1
|
Minadakis N, Kaderli L, Horvath R, Bourgeois Y, Xu W, Thieme M, Woods DP, Roulin AC. Polygenic architecture of flowering time and its relationship with local environments in the grass Brachypodium distachyon. Genetics 2024; 227:iyae042. [PMID: 38504651 PMCID: PMC11075549 DOI: 10.1093/genetics/iyae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.
Collapse
Affiliation(s)
- Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Lars Kaderli
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Robert Horvath
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34 000 Montpellier, France
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Daniel P Woods
- Department of Plant Sciences, University of California-Davis, 104 Robbins Hall, Davis, CA 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| |
Collapse
|
2
|
Mejia S, Santos JLB, Noutsos C. Comprehensive Genome-Wide Natural Variation and Expression Analysis of Tubby-like Proteins Gene Family in Brachypodium distachyon. PLANTS (BASEL, SWITZERLAND) 2024; 13:987. [PMID: 38611516 PMCID: PMC11013449 DOI: 10.3390/plants13070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
The Tubby-like proteins (TLPs) gene family is a group of transcription factors found in both animals and plants. In this study, we identified twelve B. distachyon TLPs, divided into six groups based on conserved domains and evolutionary relationships. We predicted cis-regulatory elements involved in light, hormone, and biotic and abiotic stresses. The expression patterns in response to light and hormones revealed that BdTLP3, 4, 7, and 14 are involved in light responses, and BdTLP1 is involved in ABA responses. Furthermore, BdTLP2, 7, 9, and 13 are expressed throughout vegetative and reproductive stages, whereas BdTLP1, 3, 5, and 14 are expressed at germinating grains and early vegetative development, and BdTLP4, 6, 8, and 10 are expressed at the early reproduction stage. The natural variation in the eleven most diverged B. distachyon lines revealed high conservation levels of BdTLP1-6 to high variation in BdTLP7-14 proteins. Based on diversifying selection, we identified amino acids in BdTLP1, 3, 8, and 13, potentially substantially affecting protein functions. This analysis provided valuable information for further functional studies to understand the regulation, pathways involved, and mechanism of BdTLPs.
Collapse
Affiliation(s)
- Sendi Mejia
- Biological Sciences Department, Suny Old Westbury, Old Westbury, NY 11568, USA
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA
| | | | - Christos Noutsos
- Biological Sciences Department, Suny Old Westbury, Old Westbury, NY 11568, USA
| |
Collapse
|
3
|
Liu B, Woods DP, Li W, Amasino RM. INDETERMINATE1-mediated expression of FT family genes is required for proper timing of flowering in Brachypodium distachyon. Proc Natl Acad Sci U S A 2023; 120:e2312052120. [PMID: 37934817 PMCID: PMC10655584 DOI: 10.1073/pnas.2312052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
The transition to flowering is a major developmental switch in plants. In many temperate grasses, perception of indicators of seasonal change, such as changing day-length and temperature, leads to expression of FLOWERING LOCUS T1 (FT1) and FT-Like (FTL) genes that are essential for promoting the transition to flowering. However, little is known about the upstream regulators of FT1 and FTL genes in temperate grasses. Here, we characterize the monocot-specific gene INDETERMINATE1 (BdID1) in Brachypodium distachyon and demonstrate that BdID1 is a regulator of FT family genes. Mutations in ID1 impact the ability of the short-day (SD) vernalization, cold vernalization, and long-day (LD) photoperiod pathways to induce certain FTL genes. BdID1 is required for upregulation of FTL9 (FT-LIKE9) expression by the SD vernalization pathway, and overexpression of FTL9 in an id1 background can partially restore the delayed flowering phenotype of id1. We show that BdID1 binds in vitro to the promoter region of FTL genes suggesting that ID1 directly activates FTL expression. Transcriptome analysis shows that BdID1 is required for FT1, FT2, FTL12, and FTL13 expression under inductive LD photoperiods, indicating that BdID1 is a regulator of the FT gene family. Moreover, overexpression of FT1 in the id1 background results in rapid flowering similar to overexpressing FT1 in the wild type, demonstrating that BdID1 is upstream of FT family genes. Interestingly, ID1 negatively regulates a previously uncharacterized FTL gene, FTL4, and we show that FTL4 is a repressor of flowering. Thus, BdID1 is critical for proper timing of flowering in temperate grasses.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
| | - Daniel P. Woods
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
- Laboratory of Genetics, University of Wisconsin, Madison, WI53706
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
| | - Richard M. Amasino
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
| |
Collapse
|
4
|
Woods DP, Li W, Sibout R, Shao M, Laudencia-Chingcuanco D, Vogel JP, Dubcovsky J, Amasino RM. PHYTOCHROME C regulation of photoperiodic flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon. PLoS Genet 2023; 19:e1010706. [PMID: 37163541 PMCID: PMC10171608 DOI: 10.1371/journal.pgen.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/17/2023] [Indexed: 05/12/2023] Open
Abstract
Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.
