1
|
Doron L, Kerfeld CA. Bacterial microcompartments as a next-generation metabolic engineering tool: utilizing nature's solution for confining challenging catabolic pathways. Biochem Soc Trans 2024; 52:997-1010. [PMID: 38813858 PMCID: PMC11346464 DOI: 10.1042/bst20230229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
2
|
Doron L, Raval D, Kerfeld CA. Towards using bacterial microcompartments as a platform for spatial metabolic engineering in the industrially important and metabolically versatile Zymomonas mobilis. Front Bioeng Biotechnol 2024; 12:1344260. [PMID: 38344288 PMCID: PMC10853475 DOI: 10.3389/fbioe.2024.1344260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/08/2024] [Indexed: 10/28/2024] Open
Abstract
Advances in synthetic biology have enabled the incorporation of novel biochemical pathways for the production of high-value products into industrially important bacterial hosts. However, attempts to redirect metabolic fluxes towards desired products often lead to the buildup of toxic or undesirable intermediates or, more generally, unwanted metabolic cross-talk. The use of shells derived from self-assembling protein-based prokaryotic organelles, referred to as bacterial microcompartments (BMCs), as a scaffold for metabolic enzymes represents a sophisticated approach that can both insulate and integrate the incorporation of challenging metabolic pathways into industrially important bacterial hosts. Here we took a synthetic biology approach and introduced the model shell system derived from the myxobacterium Haliangium ochraceum (HO shell) into the industrially relevant organism Zymomonas mobilis with the aim of constructing a BMC-based spatial scaffolding platform. SDS-PAGE, transmission electron microscopy, and dynamic light scattering analyses collectively demonstrated the ability to express and purify empty capped and uncapped HO shells from Z. mobilis. As a proof of concept to internally load or externally decorate the shell surface with enzyme cargo, we have successfully targeted fluorophores to the surfaces of the BMC shells. Overall, our results provide the foundation for incorporating enzymes and constructing BMCs with synthetic biochemical pathways for the future production of high-value products in Z. mobilis.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Dhairya Raval
- Department of Engineering, Michigan State University, East Lansing, MI, United States
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Oltrogge LM, Chen AW, Chaijarasphong T, Turnšek JB, Savage DF. α-Carboxysome Size Is Controlled by the Disordered Scaffold Protein CsoS2. Biochemistry 2024; 63:219-229. [PMID: 38085650 PMCID: PMC10795168 DOI: 10.1021/acs.biochem.3c00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Carboxysomes are protein microcompartments that function in the bacterial CO2 concentrating mechanism (CCM) to facilitate CO2 assimilation. To do so, carboxysomes assemble from thousands of constituent proteins into an icosahedral shell, which encapsulates the enzymes Rubisco and carbonic anhydrase to form structures typically > 100 nm and > 300 megadaltons. Although many of the protein interactions driving the assembly process have been determined, it remains unknown how size and composition are precisely controlled. Here, we show that the size of α-carboxysomes is controlled by the disordered scaffolding protein CsoS2. CsoS2 contains two classes of related peptide repeats that bind to the shell in a distinct fashion, and our data indicate that size is controlled by the relative number of these interactions. We propose an energetic and structural model wherein the two repeat classes bind at the junction of shell hexamers but differ in their preferences for the shell contact angles, and thus the local curvature. In total, this model suggests that a set of specific and repeated interactions between CsoS2 and shell proteins collectively achieve the large size and monodispersity of α-carboxysomes.
Collapse
Affiliation(s)
- Luke M. Oltrogge
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Allen W. Chen
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Julia B. Turnšek
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Jiang Y, Tang J, Liu X, Daroch M. Polyphasic characterization of a novel hot-spring cyanobacterium Thermocoleostomius sinensis gen et sp. nov. and genomic insights into its carbon concentration mechanism. Front Microbiol 2023; 14:1176500. [PMID: 37564287 PMCID: PMC10410155 DOI: 10.3389/fmicb.2023.1176500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Thermophilic cyanobacteria play a crucial role as primary producers in hot spring ecosystems, yet their microbiological, taxonomic, and ecological characteristics are not extensively studied. This study aimed to characterize a novel strain of thermophilic cyanobacteria, PKUAC-SCTA174 (A174), using a combination of traditional polyphasic methods and modern genomic-based approaches. The study included 16S rRNA-based phylogeny, ITS secondary structure prediction, morphological and habitat analyses, as well as high-quality genome sequencing with corresponding phylogenomic analyses. The results of the 16S rRNA, 16S-23S ITS secondary structure, morphology, and habitat analyses supported the classification of the strain as a member of a novel genus within the family Oculatellaceae, closely related to Albertania and Trichotorquatus. Genomic analysis revealed the presence of a sophisticated carbon-concentrating mechanism (CCM) in the strain, involving two CO2 uptake systems NDH-I3, and NDH-I4, three types of bicarbonate transporters (BCT1, bicA, sbtA,) and two distinct putative carboxysomal carbonic anhydrases (ccaA1 and ccaA2). The expression of CCM genes was investigated with a CO2 shift experiment, indicating varying transcript abundance among different carbon uptake systems. Based on the comprehensive characterization, the strain was delineated as Thermocoleostomius sinensis, based on the botanical code. The study of the complete genome of strain A174 contributes valuable insights into the genetic characteristics of the genus Thermocoleostomius and related organisms and provides a systematic understanding of thermophilic cyanobacteria. The findings presented here offer valuable data that can be utilized for future research in taxogenomics, ecogenomics, and geogenomics.
