roots Response to Salt in Durum Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:412. [PMID: 36679125 PMCID: PMC9865824 DOI: 10.3390/plants12020412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Soil salinity is a serious threat to food production now and in the near future. In this study, the root system of six durum wheat genotypes, including one highly salt-tolerant (J. Khetifa) used as a check genotype, was evaluated, by a high-throughput phenotyping system, under control and salt conditions at the seedling stage. Genotyping was performed using 11 SSR markers closely linked with genome regions associated with root traits. Based on phenotypic cluster analysis, genotypes were grouped differently under control and salt conditions. Under control conditions, genotypes were clustered mainly due to a root angle, while under salt stress, genotypes were grouped according to their capacity to maintain higher roots length, volume, and surface area, as J. Khetifa, Sebatel, and Azeghar. SSR analysis identified a total of 42 alleles, with an average of about three alleles per marker. Moreover, quite a high number of Private alleles in total, 18 were obtained. The UPGMA phenogram of the Nei (1972) genetic distance clusters for 11 SSR markers and all phenotypic data under control conditions discriminate genotypes almost into the same groups. The study revealed as the combination of high-throughput systems for phenotyping with SSR markers for genotyping it's a useful tool to provide important data for the selection of suitable parental lines for salt-tolerance breeding. Nevertheless, the narrow root angle, which is an important trait in drought tolerance, is not a good indicator of salt tolerance. Instated for salt tolerance is more important the amount of roots.
Collapse
Affiliation(s)
| | | | - Mario A. Pagnotta
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
7
|
Kumar S, Jeevaraj T, Yunus MH, Chakraborty S, Chakraborty N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. PLANT, CELL & ENVIRONMENT 2023; 46:5-22. [PMID: 36151598 DOI: 10.1111/pce.14450] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.
Collapse
Affiliation(s)
- Sunil Kumar
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Theboral Jeevaraj
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Mohd H Yunus
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Subhra Chakraborty
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
8
|
Xin GY, Li LP, Wang PT, Li XY, Han YJ, Zhao X. The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. STRESS BIOLOGY 2022; 2:50. [PMID: 37676522 PMCID: PMC10441985 DOI: 10.1007/s44154-022-00066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 09/08/2023]
Abstract
To cope with fluctuating light conditions, terrestrial plants have evolved precise regulation mechanisms to help optimize light capture and increase photosynthetic efficiency. Upon blue light-triggered autophosphorylation, activated phototropin (PHOT1 and PHOT2) photoreceptors function solely or redundantly to regulate diverse responses, including phototropism, chloroplast movement, stomatal opening, and leaf positioning and flattening in plants. These responses enhance light capture under low-light conditions and avoid photodamage under high-light conditions. NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2) are signal transducers that function in the PHOT1- and PHOT2-mediated response. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation as well as NPH3-mediated responses. NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) was recently identified as a PHOT1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation. The PHYTOCHROME KINASE SUBSTRATE (PKS) proteins (PKS1, PKS2, and PKS4) interact with PHOT1 and NPH3 and mediate hypocotyl phototropic bending. This review summarizes advances in phototropic growth and chloroplast movement induced by light. We also focus on how crosstalk in signaling between phototropism and chloroplast movement enhances weak light capture, providing a basis for future studies aiming to delineate the mechanism of light-trapping plants to improve light-use efficiency.