Collapse
Affiliation(s)
- Daniel P. Woods
- Dept. Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Versailles Cedex, France
- UR1268 BIA, INRAE, Nantes, France
| | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, California, United States of America
| | - Debbie Laudencia-Chingcuanco
- USDA-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- DOE Joint Genome Institute, Berkeley, California, United States of America
| | - Jorge Dubcovsky
- Dept. Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Richard M. Amasino
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Ying S, Scheible WR, Lundquist PK. A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis. PLANT PHYSIOLOGY 2023; 191:643-659. [PMID: 36264121 PMCID: PMC9806587 DOI: 10.1093/plphys/kiac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
To cope with environmental stresses and ensure maximal reproductive success, plants have developed strategies to adjust the timing of their transition to reproductive growth. This has a substantial impact on the stress resilience of crops and ultimately on agricultural productivity. Here, we report a previously uncharacterized, plant-specific gene family designated as Regulator of Flowering and Stress (RFS). Overexpression of the BdRFS gene in Brachypodium distachyon delayed flowering, increased biomass accumulation, and promoted drought tolerance, whereas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated knockout mutants exhibited opposite phenotypes. A double T-DNA insertional mutant in the two Arabidopsis (Arabidopsis thaliana) homologs replicated the effects on flowering and water deprivation seen in the B. distachyon CRISPR knockout lines, highlighting the functional conservation of the family between monocots and dicots. Lipid analysis of B. distachyon and Arabidopsis revealed that digalactosyldiacylglycerol (DGDG) and phosphatidylcholine (PC) contents were significantly, and reciprocally, altered in overexpressor and knockout mutants. Importantly, alteration of C16:0-containing PC, a Flowering Locus T-interacting lipid, associated with flowering phenotype, with elevated levels corresponding to earlier flowering. Co-immunoprecipitation analysis suggested that BdRFS interacts with phospholipase Dα1 as well as several other abscisic acid-related proteins. Furthermore, reduction of C18:3 fatty acids in DGDG corresponded with reduced jasmonic acid metabolites in CRISPR mutants. Collectively, we suggest that stress-inducible RFS proteins represent a regulatory component of lipid metabolism that impacts several agronomic traits of biotechnological importance.
Collapse
Affiliation(s)
- Sheng Ying
- Authors for correspondence: (P.K.L.) and (S.Y.)