Collapse
Affiliation(s)
- Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiangjian Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
5
|
Tang J, Zhou H, Jiang Y, Yao D, Waleron KF, Du LM, Daroch M. Characterization of a novel thermophilic cyanobacterium within Trichocoleusaceae, Trichothermofontia sichuanensis gen. et sp. nov., and its CO 2-concentrating mechanism. Front Microbiol 2023; 14:1111809. [PMID: 37180226 PMCID: PMC10172474 DOI: 10.3389/fmicb.2023.1111809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Thermophiles from extreme thermal environments have shown tremendous potential regarding ecological and biotechnological applications. Nevertheless, thermophilic cyanobacteria remain largely untapped and are rarely characterized. Herein, a polyphasic approach was used to characterize a thermophilic strain, PKUAC-SCTB231 (hereafter B231), isolated from a hot spring (pH 6.62, 55.5°C) in Zhonggu village, China. The analyses of 16S rRNA phylogeny, secondary structures of 16S-23S ITS and morphology strongly supported strain B231 as a novel genus within Trichocoleusaceae. Phylogenomic inference and three genome-based indices further verified the genus delineation. Based on the botanical code, the isolate is herein delineated as Trichothermofontia sichuanensis gen. et sp. nov., a genus closely related to a validly described genus Trichocoleus. In addition, our results suggest that Pinocchia currently classified to belong to the family Leptolyngbyaceae may require revision and assignment to the family Trichocoleusaceae. Furthermore, the complete genome of Trichothermofontia B231 facilitated the elucidation of the genetic basis regarding genes related to its carbon-concentrating mechanism (CCM). The strain belongs to β-cyanobacteria according to its β-carboxysome shell protein and 1B form of Ribulose bisphosphate Carboxylase-Oxygenase (RubisCO). Compared to other thermophilic strains, strain B231contains a relatively low diversity of bicarbonate transporters (only BicA for HCO3- transport) but a higher abundance of different types of carbonic anhydrase (CA), β-CA (ccaA) and γ-CA (ccmM). The BCT1 transporter consistently possessed by freshwater cyanobacteria was absent in strain B231. Similar situation was occasionally observed in freshwater thermal Thermoleptolyngbya and Thermosynechococcus strains. Moreover, strain B231 shows a similar composition of carboxysome shell proteins (ccmK1-4, ccmL, -M, -N, -O, and -P) to mesophilic cyanobacteria, the diversity of which was higher than many thermophilic strains lacking at least one of the four ccmK genes. The genomic distribution of CCM-related genes suggests that the expression of some components is regulated as an operon and others in an independently controlled satellite locus. The current study also offers fundamental information for future taxogenomics, ecogenomics and geogenomic studies on distribution and significance of thermophilic cyanobacteria in the global ecosystem.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Krzysztof F. Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland
| | - Lian-Ming Du
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Maurycy Daroch,
| |
Collapse
|
6
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
7
|
Tang J, Zhou H, Yao D, Riaz S, You D, Klepacz-Smółka A, Daroch M. Comparative Genomic Analysis Revealed Distinct Molecular Components and Organization of CO 2-Concentrating Mechanism in Thermophilic Cyanobacteria. Front Microbiol 2022; 13:876272. [PMID: 35602029 PMCID: PMC9120777 DOI: 10.3389/fmicb.2022.876272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Cyanobacteria evolved an inorganic carbon-concentrating mechanism (CCM) to perform effective oxygenic photosynthesis and prevent photorespiratory carbon losses. This process facilitates the acclimation of cyanobacteria to various habitats, particularly in CO2-limited environments. To date, there is limited information on the CCM of thermophilic cyanobacteria whose habitats limit the solubility of inorganic carbon. Here, genome-based approaches were used to identify the molecular components of CCM in 17 well-described thermophilic cyanobacteria. These cyanobacteria were from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. All the strains belong to β-cyanobacteria based on their β-carboxysome shell proteins with 1B form of Rubisco. The diversity in the Ci uptake systems and carboxysome composition of these thermophiles were analyzed based on their genomic information. For Ci uptake systems, two CO2 uptake systems (NDH-13 and NDH-14) and BicA for HCO3– transport were present in all the thermophilic cyanobacteria, while most strains did not have the Na+/HCO3– Sbt symporter and HCO3– transporter BCT1 were absent in four strains. As for carboxysome, the β-carboxysomal shell protein, ccmK2, was absent only in Thermoleptolyngbya strains, whereas ccmK3/K4 were absent in all Thermostichus and Thermosynechococcus strains. Besides, all Thermostichus and Thermosynechococcus strains lacked carboxysomal β-CA, ccaA, the carbonic anhydrase activity of which may be replaced by ccmM proteins as indicated by comparative domain analysis. The genomic distribution of CCM-related genes was different among the thermophiles, suggesting probably distinct expression regulation. Overall, the comparative genomic analysis revealed distinct molecular components and organization of CCM in thermophilic cyanobacteria. These findings provided insights into the CCM components of thermophilic cyanobacteria and fundamental knowledge for further research regarding photosynthetic improvement and biomass yield of thermophilic cyanobacteria with biotechnological potentials.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Sadaf Riaz
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
8
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proc Natl Acad Sci U S A 2022; 119:2116871119. [PMID: 35193962 PMCID: PMC8872734 DOI: 10.1073/pnas.2116871119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The enormous complexity of metabolic pathways, in both their regulation and propensity for metabolite cross-talk, represents a major obstacle for metabolic engineering. Self-assembling, catalytically programmable and genetically transferable bacterial microcompartments (BMCs) offer solutions to decrease this complexity through compartmentalization of enzymes within a selectively permeable protein shell. Synthetic BMCs can operate as autonomous metabolic modules decoupled from the cell’s regulatory network, only interfacing with the cell’s metabolism via the highly engineerable proteinaceous shell. Here, we build a synthetic, modular, multienzyme BMC. It functions not only as a proof-of-concept for next-generation metabolic engineering, but also provides the foundation for subsequent tuning, with the goal to create a microanaerobic environment protecting an oxygen-sensitive reaction in aerobic growth conditions that could be deployed. Formate has great potential to function as a feedstock for biorefineries because it can be sustainably produced by a variety of processes that don’t compete with agricultural production. However, naturally formatotrophic organisms are unsuitable for large-scale cultivation, difficult to engineer, or have inefficient native formate assimilation pathways. Thus, metabolic engineering needs to be developed for model industrial organisms to enable efficient formatotrophic growth. Here, we build a prototype synthetic formate utilizing bacterial microcompartment (sFUT) encapsulating the oxygen-sensitive glycyl radical enzyme pyruvate formate lyase and a phosphate acyltransferase to convert formate and acetyl-phosphate into the central biosynthetic intermediate pyruvate. This metabolic module offers a defined environment with a private cofactor coenzyme A that can cycle efficiently between the encapsulated enzymes. To facilitate initial design-build-test-refine cycles to construct an active metabolic core, we used a “wiffleball” architecture, defined as an icosahedral bacterial microcompartment (BMC) shell with unoccupied pentameric vertices to freely permit substrate and product exchange. The resulting sFUT prototype wiffleball is an active multi enzyme synthetic BMC functioning as platform technology.
Collapse
|
10
|
Gao R, Tan H, Li S, Ma S, Tang Y, Zhang K, Zhang Z, Fan Q, Yang J, Zhang XE, Li F. A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability. Proc Natl Acad Sci U S A 2022; 119:e2104964119. [PMID: 35078933 PMCID: PMC8812686 DOI: 10.1073/pnas.2104964119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the β-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.