Collapse
Affiliation(s)
- Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu-Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Peng-Tao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yue Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan-Ji Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
9
|
Dwyer ME, Hangarter RP. Light-induced displacement of PLASTID MOVEMENT IMPAIRED1 precedes light-dependent chloroplast movements. PLANT PHYSIOLOGY 2022; 189:1866-1880. [PMID: 35477788 PMCID: PMC9237684 DOI: 10.1093/plphys/kiac193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Light-dependent chloroplast movements are an actin-dependent cellular response to changes in the light environment that help plants maximize photosynthetic potential and reduce photodamage. Over a dozen proteins are known to be required for normal chloroplast movements, but the molecular mechanisms regulating the transformation of light perception into chloroplast motility are not fully understood. Here, we show that in Arabidopsis (Arabidopsis thaliana) the actin-bundling plasma membrane-associated proteins THRUMIN1, PLASTID MOVEMENT IMPAIRED1 (PMI1), and KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT1 (KAC1) interact through the 14-3-3 proteins KAPPA and OMEGA. We also show that the interaction of PMI1 with 14-3-3 KAPPA and OMEGA is regulated by blue light activation of the Phototropin2 photoreceptor. Live-cell confocal microscopy revealed light-induced dynamic changes in the cellular localizations of PMI1 and KAC1. In particular, PMI1 was relocated away from irradiated areas of the plasma membrane in less than a minute after blue light exposure, consistent with PMI1 playing a critical role in initiating light-dependent chloroplast movements. We present a modified conceptual model for high light-dependent chloroplast movements in which PMI1 acts as the mobile signal that initiates a coordinated sequence of changes in protein-protein and protein-plasma membrane interactions that initiate the chloroplast movement response and determine where in the cell chloroplasts are able to anchor to the plasma membrane.
Collapse
Affiliation(s)
- Matthew E Dwyer
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | | |
Collapse
|
10
|
Emerging Roles of Motile Epidermal Chloroplasts in Plant Immunity. Int J Mol Sci 2022; 23:ijms23074043. [PMID: 35409402 PMCID: PMC8999904 DOI: 10.3390/ijms23074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Plant epidermis contains atypical small chloroplasts. However, the physiological role of this organelle is unclear compared to that of large mesophyll chloroplasts, the well-known function of which is photosynthesis. Although knowledge of the involvement of chloroplasts in the plant immunity has been expanded to date, the differences between the epidermal and mesophyll chloroplasts are beyond the scope of this study. Given the role of the plant epidermis as a barrier to environmental stresses, including pathogen attacks, and the immune-related function of chloroplasts, plant defense research on epidermal chloroplasts is an emerging field. Recent studies have revealed the dynamic movements of epidermal chloroplasts in response to fungal and oomycete pathogens. Furthermore, epidermal chloroplast-associated proteins and cellular events that are tightly linked to epidermal resistance against pathogens have been reported. In this review, I have focused on the recent progress in epidermal chloroplast-mediated plant immunity.
Collapse
|
11
|
Arabidopsis CAP1 mediates ammonium-regulated root hair growth by influencing vesicle trafficking and the cytoskeletal arrangement in root hair cells. J Genet Genomics 2022; 49:986-989. [PMID: 35202888 DOI: 10.1016/j.jgg.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
|
12
|
Berkowitz O, Xu Y, Liew LC, Wang Y, Zhu Y, Hurgobin B, Lewsey MG, Whelan J. RNA-seq analysis of laser microdissected Arabidopsis thaliana leaf epidermis, mesophyll and vasculature defines tissue-specific transcriptional responses to multiple stress treatments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:938-955. [PMID: 33974297 DOI: 10.1111/tpj.15314] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Acclimation of plants to adverse conditions requires the coordination of gene expression and signalling pathways between tissues and cell types. As the energy and carbon capturing organs, leaves are significantly affected by abiotic and biotic stresses. However, tissue- or cell type-specific analyses of stress responses have focussed on the Arabidopsis root. Here, we comparatively explore the transcriptomes of three leaf tissues (epidermis, mesophyll, vasculature) after induction of diverse stress pathways by chemical stimuli (antimycin A, 3-amino-1,2,4-triazole, methyl viologen, salicylic acid) and ultraviolet light in Arabidopsis using laser capture microdissection followed by RNA sequencing. Stimulation of stress pathways caused an overall reduction in the number of genes expressed in a tissue-specific manner, though a small subset gained or changed their tissue specificity. We find no evidence of a common stress response, with only a few genes consistently responsive to two or more treatments in the analysed tissues. However, differentially expressed genes overlap between tissues for individual treatments. A focussed analysis provided evidence for an interaction of auxin and ethylene that mediates retrograde signalling during mitochondrial dysfunction specifically in the epidermis, and a gene regulatory network defined the hierarchy of interactions. Taken together, we have generated an extensive reference dataset that will be valuable for future experiments analysing transcriptional responses on a tissue or single-cell level. Our results will enable the tailoring of the tissue-specific engineering of stress-tolerant plants.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Yue Xu