| | | | | |
Collapse
|
6
|
Weng X, Haque T, Zhang L, Razzaque S, Lovell JT, Palacio-Mejía JD, Duberney P, Lloyd-Reilley J, Bonnette J, Juenger TE. A Pleiotropic Flowering Time QTL Exhibits Gene-by-Environment Interaction for Fitness in a Perennial Grass. Mol Biol Evol 2022; 39:msac203. [PMID: 36149808 PMCID: PMC9550986 DOI: 10.1093/molbev/msac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Appropriate flowering time is a crucial adaptation impacting fitness in natural plant populations. Although the genetic basis of flowering variation has been extensively studied, its mechanisms in nonmodel organisms and its adaptive value in the field are still poorly understood. Here, we report new insights into the genetic basis of flowering time and its effect on fitness in Panicum hallii, a native perennial grass. Genetic mapping in populations derived from inland and coastal ecotypes identified flowering time quantitative trait loci (QTL) and many exhibited extensive QTL-by-environment interactions. Patterns of segregation within recombinant hybrids provide strong support for directional selection driving ecotypic divergence in flowering time. A major QTL on chromosome 5 (q-FT5) was detected in all experiments. Fine-mapping and expression studies identified a gene with orthology to a rice FLOWERING LOCUS T-like 9 (PhFTL9) as the candidate underlying q-FT5. We used a reciprocal transplant experiment to test for local adaptation and the specific impact of q-FT5 on performance. We did not observe local adaptation in terms of fitness tradeoffs when contrasting ecotypes in home versus away habitats. However, we observed that the coastal allele of q-FT5 conferred a fitness advantage only in its local habitat but not at the inland site. Sequence analyses identified an excess of low-frequency polymorphisms at the PhFTL9 promoter in the inland lineage, suggesting a role for either selection or population expansion on promoter evolution. Together, our findings demonstrate the genetic basis of flowering variation in a perennial grass and provide evidence for conditional neutrality underlying flowering time divergence.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Diego Palacio-Mejía
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá. Kilómetro 14 vía Mosquera-Bogotá, Mosquera. Código postal 250047, Colombia
| | - Perla Duberney
- Kika de la Garza Plant Materials Center, USDA-NRCS, Kingsville, TX, USA
| | | | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Hasterok R, Catalan P, Hazen SP, Roulin AC, Vogel JP, Wang K, Mur LAJ. Brachypodium: 20 years as a grass biology model system; the way forward? TRENDS IN PLANT SCIENCE 2022; 27:1002-1016. [PMID: 35644781 DOI: 10.1016/j.tplants.2022.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
It has been 20 years since Brachypodium distachyon was suggested as a model grass species, but ongoing research now encompasses the entire genus. Extensive Brachypodium genome sequencing programmes have provided resources to explore the determinants and drivers of population diversity. This has been accompanied by cytomolecular studies to make Brachypodium a platform to investigate speciation, polyploidisation, perenniality, and various aspects of chromosome and interphase nucleus organisation. The value of Brachypodium as a functional genomic platform has been underscored by the identification of key genes for development, biotic and abiotic stress, and cell wall structure and function. While Brachypodium is relevant to the biofuel industry, its impact goes far beyond that as an intriguing model to study climate change and combinatorial stress.
Collapse
Affiliation(s)
- Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca 22071, Spain; Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA; University California, Berkeley, Berkeley, CA 94720, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK; College of Agronomy, Shanxi Agricultural University, Taiyuan 030801, Shanxi, China.
| |
Collapse
|
8
|
Raissig MT, Woods DP. The wild grass Brachypodium distachyon as a developmental model system. Curr Top Dev Biol 2022; 147:33-71. [PMID: 35337454 DOI: 10.1016/bs.ctdb.2021.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arrival of cheap and high-throughput sequencing paired with efficient gene editing technologies allows us to use non-traditional model systems and mechanistically approach biological phenomena beyond what was conceivable just a decade ago. Venturing into different model systems enables us to explore for example clade-specific environmental responses to changing climates or the genetics and development of clade-specific organs, tissues and cell types. We-both early career researchers working with the wild grass model Brachypodium distachyon-want to use this review to (1) highlight why we think B. distachyon is a fantastic grass developmental model system, (2) summarize the tools and resources that have enabled discoveries made in B. distachyon, and (3) discuss a handful of developmental biology vignettes made possible by using B. distachyon as a model system. Finally, we want to conclude by (4) relating our personal stories with this emerging model system and (5) share what we think is important to consider before starting work with an emerging model system.