Collapse
Affiliation(s)
- Ruimin Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huan Tan
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Shanshan Li
- Key Laboratory for Cellular Dynamics, Ministry of Education, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Shaojie Ma
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Yufu Tang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Kaiming Zhang
- Key Laboratory for Cellular Dynamics, Ministry of Education, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Jun Yang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China;
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xian-En Zhang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China;
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China;
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Tan YQ, Ali S, Xue B, Teo WZ, Ling LH, Go MK, Lv H, Robinson RC, Narita A, Yew WS. Structure of a Minimal α-Carboxysome-Derived Shell and Its Utility in Enzyme Stabilization. Biomacromolecules 2021; 22:4095-4109. [PMID: 34384019 DOI: 10.1021/acs.biomac.1c00533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial microcompartments are proteinaceous shells that encase specialized metabolic processes in bacteria. Recent advances in simplification of these intricate shells have encouraged bioengineering efforts. Here, we construct minimal shells derived from the Halothiobacillus neapolitanus α-carboxysome, which we term Cso-shell. Using cryogenic electron microscopy, the atomic-level structures of two shell forms were obtained, reinforcing notions of evolutionarily conserved features in bacterial microcompartment shell architecture. Encapsulation peptide sequences that facilitate loading of heterologous protein cargo within the shells were identified. We further provide a first demonstration in utilizing minimal bacterial microcompartment-derived shells for hosting heterologous enzymes. Cso-shells were found to stabilize enzymatic activities against heat shock, presence of methanol co-solvent, consecutive freeze-thawing, and alkaline environments. This study yields insights into α-carboxysome assembly and advances the utility of synthetic bacterial microcompartments as nanoreactors capable of stabilizing enzymes with varied properties and reaction chemistries.
Collapse
Affiliation(s)
- Yong Quan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.,NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore 117456.,Graduate School for Integrative Sciences and Engineering, NUS, Singapore 119077
| | - Samson Ali
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Research Institute for Interdisciplinary Science (RIIS), Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Bo Xue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.,NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore 117456.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Wei Zhe Teo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.,NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore 117456.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Lay Hiang Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.,NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore 117456.,Graduate School for Integrative Sciences and Engineering, NUS, Singapore 119077
| | - Maybelle Kho Go
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.,NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore 117456.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Hong Lv
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, People's Republic of China.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.,NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore 117456.,Graduate School for Integrative Sciences and Engineering, NUS, Singapore 119077.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| |
Collapse
|
12
|
Sutter M, Melnicki MR, Schulz F, Woyke T, Kerfeld CA. A catalog of the diversity and ubiquity of bacterial microcompartments. Nat Commun 2021; 12:3809. [PMID: 34155212 PMCID: PMC8217296 DOI: 10.1038/s41467-021-24126-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Bacterial microcompartments (BMCs) are organelles that segregate segments of metabolic pathways which are incompatible with surrounding metabolism. BMCs consist of a selectively permeable shell, composed of three types of structurally conserved proteins, together with sequestered enzymes that vary among functionally distinct BMCs. Genes encoding shell proteins are typically clustered with those for the encapsulated enzymes. Here, we report that the number of identifiable BMC loci has increased twenty-fold since the last comprehensive census of 2014, and the number of distinct BMC types has doubled. The new BMC types expand the range of compartmentalized catalysis and suggest that there is more BMC biochemistry yet to be discovered. Our comprehensive catalog of BMCs provides a framework for their identification, correlation with bacterial niche adaptation, experimental characterization, and development of BMC-based nanoarchitectures for biomedical and bioengineering applications. Bacterial microcompartments (BMCs) are organelles consisting of a protein shell in which certain metabolic reactions take place separated from the cytoplasm. Here, Sutter et al. present a comprehensive catalog of BMC loci, substantially expanding the number of known BMCs and describing distinct types and compartmentalized reactions.
Collapse
Affiliation(s)
- Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
Abstract
Bacterial microcompartments (BMCs) confine a diverse array of metabolic reactions within a selectively permeable protein shell, allowing for specialized biochemistry that would be less efficient or altogether impossible without compartmentalization. BMCs play critical roles in carbon fixation, carbon source utilization, and pathogenesis. Despite their prevalence and importance in bacterial metabolism, little is known about BMC “homeostasis,” a term we use here to encompass BMC assembly, composition, size, copy-number, maintenance, turnover, positioning, and ultimately, function in the cell. The carbon-fixing carboxysome is one of the most well-studied BMCs with regard to mechanisms of self-assembly and subcellular organization. In this minireview, we focus on the only known BMC positioning system to date—the maintenance of carboxysome distribution (Mcd) system, which spatially organizes carboxysomes. We describe the two-component McdAB system and its proposed diffusion-ratchet mechanism for carboxysome positioning. We then discuss the prevalence of McdAB systems among carboxysome-containing bacteria and highlight recent evidence suggesting how liquid-liquid phase separation (LLPS) may play critical roles in carboxysome homeostasis. We end with an outline of future work on the carboxysome distribution system and a perspective on how other BMCs may be spatially regulated. We anticipate that a deeper understanding of BMC organization, including nontraditional homeostasis mechanisms involving LLPS and ATP-driven organization, is on the horizon.
Collapse
|
14
|
Sun H, Cui N, Han SJ, Chen ZP, Xia LY, Chen Y, Jiang YL, Zhou CZ. Complex structure reveals CcmM and CcmN form a heterotrimeric adaptor in β-carboxysome. Protein Sci 2021; 30:1566-1576. [PMID: 33928692 DOI: 10.1002/pro.4090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022]
Abstract
Carboxysome is an icosahedral self-assembled microcompartment that sequesters RuBisCO and carbonic anhydrases within a selectively permeable protein shell. The scaffolding proteins, CcmM, and CcmN were proposed to act as adaptors that crosslink the enzymatic core to shell facets. However, the details of interaction pattern remain unknown. Here we obtained a stable heterotrimeric complex of CcmM γ-carbonic anhydrase domain (termed CcmMNT ) and CcmN, with a 1:2 stoichiometry, which interacts with the shell proteins CcmO and CcmL in vitro. The 2.9 Å crystal structure of this heterotrimer revealed an asymmetric bundle composed of one CcmMNT and two CcmN subunits, all of which adopt a triangular left-handed β-helical barrel structure. The central CcmN subunit packs against CcmMNT and another CcmN subunit via a wall-to-edge or wall-to-wall pattern, respectively. Together with previous findings, we propose CcmMNT -CcmN functions as an adaptor to facilitate the recruitment of shell proteins and the assembly of intact β-carboxysome.
Collapse
Affiliation(s)
- Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shu-Jing Han
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ling-Yun Xia
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Borden JS, Savage DF. New discoveries expand possibilities for carboxysome engineering. Curr Opin Microbiol 2021; 61:58-66. [PMID: 33798818 DOI: 10.1016/j.mib.2021.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Carboxysomes are CO2-fixing protein compartments present in all cyanobacteria and some proteobacteria. These structures are attractive candidates for carbon assimilation bioengineering because they concentrate carbon, allowing the fixation reaction to occur near its maximum rate, and because they self-assemble in diverse organisms with a set of standard biological parts. Recent discoveries have expanded our understanding of how the carboxysome assembles, distributes itself, and sustains its metabolism. These studies have already led to substantial advances in engineering the carboxysome and carbon concentrating mechanism into recombinant organisms, with an eye towards establishing the system in industrial microbes and plants. Future studies may also consider the potential of in vitro carboxysomes for both discovery and applied science.