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Lim Chee Liew
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Yanqiao Zhu
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Bhavna Hurgobin
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Mathew G Lewsey
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
13
|
Krzeszowiec W, Novokreshchenova M, Gabryś H. Chloroplasts in C3 grasses move in response to blue-light. PLANT CELL REPORTS 2020; 39:1331-1343. [PMID: 32661816 PMCID: PMC7497455 DOI: 10.1007/s00299-020-02567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/08/2020] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Brachypodium distachyon is a good model for studying chloropla st movements in the crop plants, wheat, rye and barley. The movements are activated only by blue light, similar to Arabidopsis. Chloroplast translocations are ubiquitous in photosynthetic organisms. On the one hand, they serve to optimize energy capture under limiting light, on the other hand, they minimize potential photodamage to the photosynthetic apparatus in excess light. In higher plants chloroplast movements are mediated by phototropins (phots), blue light receptors that also control other light acclimation responses. So far, Arabidopsis thaliana has been the main model for studying the mechanism of blue light signaling to chloroplast translocations in terrestrial plants. Here, we propose Brachypodium distachyon as a model in research into chloroplast movements in C3 cereals. Brachypodium chloroplasts respond to light in a similar way to those in Arabidopsis. The amino acid sequence of Brachypodium PHOT1 is 79.3% identical, and that of PHOT2 is 73.6% identical to the sequence of the corresponding phototropin in Arabidopsis. Both phototropin1 and 2 are expressed in Brachypodium, as shown using quantitative real-time PCR. Intriguingly, the light-expression pattern of BradiPHOT1 and BradiPHOT2 is the opposite of that for Arabidopsis phototropins, suggesting potential unique light signaling in C3 grasses. To investigate if Brachypodium is a good model for studying grass chloroplast movements we analyzed these movements in the leaves of three C3 crop grasses, namely wheat, rye and barley. Similarly to Brachypodium, chloroplasts only respond to blue light in all these species.
Collapse
Affiliation(s)
- Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Novokreshchenova
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
14
|
Majumdar A, Kar RK. Chloroplast avoidance movement: a novel paradigm of ROS signalling. PHOTOSYNTHESIS RESEARCH 2020; 144:109-121. [PMID: 32222888 DOI: 10.1007/s11120-020-00736-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The damaging effects of supra-optimal irradiance on plants, often turning to be lethal, may be circumvented by chloroplast avoidance movement which realigns chloroplasts to the anticlinal surfaces of cells (parallel to the incident light), essentially minimizing photon absorption. In angiosperms and many other groups of plants, chloroplast avoidance movement has been identified to be a strong blue light (BL)-dependent process being mediated by actin filaments wherein phototropins are identified as the photoreceptor involved. Studies through the last few decades have identified key molecular mechanisms involving Chloroplast Unusual Positioning 1 (CHUP1) protein and specific chloroplast-actin (cp-actin) filaments. However, the signal transduction pathway from strong BL absorption down to directional re-localization of chloroplasts by actin filaments is complex and ambiguous. Being the immediate cellular products of high irradiance absorption and having properties of remodelling actin as well as phototropin, reactive oxygen species (ROS) deemed to be more able and prompt than any other signalling agent in mediating chloroplast avoidance movement. Although ROS are presently being identified as fundamental component for regulating different plant processes ranging from growth, development and immunity, its role in avoidance movement have hardly been explored in depth. However, few recent reports have demonstrated the direct stimulatory involvement of ROS, especially H2O2, in chloroplast avoidance movement with Ca2+ playing a pivotal role. With this perspective, the present review discusses the mechanisms of ROS-mediated chloroplast avoidance movement involving ROS-Ca2+-actin communication system and NADPH oxidase (NOX)-plasma membrane (PM) H+-ATPase positive feed-forward loop. A possible working model is proposed.