Collapse
Affiliation(s)
- Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, CA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
9
|
Bouché F, Woods DP, Linden J, Li W, Mayer KS, Amasino RM, Périlleux C. EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 12:769194. [PMID: 35069625 PMCID: PMC8770904 DOI: 10.3389/fpls.2021.769194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.
Collapse
Affiliation(s)
- Frédéric Bouché
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Daniel P. Woods
- Plant Sciences Department, University of California, Davis, Davis, CA, United States
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Julie Linden
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| | - Kevin S. Mayer
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Richard M. Amasino
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Sharma N, Geuten K, Giri BS, Varma A. The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs. PHYSIOLOGIA PLANTARUM 2020; 170:373-383. [PMID: 32623749 DOI: 10.1111/ppl.13163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Winter varieties of plants can flower only after exposure to prolonged cold. This phenomenon is known as vernalization and has been widely studied in the model plant Arabidopsis thaliana as well as in monocots. Through the repression of floral activator genes, vernalization prevents flowering in winter. In Arabidopsis, FLOWERING LOCUS C or FLC is the key repressor during vernalization, while in monocots vernalization is regulated through VRN1, VRN2 and VRN3 (or FLOWERING LOCUS T). Interestingly, VRN genes are not homologous to FLC but FLC homologs are found to have a significant role in vernalization response in cereals. The presence of FLC homologs in monocots opens new dimensions to understand, compare and retrace the evolution of vernalization pathways between monocots and dicots. In this review, we discuss the molecular mechanism of vernalization-induced flowering along with epigenetic regulations in Arabidopsis and temperate cereals. A better understanding of cold-induced flowering will be helpful in crop breeding strategies to modify the vernalization requirement of economically important temperate cereals.
Collapse
Affiliation(s)
- Neha Sharma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Koen Geuten
- Department of Biology, KU Leuven, Leuven, B-3001, Belgium
| | - Balendu Shekhar Giri
- Department of Chemical Engineering and Technology, Indian Institute of Technology (IIT-BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
11
|
Tripathi RK, Overbeek W, Singh J. Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development. Sci Rep 2020; 10:15032. [PMID: 32929136 PMCID: PMC7490389 DOI: 10.1038/s41598-020-72005-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
SQUAMOSA-promoter binding like proteins (SBPs/SPLs) are plant specific transcription factors targeted by miR156 and involved in various biological pathways, playing multi-faceted developmental roles. This gene family is not well characterized in Brachypodium. We identified a total of 18 SBP genes in B. distachyon genome. Phylogenetic analysis revealed that SBP gene family in Brachypodium expanded through large scale duplication. A total of 10 BdSBP genes were identified as targets of miR156. Transcript cleavage analysis of selected BdSBPs by miR156 confirmed their antagonistic connection. Alternative splicing was observed playing an important role in BdSBPs and miR156 interaction. Characterization of T-DNA Bdsbp9 mutant showed reduced plant growth and spike length, reflecting its involvement in the spike development. Expression of a majority of BdSBPs elevated during spikelet initiation. Specifically, BdSBP1 and BdSBP3 differentially expressed in response to vernalization. Differential transcript abundance of BdSBP1, BdSBP3, BdSBP8, BdSBP9, BdSBP14, BdSBP18 and BdSBP23 genes was observed during the spike development under high temperature. Co-expression network, protein-protein interaction and biological pathway analysis indicate that BdSBP genes mainly regulate transcription, hormone, RNA and transport pathways. Our work reveals the multi-layered control of SBP genes and demonstrates their association with spike development and temperature sensitivity in Brachypodium.