Collapse
Affiliation(s)
- Julia S Borden
- Department of Molecular & Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Department of Molecular & Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Mohajerani F, Sayer E, Neil C, Inlow K, Hagan MF. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control. ACS NANO 2021; 15:4197-4212. [PMID: 33683101 PMCID: PMC8058603 DOI: 10.1021/acsnano.0c05715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Evan Sayer
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christopher Neil
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
17
|
Tan YQ, Xue B, Yew WS. Genetically Encodable Scaffolds for Optimizing Enzyme Function. Molecules 2021; 26:molecules26051389. [PMID: 33806660 PMCID: PMC7961827 DOI: 10.3390/molecules26051389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Enzyme engineering is an indispensable tool in the field of synthetic biology, where enzymes are challenged to carry out novel or improved functions. Achieving these goals sometimes goes beyond modifying the primary sequence of the enzyme itself. The use of protein or nucleic acid scaffolds to enhance enzyme properties has been reported for applications such as microbial production of chemicals, biosensor development and bioremediation. Key advantages of using these assemblies include optimizing reaction conditions, improving metabolic flux and increasing enzyme stability. This review summarizes recent trends in utilizing genetically encodable scaffolds, developed in line with synthetic biology methodologies, to complement the purposeful deployment of enzymes. Current molecular tools for constructing these synthetic enzyme-scaffold systems are also highlighted.
Collapse
Affiliation(s)
- Yong Quan Tan
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-8624
| |
Collapse
|
18
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Kerfeld CA, Sutter M. Engineered bacterial microcompartments: apps for programming metabolism. Curr Opin Biotechnol 2020; 65:225-232. [PMID: 32554213 PMCID: PMC7719235 DOI: 10.1016/j.copbio.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Bacterial Microcompartments (BMCs) are used by diverse bacteria to compartmentalize enzymatic reactions, functioning analogously to the organelles of eukaryotes. The bounding membrane and encapsulated components are composed entirely of protein, which makes them ideal targets for modification by genetic engineering. In contrast to viruses, in which generally only one protein forms the capsid, the shells of BMCs consist of a variety of shell proteins, each a potential unit of selection. Despite their differences in permeability, the shell proteins are surprisingly interchangeable. Recent developments have shown that they are also highly amenable to engineered modifications which poise them for a variety of biotechnological applications. Given their modular structure, with a module defined as a semi-autonomous functional unit, BMCs can be considered apps for programming metabolism that can be de-bugged by adaptive evolution.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA; Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory and Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA; Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Hennacy JH, Jonikas MC. Prospects for Engineering Biophysical CO 2 Concentrating Mechanisms into Land Plants to Enhance Yields. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:461-485. [PMID: 32151155 PMCID: PMC7845915 DOI: 10.1146/annurev-arplant-081519-040100] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants.
Collapse
Affiliation(s)
- Jessica H Hennacy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
21
|
Orr DJ, Worrall D, Lin MT, Carmo-Silva E, Hanson MR, Parry MAJ. Hybrid Cyanobacterial-Tobacco Rubisco Supports Autotrophic Growth and Procarboxysomal Aggregation. PLANT PHYSIOLOGY 2020; 182:807-818. [PMID: 31744936 PMCID: PMC6997680 DOI: 10.1104/pp.19.01193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/05/2019] [Indexed: 05/22/2023]
Abstract
Much of the research aimed at improving photosynthesis and crop productivity attempts to overcome shortcomings of the primary CO2-fixing enzyme Rubisco. Cyanobacteria utilize a CO2-concentrating mechanism (CCM), which encapsulates Rubisco with poor specificity but a relatively fast catalytic rate within a carboxysome microcompartment. Alongside the active transport of bicarbonate into the cell and localization of carbonic anhydrase within the carboxysome shell with Rubisco, cyanobacteria are able to overcome the limitations of Rubisco via localization within a high-CO2 environment. As part of ongoing efforts to engineer a β-cyanobacterial CCM into land plants, we investigated the potential for Rubisco large subunits (LSU) from the β-cyanobacterium Synechococcus elongatus (Se) to form aggregated Rubisco complexes with the carboxysome linker protein CcmM35 within tobacco (Nicotiana tabacum) chloroplasts. Transplastomic plants were produced that lacked cognate Se Rubisco small subunits (SSU) and expressed the Se LSU in place of tobacco LSU, with and without CcmM35. Plants were able to form a hybrid enzyme utilizing tobacco SSU and the Se LSU, allowing slow autotrophic growth in high CO2 CcmM35 was able to form large Rubisco aggregates with the Se LSU, and these incorporated small amounts of native tobacco SSU. Plants lacking the Se SSU showed delayed growth, poor photosynthetic capacity, and significantly reduced Rubisco activity compared with both wild-type tobacco and lines expressing the Se SSU. These results demonstrate the ability of the Se LSU and CcmM35 to form large aggregates without the cognate Se SSU in planta, harboring active Rubisco that enables plant growth, albeit at a much slower pace than plants expressing the cognate Se SSU.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
22
|
Sutter M, Laughlin TG, Sloan NB, Serwas D, Davies KM, Kerfeld CA. Structure of a Synthetic β-Carboxysome Shell. PLANT PHYSIOLOGY 2019; 181:1050-1058. [PMID: 31501298 PMCID: PMC6836842 DOI: 10.1104/pp.19.00885] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/24/2019] [Indexed: 05/30/2023]
Abstract
Carboxysomes are capsid-like, CO2-fixing organelles that are present in all cyanobacteria and some chemoautotrophs and that substantially contribute to global primary production. They are composed of a selectively permeable protein shell that encapsulates Rubisco, the principal CO2-fixing enzyme, and carbonic anhydrase. As the centerpiece of the carbon-concentrating mechanism, by packaging enzymes that collectively enhance catalysis, the carboxysome shell enables the generation of a locally elevated concentration of substrate CO2 and the prevention of CO2 escape. A functional carboxysome consisting of an intact shell and cargo is essential for cyanobacterial growth under ambient CO2 concentrations. Using cryo-electron microscopy, we have determined the structure of a recombinantly produced simplified β-carboxysome shell. The structure reveals the sidedness and the specific interactions between the carboxysome shell proteins. The model provides insight into the structural basis of selective permeability of the carboxysome shell and can be used to design modifications to investigate the mechanisms of cargo encapsulation and other physiochemical properties such as permeability. Notably, the permeability properties are of great interest for modeling and evaluating this carbon-concentrating mechanism in metabolic engineering. Moreover, we find striking similarity between the carboxysome shell and the structurally characterized, evolutionarily distant metabolosome shell, implying universal architectural principles for bacterial microcompartment shells.