Collapse
Affiliation(s)
- Arkajo Majumdar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
- Department of Botany, City College, 102/1 Raja Rammohan Sarani, Kolkata, West Bengal, 700009, India
| | - Rup Kumar Kar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
15
|
Czarnocka W, Rusaczonek A, Willems P, Sujkowska-Rybkowska M, Van Breusegem F, Karpiński S. Novel Role of JAC1 in Influencing Photosynthesis, Stomatal Conductance, and Photooxidative Stress Signalling Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1124. [PMID: 32849690 PMCID: PMC7403226 DOI: 10.3389/fpls.2020.01124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Regulation of light absorption under variable light conditions is essential to optimize photosynthetic and acclimatory processes in plants. Light energy absorbed in excess has a damaging effect on chloroplasts and can lead to cell death. Therefore, plants have evolved protective mechanisms against excess excitation energy that include chloroplast accumulation and avoidance responses. One of the proteins involved in facilitating chloroplast movements in Arabidopsis thaliana is the J domain-containing protein required for chloroplast accumulation response 1 (JAC1). The function of JAC1 relates to the chloroplast actin filaments appearance and disappearance. So far, the role of JAC1 was studied mainly in terms of chloroplasts photorelocation. Here, we demonstrate that the function of JAC1 is more complex, since it influences the composition of photosynthetic pigments, the efficiency of photosynthesis, and the CO2 uptake rate. JAC1 has positive effect on water use efficiency (WUE) by reducing stomatal aperture and water vapor conductance. Importantly, we show that the stomatal aperture regulation is genetically coupled with JAC1 activity. In addition, our data demonstrate that JAC1 is involved in the fine-tuning of H2O2 foliar levels, antioxidant enzymes activities and cell death after UV-C photooxidative stress. This work uncovers a novel function for JAC1 in affecting photosynthesis, CO2 uptake, and photooxidative stress responses.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- *Correspondence: Weronika Czarnocka,
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center of Plant Systems Biology, VIB, Ghent, Belgium
| | | | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center of Plant Systems Biology, VIB, Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Ota S, Kawano S. Three-dimensional ultrastructure and hyperspectral imaging of metabolite accumulation and dynamics in Haematococcus and Chlorella. Microscopy (Oxf) 2019; 68:57-68. [PMID: 30576509 DOI: 10.1093/jmicro/dfy142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 05/11/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022] Open
Abstract
Phycology has developed alongside light and electron microscopy techniques. Since the 1950s, progress in the field has accelerated dramatically with the advent of electron microscopy. Transmission electron microscopes can only acquire imaging data on a 2D plane. Currently, many of the life sciences are seeking to obtain 3D images with electron microscopy for the accurate interpretation of subcellular dynamics. Three-dimensional reconstruction using serial sections is a method that can cover relatively large cells or tissues without requiring special equipment. Another challenge is monitoring secondary metabolites (such as lipids or carotenoids) in intact cells. This became feasible with hyperspectral cameras, which enable the acquisition of wide-range spectral information in living cells. Here, we review bioimaging studies on the intracellular dynamics of substances such as lipids, carotenoids and phosphorus using conventional to state-of-the-art microscopy techniques in the field of algal biorefining.