Collapse
Affiliation(s)
- Rajiv K Tripathi
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec, H9X 3V9, Canada.
| | - William Overbeek
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec, H9X 3V9, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec, H9X 3V9, Canada.
| |
Collapse
|
12
|
Woods DP, Dong Y, Bouché F, Mayer K, Varner L, Ream TS, Thrower N, Wilkerson C, Cartwright A, Sibout R, Laudencia-Chingcuanco D, Vogel J, Amasino RM. Mutations in the predicted DNA polymerase subunit POLD3 result in more rapid flowering of Brachypodium distachyon. THE NEW PHYTOLOGIST 2020; 227:1725-1735. [PMID: 32173866 DOI: 10.1111/nph.16546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The timing of reproduction is a critical developmental decision in the life cycle of many plant species. Fine mapping of a rapid-flowering mutant was done using whole-genome sequence data from bulked DNA from a segregating F2 mapping populations. The causative mutation maps to a gene orthologous with the third subunit of DNA polymerase δ (POLD3), a previously uncharacterized gene in plants. Expression analyses of POLD3 were conducted via real time qPCR to determine when and in what tissues the gene is expressed. To better understand the molecular basis of the rapid-flowering phenotype, transcriptomic analyses were conducted in the mutant vs wild-type. Consistent with the rapid-flowering mutant phenotype, a range of genes involved in floral induction and flower development are upregulated in the mutant. Our results provide the first characterization of the developmental and gene expression phenotypes that result from a lesion in POLD3 in plants.
Collapse
Affiliation(s)
- Daniel P Woods
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Yinxin Dong
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Frédéric Bouché
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Kevin Mayer
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Leah Varner
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Thomas S Ream
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Nicholas Thrower
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Plant Biology and Department of Molecular Biology and Biochemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Curtis Wilkerson
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Plant Biology and Department of Molecular Biology and Biochemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Amy Cartwright
- United States Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Richard Sibout
- INRAE, UR BIA, F-44316, Nantes, France
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | | | - John Vogel
- United States Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- University of California Berkeley, Berkeley, CA, 94704, USA
| | - Richard M Amasino
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| |
Collapse
|
13
|
He T, Hill CB, Angessa TT, Zhang XQ, Chen K, Moody D, Telfer P, Westcott S, Li C. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5603-5616. [PMID: 31504706 PMCID: PMC6812734 DOI: 10.1093/jxb/erz332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/13/2019] [Indexed: 05/10/2023]
Abstract
Single-marker genome-wide association studies (GWAS) have successfully detected associations between single nucleotide polymorphisms (SNPs) and agronomic traits such as flowering time and grain yield in barley. However, the analysis of individual SNPs can only account for a small proportion of genetic variation, and can only provide limited knowledge on gene network interactions. Gene-based GWAS approaches provide enormous opportunity both to combine genetic information and to examine interactions among genetic variants. Here, we revisited a previously published phenotypic and genotypic data set of 895 barley varieties grown in two years at four different field locations in Australia. We employed statistical models to examine gene-phenotype associations, as well as two-way epistasis analyses to increase the capability to find novel genes that have significant roles in controlling flowering time in barley. Genetic associations were tested between flowering time and corresponding genotypes of 174 putative flowering time-related genes. Gene-phenotype association analysis detected 113 genes associated with flowering time in barley, demonstrating the unprecedented power of gene-based analysis. Subsequent two-way epistasis analysis revealed 19 pairs of gene×gene interactions involved in controlling flowering time. Our study demonstrates that gene-based association approaches can provide higher capacity for future crop improvement to increase crop performance and adaptation to different environments.