Collapse
Affiliation(s)
- Markus Sutter
- Environmental Genomics and Systems Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Thomas G Laughlin
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Nancy B Sloan
- Environmental Genomics and Systems Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Daniel Serwas
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Karen M Davies
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
23
|
Garcia-Alles LF, Root K, Maveyraud L, Aubry N, Lesniewska E, Mourey L, Zenobi R, Truan G. Occurrence and stability of hetero-hexamer associations formed by β-carboxysome CcmK shell components. PLoS One 2019; 14:e0223877. [PMID: 31603944 PMCID: PMC6788708 DOI: 10.1371/journal.pone.0223877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
The carboxysome is a bacterial micro-compartment (BMC) subtype that encapsulates enzymatic activities necessary for carbon fixation. Carboxysome shells are composed of a relatively complex cocktail of proteins, their precise number and identity being species dependent. Shell components can be classified in two structural families, the most abundant class associating as hexamers (BMC-H) that are supposed to be major players for regulating shell permeability. Up to recently, these proteins were proposed to associate as homo-oligomers. Genomic data, however, demonstrated the existence of paralogs coding for multiple shell subunits. Here, we studied cross-association compatibilities among BMC-H CcmK proteins of Synechocystis sp. PCC6803. Co-expression in Escherichia coli proved a consistent formation of hetero-hexamers combining CcmK1 and CcmK2 or, remarkably, CcmK3 and CcmK4 subunits. Unlike CcmK1/K2 hetero-hexamers, the stoichiometry of incorporation of CcmK3 in associations with CcmK4 was low. Cross-interactions implicating other combinations were weak, highlighting a structural segregation of the two groups that could relate to gene organization. Sequence analysis and structural models permitted the localization of interactions that would favor formation of CcmK3/K4 hetero-hexamers. The crystallization of these CcmK3/K4 associations conducted to the elucidation of a structure corresponding to the CcmK4 homo-hexamer. Yet, subunit exchange could not be demonstrated in vitro. Biophysical measurements showed that hetero-hexamers are thermally less stable than homo-hexamers, and impeded in forming larger assemblies. These novel findings are discussed within the context of reported data to propose a functional scenario in which minor CcmK3/K4 incorporation in shells would introduce sufficient local disorder as to allow shell remodeling necessary to adapt rapidly to environmental changes.
Collapse
Affiliation(s)
- Luis F. Garcia-Alles
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- * E-mail:
| | - Katharina Root
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Laurent Maveyraud
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Aubry
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France
| | - Lionel Mourey
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gilles Truan
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
24
|
Kirst H, Kerfeld CA. Bacterial microcompartments: catalysis-enhancing metabolic modules for next generation metabolic and biomedical engineering. BMC Biol 2019; 17:79. [PMID: 31601225 PMCID: PMC6787980 DOI: 10.1186/s12915-019-0691-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial cells have long been thought to be simple cells with little spatial organization, but recent research has shown that they exhibit a remarkable degree of subcellular differentiation. Indeed, bacteria even have organelles such as magnetosomes for sensing magnetic fields or gas vesicles controlling cell buoyancy. A functionally diverse group of bacterial organelles are the bacterial microcompartments (BMCs) that fulfill specialized metabolic needs. Modification and reengineering of these BMCs enable innovative approaches for metabolic engineering and nanomedicine.
Collapse
Affiliation(s)
- Henning Kirst
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA.,Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA. .,Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Sun Y, Wollman AJM, Huang F, Leake MC, Liu LN. Single-Organelle Quantification Reveals Stoichiometric and Structural Variability of Carboxysomes Dependent on the Environment. THE PLANT CELL 2019; 31:1648-1664. [PMID: 31048338 PMCID: PMC6635877 DOI: 10.1105/tpc.18.00787] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/02/2019] [Indexed: 05/25/2023]
Abstract
The carboxysome is a complex, proteinaceous organelle that plays essential roles in carbon assimilation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble in space to form an icosahedral structure. Despite its significance in enhancing CO2 fixation and potentials in bioengineering applications, the formation of carboxysomes and their structural composition, stoichiometry, and adaptation to cope with environmental changes remain unclear. Here we use live-cell single-molecule fluorescence microscopy, coupled with confocal and electron microscopy, to decipher the absolute protein stoichiometry and organizational variability of single β-carboxysomes in the model cyanobacterium Synechococcus elongatus PCC7942. We determine the physiological abundance of individual building blocks within the icosahedral carboxysome. We further find that the protein stoichiometry, diameter, localization, and mobility patterns of carboxysomes in cells depend sensitively on the microenvironmental levels of CO2 and light intensity during cell growth, revealing cellular strategies of dynamic regulation. These findings, also applicable to other bacterial microcompartments and macromolecular self-assembling systems, advance our knowledge of the principles that mediate carboxysome formation and structural modulation. It will empower rational design and construction of entire functional metabolic factories in heterologous organisms, for example crop plants, to boost photosynthesis and agricultural productivity.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J M Wollman
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, YO10 5DD, United Kingdom
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, YO10 5DD, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
26
|
Bio-engineering of bacterial microcompartments: a mini review. Biochem Soc Trans 2019; 47:765-777. [DOI: 10.1042/bst20170564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
AbstractBacterial microcompartments (BMCs) are protein-bound prokaryotic organelles, discovered in cyanobacteria more than 60 years ago. Functionally similar to eukaryotic cellular organelles, BMCs compartment metabolic activities in the cytoplasm, foremost to increase local enzyme concentration and prevent toxic intermediates from damaging the cytosolic content. Advanced knowledge of the functional and structural properties of multiple types of BMCs, particularly over the last 10 years, have highlighted design principles of microcompartments. This has prompted new research into their potential to function as programmable synthetic nano-bioreactors and novel bio-materials with biotechnological and medical applications. Moreover, due to the involvement of microcompartments in bacterial pathogenesis and human health, BMCs have begun to gain attention as potential novel drug targets. This mini-review gives an overview of important synthetic biology developments in the bioengineering of BMCs and a perspective on future directions in the field.
Collapse
|
27
|
Hagen AR, Plegaria JS, Sloan N, Ferlez B, Aussignargues C, Kerfeld CA. In Vitro Assembly of Diverse Bacterial Microcompartment Shell Architectures. NANO LETTERS 2018; 18:7030-7037. [PMID: 30346795 PMCID: PMC6309364 DOI: 10.1021/acs.nanolett.8b02991] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial microcompartments (BMCs) are organelles composed of a selectively permeable protein shell that encapsulates enzymes involved in CO2 fixation (carboxysomes) or carbon catabolism (metabolosomes). Confinement of sequential reactions by the BMC shell presumably increases the efficiency of the pathway by reducing the crosstalk of metabolites, release of toxic intermediates, and accumulation of inhibitory products. Because BMCs are composed entirely of protein and self-assemble, they are an emerging platform for engineering nanoreactors and molecular scaffolds. However, testing designs for assembly and function through in vivo expression is labor-intensive and has limited the potential of BMCs in bioengineering. Here, we developed a new method for in vitro assembly of defined nanoscale BMC architectures: shells and nanotubes. By inserting a "protecting group", a short ubiquitin-like modifier (SUMO) domain, self-assembly of shell proteins in vivo was thwarted, enabling preparation of concentrates of shell building blocks. Addition of the cognate protease removes the SUMO domain and subsequent mixing of the constituent shell proteins in vitro results in the self-assembly of three types of supramolecular architectures: a metabolosome shell, a carboxysome shell, and a BMC protein-based nanotube. We next applied our method to generate a metabolosome shell engineered with a hyper-basic luminal surface, allowing for the encapsulation of biotic or abiotic cargos functionalized with an acidic accessory group. This is the first demonstration of using charge complementarity to encapsulate diverse cargos in BMC shells. Collectively, our work provides a generally applicable method for in vitro assembly of natural and engineered BMC-based architectures.