Collapse
Affiliation(s)
- Shuhei Ota
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan.,Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan.,Future Center Initiative, The University of Tokyo, Wakashiba, Kashiwa, Chiba, Japan
| |
Collapse
|
17
|
Shang B, Zang Y, Zhao X, Zhu J, Fan C, Guo X, Zhang X. Functional characterization of GhPHOT2 in chloroplast avoidance of Gossypium hirsutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:51-60. [PMID: 30500518 DOI: 10.1016/j.plaphy.2018.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 05/24/2023]
Abstract
Chloroplast movement mediated by the plant-specific phototropin blue light photoreceptors is crucial for plants to cope with fluctuating light conditions. While chloroplasts accumulate at weak light-illuminated areas, chloroplast avoidance response mediated primarily by the phototropin2 (phot2) receptor is induced by strong light illumination. Although extensive studies have been performed on phot2-mediated chloroplast avoidance in the model plant Arabidopsis, little is known on the role of the corresponding PHOT2 orthologs in chloroplast movement in cotton. In this study, we found that chloroplast avoidance movement also occurs in the tetraploid G. hirsutum and two diploid species, G. arboreum and G. raimondii, albeit with distinct features. Further bioinformatics and genetic analysis identified the cotton PHOT2 ortholog, GhPHOT2-1, which retained a conserved role in plant chloroplast avoidance movement under strong blue light. Ghphot2-1was localized in the plasma membrane and formed aggregates after high blue light irradiation. Constitutive expression of GhPHOT2-1 restored chloroplast avoidance and accumulation response, as well as phototropism, and leaf flattening characteristics of the Arabidopsis phot2 or phot1 phot2 mutants. On the contrary, silencing of GhPHOT2-1 by virus-induced gene silencing (VIGS) disrupted high blue light-induced chloroplast avoidance movement and caused photo damage in cotton leaves. Taken together, these findings demonstrated that GhPHOT2-1 is a conserved PHOT2 ortholog in regulating chloroplast avoidance and the other aforementioned phot2-mediated responses, implicating its potential role for improving high light tolerance in cotton cultivars.
Collapse
Affiliation(s)
- Baoshuan Shang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yihao Zang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jindong Zhu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Cheng Fan
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xining Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
18
|
Iwabuchi K, Ohnishi H, Tamura K, Fukao Y, Furuya T, Hattori K, Tsukaya H, Hara-Nishimura I. ANGUSTIFOLIA Regulates Actin Filament Alignment for Nuclear Positioning in Leaves. PLANT PHYSIOLOGY 2019; 179:233-247. [PMID: 30404821 PMCID: PMC6324246 DOI: 10.1104/pp.18.01150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/24/2018] [Indexed: 05/03/2023]
Abstract
During dark adaptation, plant nuclei move centripetally toward the midplane of the leaf blade; thus, the nuclei on both the adaxial and abaxial sides become positioned at the inner periclinal walls of cells. This centripetal nuclear positioning implies that a characteristic cell polarity exists within a leaf, but little is known about the mechanism underlying this process. Here, we show that ANGUSTIFOLIA (AN) and ACTIN7 regulate centripetal nuclear positioning in Arabidopsis (Arabidopsis thaliana) leaves. Two mutants defective in the positioning of nuclei in the dark were isolated and designated as unusual nuclear positioning1 (unp1) and unp2 In the dark, nuclei of unp1 were positioned at the anticlinal walls of adaxial and abaxial mesophyll cells and abaxial pavement cells, whereas the nuclei of unp2 were positioned at the anticlinal walls of mesophyll and pavement cells on both the adaxial and abaxial sides. unp1 was caused by a dominant-negative mutation in ACTIN7, and unp2 resulted from a recessive mutation in AN Actin filaments in unp1 were fragmented and reduced in number, which led to pleiotropic defects in nuclear morphology, cytoplasmic streaming, and plant growth. The mutation in AN caused aberrant positioning of nuclei-associated actin filaments at the anticlinal walls. AN was detected in the cytosol, where it interacted physically with plant-specific dual-specificity tyrosine phosphorylation-regulated kinases (DYRKPs) and itself. The DYRK inhibitor (1Z)-1-(3-ethyl-5-hydroxy-2(3H)-benzothiazolylidene)-2-propanone significantly inhibited dark-induced nuclear positioning. Collectively, these results suggest that the AN-DYRKP complex regulates the alignment of actin filaments during centripetal nuclear positioning in leaf cells.