Collapse
Affiliation(s)
- Tianhua He
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Kefei Chen
- SAGI-WEST, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | | | - Paul Telfer
- Australian Grain Technologies Pty Ltd (AGT), SA, Australia
| | - Sharon Westcott
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Hubei Jingzhou, China
- Correspondence:
| |
Collapse
|
14
|
Onda Y, Inoue K, Sawada Y, Shimizu M, Takahagi K, Uehara-Yamaguchi Y, Hirai MY, Garvin DF, Mochida K. Genetic Variation for Seed Metabolite Levels in Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20092348. [PMID: 31083584 PMCID: PMC6540107 DOI: 10.3390/ijms20092348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/27/2022] Open
Abstract
Metabolite composition and concentrations in seed grains are important traits of cereals. To identify the variation in the seed metabolotypes of a model grass, namely Brachypodium distachyon, we applied a widely targeted metabolome analysis to forty inbred lines of B. distachyon and examined the accumulation patterns of 183 compounds in the seeds. By comparing the metabolotypes with the population structure of these lines, we found signature metabolites that represent different accumulation patterns for each of the three B. distachyon subpopulations. Moreover, we found that thirty-seven metabolites exhibited significant differences in their accumulation between the lines Bd21 and Bd3-1. Using a recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21, we identified the quantitative trait loci (QTLs) linked with this variation in the accumulation of thirteen metabolites. Our metabolite QTL analysis illustrated that different genetic factors may presumably regulate the accumulation of 4-pyridoxate and pyridoxamine in vitamin B6 metabolism. Moreover, we found two QTLs on chromosomes 1 and 4 that affect the accumulation of an anthocyanin, chrysanthemin. These QTLs genetically interacted to regulate the accumulation of this compound. This study demonstrates the potential for metabolite QTL mapping in B. distachyon and provides new insights into the genetic dissection of metabolomic traits in temperate grasses.
Collapse
Affiliation(s)
- Yoshihiko Onda
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yuji Sawada
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Minami Shimizu
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Kotaro Takahagi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yukiko Uehara-Yamaguchi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Masami Y Hirai
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - David F Garvin
- Plant Science Research Unit, United States Department of Agriculture, Agricultural Research Service, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Institute of Plant Science and Resource, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
15
|
Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon. Nat Commun 2019; 10:812. [PMID: 30778068 PMCID: PMC6379408 DOI: 10.1038/s41467-019-08785-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
Timing of reproductive transition is precisely modulated by environmental cues in flowering plants. Facultative long-day plants, including Arabidopsis and temperate grasses, trigger rapid flowering in long-day conditions (LDs) and delay flowering under short-day conditions (SDs). Here, we characterize a SD-induced FLOWERING LOCUS T ortholog, FT-like 9 (FTL9), that promotes flowering in SDs but inhibits flowering in LDs in Brachypodium distachyon. Mechanistically, like photoperiod-inductive FT1, FTL9 can interact with FD1 to form a flowering activation complex (FAC), but the floral initiation efficiency of FTL9-FAC is much lower than that of FT1-FAC, thereby resulting in a positive role for FTL9 in promoting floral transition when FT1 is not expressed, but a dominant-negative role when FT1 accumulates significantly. We also find that CONSTANS 1 (CO1) can suppress FTL9 in addition to stimulate FT1 to enhance accelerated flowering under LDs. Our findings on the antagonistic functions of FTL9 under different day-length environments will contribute to understanding the multifaceted roles of FT in fine-tune modulation of photoperiodic flowering in plants. Plant flowering time is modified by day length. Here the authors show that the model grass Brachypodium distachyon expresses different homologs of FT in short and long days to produce floral activator complexes with altered activities contributing to photoperiod-dependence of flowering time.
Collapse
|
16
|
Woods D, Dong Y, Bouche F, Bednarek R, Rowe M, Ream T, Amasino R. A florigen paralog is required for short-day vernalization in a pooid grass. eLife 2019; 8:e42153. [PMID: 30618375 PMCID: PMC6324881 DOI: 10.7554/elife.42153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Perception of seasonal cues is critical for reproductive success in many plants. Exposure to winter cold is a cue that can confer competence to flower in the spring via a process known as vernalization. In certain grasses, exposure to short days is another winter cue that can lead to a vernalized state. In Brachypodium distachyon, we find that natural variation for the ability of short days to confer competence to flower is due to allelic variation of the FLOWERING LOCUS T (FT1) paralog FT-like9 (FTL9). An active FTL9 allele is required for the acquisition of floral competence, demonstrating a novel role for a member of the FT family of genes. Loss of the short-day vernalization response appears to have arisen once in B. distachyon and spread through diverse lineages indicating that this loss has adaptive value, perhaps by delaying spring flowering until the danger of cold damage to flowers has subsided.