Collapse
Affiliation(s)
- Andrew R. Hagen
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, CA 94720, USA
| | - Jefferson S. Plegaria
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Nancy Sloan
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, CA 94720, USA
| | - Bryan Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Clement Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, CA 94720, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim YL, Nguyen ND, Massey B, Bala S, von Caemmerer S, Badger MR, Price GD. Carboxysome encapsulation of the CO 2-fixing enzyme Rubisco in tobacco chloroplasts. Nat Commun 2018; 9:3570. [PMID: 30177711 PMCID: PMC6120970 DOI: 10.1038/s41467-018-06044-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/12/2018] [Indexed: 12/30/2022] Open
Abstract
A long-term strategy to enhance global crop photosynthesis and yield involves the introduction of cyanobacterial CO2-concentrating mechanisms (CCMs) into plant chloroplasts. Cyanobacterial CCMs enable relatively rapid CO2 fixation by elevating intracellular inorganic carbon as bicarbonate, then concentrating it as CO2 around the enzyme Rubisco in specialized protein micro-compartments called carboxysomes. To date, chloroplastic expression of carboxysomes has been elusive, requiring coordinated expression of almost a dozen proteins. Here we successfully produce simplified carboxysomes, isometric with those of the source organism Cyanobium, within tobacco chloroplasts. We replace the endogenous Rubisco large subunit gene with cyanobacterial Form-1A Rubisco large and small subunit genes, along with genes for two key α-carboxysome structural proteins. This minimal gene set produces carboxysomes, which encapsulate the introduced Rubisco and enable autotrophic growth at elevated CO2. This result demonstrates the formation of α-carboxysomes from a reduced gene set, informing the step-wise construction of fully functional α-carboxysomes in chloroplasts.
Collapse
Affiliation(s)
- Benedict M Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia.
| | - Wei Yih Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Robert E Sharwood
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Sarah Kaines
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Yi-Leen Lim
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Baxter Massey
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Soumi Bala
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Susanne von Caemmerer
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Murray R Badger
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - G Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
29
|
Hagen A, Sutter M, Sloan N, Kerfeld CA. Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nat Commun 2018; 9:2881. [PMID: 30038362 PMCID: PMC6056538 DOI: 10.1038/s41467-018-05162-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
Bacterial microcompartments (BMCs) are selectively permeable proteinaceous organelles which encapsulate segments of metabolic pathways across bacterial phyla. They consist of an enzymatic core surrounded by a protein shell composed of multiple distinct proteins. Despite great potential in varied biotechnological applications, engineering efforts have been stymied by difficulties in their isolation and characterization and a dearth of robust methods for programming cores and shell permeability. We address these challenges by functionalizing shell proteins with affinity handles, enabling facile complementation-based affinity purification (CAP) and specific cargo docking sites for efficient encapsulation via covalent-linkage (EnCo). These shell functionalizations extend our knowledge of BMC architectural principles and enable the development of minimal shell systems of precisely defined structure and composition. The generalizability of CAP and EnCo will enable their application to functionally diverse microcompartment systems to facilitate both characterization of natural functions and the development of bespoke shells for selectively compartmentalizing proteins.
Collapse
Affiliation(s)
- Andrew Hagen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Markus Sutter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
| | - Nancy Sloan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Cheryl A Kerfeld
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA. .,MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
30
|
Mohajerani F, Hagan MF. The role of the encapsulated cargo in microcompartment assembly. PLoS Comput Biol 2018; 14:e1006351. [PMID: 30063715 PMCID: PMC6086489 DOI: 10.1371/journal.pcbi.1006351] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/10/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial microcompartments are large, roughly icosahedral shells that assemble around enzymes and reactants involved in certain metabolic pathways in bacteria. Motivated by microcompartment assembly, we use coarse-grained computational and theoretical modeling to study the factors that control the size and morphology of a protein shell assembling around hundreds to thousands of molecules. We perform dynamical simulations of shell assembly in the presence and absence of cargo over a range of interaction strengths, subunit and cargo stoichiometries, and the shell spontaneous curvature. Depending on these parameters, we find that the presence of a cargo can either increase or decrease the size of a shell relative to its intrinsic spontaneous curvature, as seen in recent experiments. These features are controlled by a balance of kinetic and thermodynamic effects, and the shell size is assembly pathway dependent. We discuss implications of these results for synthetic biology efforts to target new enzymes to microcompartment interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
31
|
Plegaria JS, Kerfeld CA. Engineering nanoreactors using bacterial microcompartment architectures. Curr Opin Biotechnol 2018; 51:1-7. [PMID: 29035760 PMCID: PMC5899066 DOI: 10.1016/j.copbio.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
Bacterial microcompartments (BMCs) are organelles that encapsulate enzymes involved in CO2 fixation or carbon catabolism in a selectively permeable protein shell. Here, we highlight recent advances in the bioengineering of these protein-based nanoreactors in heterologous systems, including transfer and expression of BMC gene clusters, the production of template empty shells, and the encapsulation of non-native enzymes.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Berkeley Synthetic Biology Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Jakobson CM, Tullman-Ercek D, Mangan NM. Spatially organizing biochemistry: choosing a strategy to translate synthetic biology to the factory. Sci Rep 2018; 8:8196. [PMID: 29844460 PMCID: PMC5974357 DOI: 10.1038/s41598-018-26399-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Niall M Mangan
- Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
33
|
Abstract
Bacterial microcompartments (BMCs) are self-assembling organelles that consist of an enzymatic core that is encapsulated by a selectively permeable protein shell. The potential to form BMCs is widespread and found across the kingdom Bacteria. BMCs have crucial roles in carbon dioxide fixation in autotrophs and the catabolism of organic substrates in heterotrophs. They contribute to the metabolic versatility of bacteria, providing a competitive advantage in specific environmental niches. Although BMCs were first visualized more than 60 years ago, it is mainly in the past decade that progress has been made in understanding their metabolic diversity and the structural basis of their assembly and function. This progress has not only heightened our understanding of their role in microbial metabolism but is also beginning to enable their use in a variety of applications in synthetic biology. In this Review, we focus on recent insights into the structure, assembly, diversity and function of BMCs.