Collapse
Affiliation(s)
- Kosei Iwabuchi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Haruna Ohnishi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Koro Hattori
- Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki 444-8787, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
19
|
Nuclear movement and positioning in plant cells. Semin Cell Dev Biol 2018; 82:17-24. [DOI: 10.1016/j.semcdb.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
|
20
|
Inomata T, Baslam M, Masui T, Koshu T, Takamatsu T, Kaneko K, Pozueta-Romero J, Mitsui T. Proteomics Analysis Reveals Non-Controlled Activation of Photosynthesis and Protein Synthesis in a Rice npp1 Mutant under High Temperature and Elevated CO₂ Conditions. Int J Mol Sci 2018; 19:ijms19092655. [PMID: 30205448 PMCID: PMC6165220 DOI: 10.3390/ijms19092655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/26/2022] Open
Abstract
Rice nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) catalyzes the hydrolytic breakdown of the pyrophosphate and phosphodiester bonds of a number of nucleotides including ADP-glucose and ATP. Under high temperature and elevated CO2 conditions (HT + ECO2), the npp1 knockout rice mutant displayed rapid growth and high starch content phenotypes, indicating that NPP1 exerts a negative effect on starch accumulation and growth. To gain further insight into the mechanisms involved in the NPP1 downregulation induced starch overaccumulation, in this study we conducted photosynthesis, leaf proteomic, and chloroplast phosphoproteomic analyses of wild-type (WT) and npp1 plants cultured under HT + ECO2. Photosynthesis in npp1 leaves was significantly higher than in WT. Additionally, npp1 leaves accumulated higher levels of sucrose than WT. The proteomic analyses revealed upregulation of proteins related to carbohydrate metabolism and the protein synthesis system in npp1 plants. Further, our data indicate the induction of 14-3-3 proteins in npp1 plants. Our finding demonstrates a higher level of protein phosphorylation in npp1 chloroplasts, which may play an important role in carbohydrate accumulation. Together, these results offer novel targets and provide additional insights into carbohydrate metabolism regulation under ambient and adverse conditions.
Collapse
Affiliation(s)
- Takuya Inomata
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Marouane Baslam
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| | - Takahiro Masui
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Tsutomu Koshu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Takeshi Takamatsu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| | - Kentaro Kaneko
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Mutiloako Etorbidea Zenbaki Gabe, 31192 Mutiloabeti, Nafarroa, Spain.
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| |
Collapse
|
21
|
Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci Rep 2018; 8:5617. [PMID: 29618734 PMCID: PMC5884812 DOI: 10.1038/s41598-018-23854-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 01/30/2023] Open
Abstract
The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin to protect against environmental stresses. Haematococcus cells that accumulate astaxanthin in the central part (green-red cyst cells) respond rapidly to intense light by distributing astaxanthin diffusively to the peripheral part of the cell within 10 min after irradiation. This response is reversible: when astaxanthin-diffused cells were placed in the dark, astaxanthin was redistributed to the center of the cell. Although Haematococcus possesses several pigments other that astaxanthin, the subcellular distribution and content of each pigment remain unknown. Here, we analyzed the subcellular dynamics and localization of major pigments such as astaxanthin, β-carotene, lutein, and chlorophylls under light irradiation using time-lapse and label-free hyperspectral imaging analysis. Fluorescence microscopy and freeze-fracture transmission electron microscopy showed that, preceding/following exposure to light, astaxanthin colocalized with lipid droplets, which moved from the center to the periphery through pathways in a chloroplast. This study revealed that photoresponse dynamics differed between astaxanthin and other pigments (chlorophylls, lutein, and β-carotene), and that only astaxanthin freely migrates from the center to the periphery of the cell through a large, spherical, cytoplasm-encapsulating chloroplast as a lipid droplet. We consider this to be the Haematococcus light-protection mechanism.
Collapse
|
22
|
Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, Girardin MP. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. THE NEW PHYTOLOGIST 2018; 218:630-645. [PMID: 29314017 PMCID: PMC6079641 DOI: 10.1111/nph.14968] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees.