Collapse
Affiliation(s)
- Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Clement Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jan Zarzycki
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Fei Cai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
34
|
Kerfeld CA. A bioarchitectonic approach to the modular engineering of metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0387. [PMID: 28808103 DOI: 10.1098/rstb.2016.0387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA.,Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN. Engineering and Modulating Functional Cyanobacterial CO 2-Fixing Organelles. FRONTIERS IN PLANT SCIENCE 2018; 9:739. [PMID: 29922315 PMCID: PMC5996877 DOI: 10.3389/fpls.2018.00739] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 05/12/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla and provide a means for compartmentalizing specific metabolic pathways. They sequester catalytic enzymes from the cytoplasm, using an icosahedral proteinaceous shell with selective permeability to metabolic molecules and substrates, to enhance metabolic efficiency. Carboxysomes were the first BMCs discovered and their unprecedented capacity of CO2 fixation allows cyanobacteria to make a significant contribution to global carbon fixation. There is an increasing interest in utilizing synthetic biology to construct synthetic carboxysomes in new hosts, i.e., higher plants, to enhance carbon fixation and productivity. Here, we report the construction of a synthetic operon of the β-carboxysome from the cyanobacterium Synechococcus elongatus PCC7942 to generate functional β-carboxysome-like structures in Escherichia coli. The protein expression, structure, assembly, and activity of synthetic β-carboxysomes were characterized in depth using confocal, electron and atomic force microscopy, proteomics, immunoblot analysis, and enzymatic assays. Furthermore, we examined the in vivo interchangeability of β-carboxysome building blocks with other BMC components. To our knowledge, this is the first production of functional β-carboxysome-like structures in heterologous organisms. It provides important information for the engineering of fully functional carboxysomes and CO2-fixing modules in higher plants. The study strengthens our synthetic biology toolbox for generating BMC-based organelles with tunable activities and new scaffolding biomaterials for metabolic improvement and molecule delivery.
Collapse
|
36
|
Rohnke BA, Singh SP, Pattanaik B, Montgomery BL. RcaE-Dependent Regulation of Carboxysome Structural Proteins Has a Central Role in Environmental Determination of Carboxysome Morphology and Abundance in Fremyella diplosiphon. mSphere 2018; 3:e00617-17. [PMID: 29404416 PMCID: PMC5784247 DOI: 10.1128/msphere.00617-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Carboxysomes are central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation in cyanobacteria. Although the structure is well understood, roles of environmental cues in the synthesis, positioning, and functional tuning of carboxysomes have not been systematically studied. Fremyella diplosiphon is a model cyanobacterium for assessing impacts of environmental light cues on photosynthetic pigmentation and tuning of photosynthetic efficiency during complementary chromatic acclimation (CCA), which is controlled by the photoreceptor RcaE. Given the central role of carboxysomes in photosynthesis, we investigated roles of light-dependent RcaE signaling in carboxysome structure and function. A ΔrcaE mutant exhibits altered carboxysome size and number, ccm gene expression, and carboxysome protein accumulation relative to the wild-type (WT) strain. Several Ccm proteins, including carboxysome shell proteins and core-nucleating factors, overaccumulate in ΔrcaE cells relative to WT cells. Additionally, levels of carboxysome cargo RuBisCO in the ΔrcaE mutant are lower than or unchanged from those in the WT strain. This shift in the ratios of carboxysome shell and nucleating components to the carboxysome cargo appears to drive carboxysome morphology and abundance dynamics. Carboxysomes are also occasionally mislocalized spatially to the periphery of spherical mutants within thylakoid membranes, suggesting that carboxysome positioning is impacted by cell shape. The RcaE photoreceptor links perception of external light cues to regulating carboxysome structure and function and, thus, to the cellular capacity for carbon fixation. IMPORTANCE Carboxysomes are proteinaceous subcellular compartments, or bacterial organelles, found in cyanobacteria that consist of a protein shell surrounding a core primarily composed of the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) that is central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation. Whereas significant insights have been gained regarding the structure and synthesis of carboxysomes, limited attention has been given to how their size, abundance, and protein composition are regulated to ensure optimal carbon fixation in dynamic environments. Given the centrality of carboxysomes in photosynthesis, we provide an analysis of the role of a photoreceptor, RcaE, which functions in matching photosynthetic pigmentation to the external environment during complementary chromatic acclimation and thereby optimizing photosynthetic efficiency, in regulating carboxysome dynamics. Our data highlight a role for RcaE in perceiving external light cues and regulating carboxysome structure and function and, thus, in the cellular capacity for carbon fixation and organismal fitness.
Collapse
Affiliation(s)
- Brandon A. Rohnke
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Shailendra P. Singh
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Bagmi Pattanaik
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
37
|
Godoy MS, Mongili B, Fino D, Prieto MA. About how to capture and exploit the CO 2 surplus that nature, per se, is not capable of fixing. Microb Biotechnol 2017; 10:1216-1225. [PMID: 28805313 PMCID: PMC5609282 DOI: 10.1111/1751-7915.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Human activity has been altering many ecological cycles for decades, disturbing the natural mechanisms which are responsible for re-establishing the normal environmental balances. Probably, the most disrupted of these cycles is the cycle of carbon. In this context, many technologies have been developed for an efficient CO2 removal from the atmosphere. Once captured, it could be stored in large geological formations and other reservoirs like oceans. This strategy could present some environmental and economic problems. Alternately, CO2 can be transformed into carbonates or different added-value products, such as biofuels and bioplastics, recycling CO2 from fossil fuel. Currently different methods are being studied in this field. We classified them into biological, inorganic and hybrid systems for CO2 transformation. To be environmentally compatible, they should be powered by renewable energy sources. Although hybrid systems are still incipient technologies, they have made great advances in the recent years. In this scenario, biotechnology is the spearhead of ambitious strategies to capture CO2 and reduce global warming.