Collapse
Affiliation(s)
- Johann M. Housset
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Centre d’étude de la forêtUniversité du Québec à MontréalC.P. 8888, succ. Centre‐villeMontréalQCH3C 3P8Canada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Claire Depardieu
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Isabelle Duchesne
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Patrick Lenz
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Martin P. Girardin
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Centre d’étude de la forêtUniversité du Québec à MontréalC.P. 8888, succ. Centre‐villeMontréalQCH3C 3P8Canada
| |
Collapse
|
23
|
Christie JM, Suetsugu N, Sullivan S, Wada M. Shining Light on the Function of NPH3/RPT2-Like Proteins in Phototropin Signaling. PLANT PHYSIOLOGY 2018; 176:1015-1024. [PMID: 28720608 PMCID: PMC5813532 DOI: 10.1104/pp.17.00835] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 05/05/2023]
Abstract
NRL proteins coordinate different aspects of phototropin signaling through signaling processes that are conserved in land plants and algae.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Noriyuki Suetsugu
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Stuart Sullivan
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Masamitsu Wada
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
24
|
Abstract
ABSTRACT
Plants are sessile and require diverse strategies to adapt to fluctuations in the surrounding light conditions. Consequently, the photorelocation movement of chloroplasts is essential to prevent damages that are induced by intense light (avoidance response) and to ensure efficient photosynthetic activities under weak light conditions (accumulation response). The mechanisms that underlie chloroplast movements have been revealed through analysis of the behavior of individual chloroplasts and it has been found that these organelles can move in any direction without turning. This implies that any part of the chloroplast periphery can function as the leading or trailing edge during movement. This ability is mediated by a special structure, which consists of short actin filaments that are polymerized at the leading edge of moving chloroplasts and are specifically localized in the space between the chloroplast and the plasma membrane, and is called chloroplast-actin. In addition, several of the genes that encode proteins that are involved in chloroplast-actin polymerization or maintenance have been identified. In this Review, we discuss the mechanisms that regulate chloroplast movements through polymerization of the chloroplast-actin and propose a model for actin-driven chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Sam-Geun Kong
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudaehak-ro Gongju-si, Chungcheongnam-do 32588, Republic of Korea
| |
Collapse
|
25
|
Gotoh E, Suetsugu N, Higa T, Matsushita T, Tsukaya H, Wada M. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis. Sci Rep 2018; 8:1472. [PMID: 29367686 PMCID: PMC5784166 DOI: 10.1038/s41598-018-19896-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m−2 s−1), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.
Collapse
Affiliation(s)
- Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan. .,Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | - Takeshi Higa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| |
Collapse
|
26
|
Groves NR, Biel AM, Newman-Griffis AH, Meier I. Dynamic Changes in Plant Nuclear Organization in Response to Environmental and Developmental Signals. PLANT PHYSIOLOGY 2018; 176:230-241. [PMID: 28739821 PMCID: PMC5761808 DOI: 10.1104/pp.17.00788] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 05/19/2023]
Abstract
The functional organization of the plant nuclear pore, nuclear envelope, and nucleoplasm marks dynamically changing environmental cues and developmental programs.
Collapse
Affiliation(s)
- Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Alecia M Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Anna H Newman-Griffis
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
27
|
Mueller-Schuessele SJ, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2018; 1829:87-109. [PMID: 29987716 DOI: 10.1007/978-1-4939-8654-5_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plastids are organelles delineated by two envelopes that play important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by signaling molecules and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, the mitochondria, the plasma membrane, the peroxisomes and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still enigmatic. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Morgane Michaud
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA. .,Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, CEA Grenoble, UMR5168, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
28
|
Suetsugu N, Higa T, Wada M. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements. PLANT, CELL & ENVIRONMENT 2017; 40:2447-2456. [PMID: 27859339 DOI: 10.1111/pce.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 05/05/2023]
Abstract
Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takeshi Higa
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
29
|
RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc Natl Acad Sci U S A 2016; 113:10424-9. [PMID: 27578868 DOI: 10.1073/pnas.1602151113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.
Collapse
|
30
|
Suetsugu N, Higa T, Gotoh E, Wada M. Light-Induced Movements of Chloroplasts and Nuclei Are Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis thaliana. PLoS One 2016; 11:e0157429. [PMID: 27310016 PMCID: PMC4911103 DOI: 10.1371/journal.pone.0157429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Light-induced chloroplast movement and attachment to the plasma membrane are dependent on actin filaments. In Arabidopsis thaliana, the short actin filaments on the chloroplast envelope, cp-actin filaments, are essential for chloroplast movement and positioning. Furthermore, cp-actin-filament-mediated chloroplast movement is necessary for the strong-light-induced nuclear avoidance response. The proteins CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for the generation and/or maintenance of cp-actin filaments in Arabidopsis. In land plants, CHUP1 and KAC family proteins play pivotal roles in the proper movement of chloroplasts and their attachment to the plasma membrane. Here, we report similar but distinct phenotypes in chloroplast and nuclear photorelocation movements between chup1 and kac1kac2 mutants. Measurement of chloroplast photorelocation movement indicated that kac1kac2, but not chup1, exhibited a clear strong-light-induced increase in leaf transmittance changes. The chloroplast movement in kac1kac2 depended on phototropin 2, CHUP1 and two other regulators for cp-actin filaments, PLASTID MOVEMENT IMPAIRED 1 and THRUMIN 1. Furthermore, kac1kac2 retained a weak but significant nuclear avoidance response although chup1 displayed a severe defect in the nuclear avoidance response. The kac1kac2chup1 triple mutant was completely defective in both chloroplast and nuclear avoidance responses. These results indicate that CHUP1 and the KACs function somewhat independently, but interdependently mediate both chloroplast and nuclear photorelocation movements.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Higa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Gotoh
- Department of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masamitsu Wada
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
31
|
Stata M, Sage TL, Hoffmann N, Covshoff S, Ka-Shu Wong G, Sage RF. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria. PLANT & CELL PHYSIOLOGY 2016; 57:904-918. [PMID: 26985020 DOI: 10.1093/pcp/pcw015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.
Collapse
Affiliation(s)
- Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Natalie Hoffmann
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada Department of Medicine, University of Alberta, Edmonton AB, T6G 2E1, Canada BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| |
Collapse
|
32
|
Kong SG, Wada M. Molecular basis of chloroplast photorelocation movement. JOURNAL OF PLANT RESEARCH 2016; 129:159-66. [PMID: 26794773 DOI: 10.1007/s10265-016-0788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/03/2016] [Indexed: 05/05/2023]
Abstract
Chloroplast photorelocation movement is an essential physiological response for sessile plant survival and the optimization of photosynthetic ability. Simple but effective experiments on the physiological, cell biological and molecular genetic aspects have been widely used to investigate the signaling components of chloroplast photorelocation movement in Arabidopsis for the past few decades. Although recent knowledge on chloroplast photorelocation movement has led us to a deeper understanding of its physiological and molecular basis, the biochemical roles of the downstream factors remain largely unknown. In this review, we briefly summarize recent advances regarding chloroplast photorelocation movement and propose that a new high-resolution approach is necessary to investigate the molecular mechanism underlying actin-based chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research Center for Live-Protein Dynamics, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
33
|
WADA M. Chloroplast and nuclear photorelocation movements. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:387-411. [PMID: 27840388 PMCID: PMC5328789 DOI: 10.2183/pjab.92.387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/24/2016] [Indexed: 05/18/2023]
Abstract
Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described.
Collapse
Affiliation(s)
- Masamitsu WADA
- Department Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa, Tokyo, Japan
| |
Collapse
|
34
|
Suetsugu N, Wada M. Evolution of the Cp-Actin-based Motility System of Chloroplasts in Green Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:561. [PMID: 27200035 PMCID: PMC4853393 DOI: 10.3389/fpls.2016.00561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/11/2016] [Indexed: 05/10/2023]
Abstract
During the course of green plant evolution, numerous light responses have arisen that optimize their growth under fluctuating light conditions. The blue light receptor phototropin mediates several photomovement responses at the tissue, cellular and organelle levels. Chloroplast photorelocation movement is one such photomovement response, and is found not only in most green plants, but also in some red algae and photosynthetic stramenopiles. In general, chloroplasts move toward weak light to maximally capture photosynthetically active radiation (the chloroplast accumulation response), and they move away from strong light to avoid photodamage (the avoidance response). In land plants, chloroplast movement is dependent on specialized actin filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast photorelocation were identified. In this Perspective, we discuss the evolutionary history of the molecular mechanism for chloroplast photorelocation movement in green plants in view of cp-actin filaments.
Collapse
Affiliation(s)
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan UniversityTokyo, Japan
- *Correspondence: Masamitsu Wada,
| |
Collapse
|