Collapse
Affiliation(s)
- Manuel S Godoy
- Polymer Biotechnology Lab, Centro de Investigaciones Biologicas (CIB), C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Beatrice Mongili
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Centro de Investigaciones Biologicas (CIB), C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
38
|
Faulkner M, Rodriguez-Ramos J, Dykes GF, Owen SV, Casella S, Simpson DM, Beynon RJ, Liu LN. Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes. NANOSCALE 2017; 9:10662-10673. [PMID: 28616951 PMCID: PMC5708340 DOI: 10.1039/c7nr02524f] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carboxysomes are proteinaceous organelles that play essential roles in enhancing carbon fixation in cyanobacteria and some proteobacteria. These self-assembling organelles encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase using a protein shell structurally resembling an icosahedral viral capsid. The protein shell serves as a physical barrier to protect enzymes from the cytosol and a selectively permeable membrane to mediate transport of enzyme substrates and products. The structural and mechanical nature of native carboxysomes remain unclear. Here, we isolate functional β-carboxysomes from the cyanobacterium Synechococcus elongatus PCC7942 and perform the first characterization of the macromolecular architecture and inherent physical mechanics of single β-carboxysomes using electron microscopy, atomic force microscopy (AFM) and proteomics. Our results illustrate that the intact β-carboxysome comprises three structural domains, a single-layered icosahedral shell, an inner layer and paracrystalline arrays of interior Rubisco. We also observe the protein organization of the shell and partial β-carboxysomes that likely serve as the β-carboxysome assembly intermediates. Furthermore, the topography and intrinsic mechanics of functional β-carboxysomes are determined in native conditions using AFM and AFM-based nanoindentation, revealing the flexible organization and soft mechanical properties of β-carboxysomes compared to rigid viruses. Our study provides new insights into the natural characteristics of β-carboxysome organization and nanomechanics, which can be extended to diverse bacterial microcompartments and are important considerations for the design and engineering of functional carboxysomes in other organisms to supercharge photosynthesis. It offers an approach for inspecting the structural and mechanical features of synthetic metabolic organelles and protein scaffolds in bioengineering.
Collapse
Affiliation(s)
- Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | | | - Gregory F Dykes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Siân V Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Deborah M Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
39
|
Young EJ, Burton R, Mahalik JP, Sumpter BG, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications. Front Microbiol 2017; 8:1441. [PMID: 28824573 PMCID: PMC5534457 DOI: 10.3389/fmicb.2017.01441] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as "building blocks" for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.
Collapse
Affiliation(s)
- Eric J. Young
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Rodney Burton
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Jyoti P. Mahalik
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Bobby G. Sumpter
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Miguel Fuentes-Cabrera
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Cheryl A. Kerfeld
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley National Laboratory, BerkeleyCA, United States
| | - Daniel C. Ducat
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| |
Collapse
|
40
|
Sommer M, Cai F, Melnicki M, Kerfeld CA. β-Carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3841-3855. [PMID: 28419380 PMCID: PMC5853843 DOI: 10.1093/jxb/erx115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Carboxysomes are bacterial microcompartments (BMCs) that enhance CO2 fixation in all cyanobacteria. Structurally, carboxysome shell proteins are classified according to the type of oligomer formed: hexameric (BMC-H), trimeric (BMC-T) and pentameric (BMC-P) proteins. To understand the forces driving the evolution of the carboxysome shell, we conducted a bioinformatic study of genes encoding β-carboxysome shell proteins, taking advantage of the recent large increase in sequenced cyanobacterial genomes. In addition to the four well-established BMC-H (CcmK1-4) classes, our analysis reveals two new CcmK classes, which we name CcmK5 and CcmK6. CcmK5 is phylogenetically closest to CcmK3 and CcmK4, and the ccmK5 gene is found only in genomes lacking ccmK3 and ccmk4 genes. ccmK6 is found predominantly in heterocyst-forming cyanobacteria. The gene encoding the BMC-T homolog CcmO is associated with the main carboxysome locus (MCL) in only 60% of all species. We find five evolutionary origins of separation of ccmO from the MCL. Transcriptome analysis demonstrates that satellite ccmO genes, in contrast to MCL-associated ccmO genes, are never co-regulated with other MCL genes. The dispersal of carboxysome shell genes across the genome allows for distinct regulation of their expression, perhaps in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Manuel Sommer
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fei Cai
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Melnicki
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
41
|
Polka JK, Hays SG, Silver PA. Building Spatial Synthetic Biology with Compartments, Scaffolds, and Communities. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a024018. [PMID: 27270297 DOI: 10.1101/cshperspect.a024018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional views of synthetic biology often treat the cell as an unstructured container in which biological reactions proceed uniformly. In reality, the organization of biological molecules has profound effects on cellular function: not only metabolic, but also physical and mechanical. Here, we discuss a variety of perturbations available to biologists in controlling protein, nucleotide, and membrane localization. These range from simple tags, fusions, and scaffolds to heterologous expression of compartments and other structures that confer unique physical properties to cells. Next, we relate these principles to those guiding the spatial environments outside of cells such as the extracellular matrix. Finally, we discuss new directions in building intercellular organizations to create novel symbioses.
Collapse
Affiliation(s)
- Jessica K Polka
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Stephanie G Hays
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Encapsulation of multiple cargo proteins within recombinant Eut nanocompartments. Appl Microbiol Biotechnol 2016; 100:9187-9200. [PMID: 27450681 DOI: 10.1007/s00253-016-7737-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 01/08/2023]
Abstract
Spatial organization via encapsulation of enzymes within recombinant nanocompartments may increase efficiency in multienzyme cascades. Previously, we reported the encapsulation of single cargo proteins within nanocompartments in the heterologous host Escherichia coli. This was achieved by coexpression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK, with a signal sequence EutC1-19 cargo protein fusion. Optimization of this system, leading to the targeting of more than one cargo protein, requires an understanding of the encapsulation mechanism. In this work, we report that the signal sequence EutC1-19 targets cargo to the interior of nanocompartments via a hydrophobic interaction with a helix on shell protein EutS. We confirm that EutC1-19 does not interact with other Eut BMC shell proteins, EutMNLK. Furthermore, we show that a second signal sequence EutE1-21 interacts specifically with the same helix on EutS. Both signal sequences appear to compete for the same EutS helix to simultaneously colocalize two cargo proteins to the interior of recombinant nanocompartments. This work offers the first insights into signal sequence-shell protein interactions required for cargo sequestration within Eut BMCs. It also provides a basis for the future engineering of Eut nanocompartments as a platform for the potential colocalization of multienzyme cascades for synthetic biology applications.
Collapse
|
43
|
Held M, Kolb A, Perdue S, Hsu SY, Bloch SE, Quin MB, Schmidt-Dannert C. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli. Sci Rep 2016; 6:24359. [PMID: 27063436 PMCID: PMC4827028 DOI: 10.1038/srep24359] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/29/2016] [Indexed: 01/17/2023] Open
Abstract
Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK in Escherichia coli. To optimize this system, increasing overall encapsulated enzyme reaction efficiency, factor(s) required for the production of more than one nanocompartment per cell must be identified. In this work we report that the cupin domain protein EutQ is required for assembly of more than one nanocompartment per cell. Overexpression of EutQ results in multiple nanocompartment assembly in our recombinant system. EutQ specifically interacts with the shell protein EutM in vitro via electrostatic interactions with the putative cytosolic face of EutM. These findings lead to the theory that EutQ could facilitate multiple nanocompartment biogenesis by serving as an assembly hub for shell proteins. This work offers insights into the biogenesis of Eut bacterial microcompartments, and also provides an improved platform for the production of protein based nanocompartments for targeted encapsulation of enzyme pathways.
Collapse
Affiliation(s)
- Mark Held
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Alexander Kolb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah Perdue
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Szu-Yi Hsu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah E Bloch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Maureen B Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|