Collapse
Affiliation(s)
- Daniel Woods
- Laboratory of GeneticsUniversity of WisconsinMadisonUnited States
- United States Department of Energy Great Lakes Bioenergy Research CenterUniversity of Wisconsin-MadisonMadisonUnited states
- Department of BiochemistryUniversity of WisconsinMadisonUnited states
| | - Yinxin Dong
- Department of BiochemistryUniversity of WisconsinMadisonUnited states
- College of Horticulture, Northwest A&F UniversityYanglingChina
| | - Frederic Bouche
- Department of BiochemistryUniversity of WisconsinMadisonUnited states
| | - Ryland Bednarek
- Department of BiochemistryUniversity of WisconsinMadisonUnited states
| | - Mark Rowe
- Department of BiochemistryUniversity of WisconsinMadisonUnited states
| | - Thomas Ream
- United States Department of Energy Great Lakes Bioenergy Research CenterUniversity of Wisconsin-MadisonMadisonUnited states
- Department of BiochemistryUniversity of WisconsinMadisonUnited states
| | - Richard Amasino
- Laboratory of GeneticsUniversity of WisconsinMadisonUnited States
- United States Department of Energy Great Lakes Bioenergy Research CenterUniversity of Wisconsin-MadisonMadisonUnited states
- Department of BiochemistryUniversity of WisconsinMadisonUnited states
| |
Collapse
|
17
|
Wilson PB, Streich JC, Murray KD, Eichten SR, Cheng R, Aitken NC, Spokas K, Warthmann N, Gordon SP, Vogel JP, Borevitz JO. Global Diversity of the Brachypodium Species Complex as a Resource for Genome-Wide Association Studies Demonstrated for Agronomic Traits in Response to Climate. Genetics 2019; 211:317-331. [PMID: 30446522 PMCID: PMC6325704 DOI: 10.1534/genetics.118.301589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023] Open
Abstract
The development of model systems requires a detailed assessment of standing genetic variation across natural populations. The Brachypodium species complex has been promoted as a plant model for grass genomics with translation to small grain and biomass crops. To capture the genetic diversity within this species complex, thousands of Brachypodium accessions from around the globe were collected and genotyped by sequencing. Overall, 1897 samples were classified into two diploid or allopolyploid species, and then further grouped into distinct inbred genotypes. A core set of diverse B. distachyon diploid lines was selected for whole genome sequencing and high resolution phenotyping. Genome-wide association studies across simulated seasonal environments was used to identify candidate genes and pathways tied to key life history and agronomic traits under current and future climatic conditions. A total of 8, 22, and 47 QTL were identified for flowering time, early vigor, and energy traits, respectively. The results highlight the genomic structure of the Brachypodium species complex, and the diploid lines provided a resource that allows complex trait dissection within this grass model species.
Collapse
Affiliation(s)
- Pip B Wilson
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Jared C Streich
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Kevin D Murray
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Steve R Eichten
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Riyan Cheng
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Nicola C Aitken
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
- Ecogenomics and Bioinformatics Lab, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Kurt Spokas
- Soil and Water Management, Agricultural Research Service, United States Department of Agricutlture (USDA), St. Paul, Minnesota 55108
| | - Norman Warthmann
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Sean P Gordon
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - John P Vogel
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Justin O Borevitz
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| |
Collapse
|
18
|
Xu S, Chong K. Remembering winter through vernalisation. NATURE PLANTS 2018; 4:997-1009. [PMID: 30478363 DOI: 10.1038/s41477-018-0301-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/12/2018] [Indexed: 05/10/2023]
Abstract
Vernalisation is the programmed physiological process in which prolonged cold-exposure provides competency to flower in plants; widely found in winter and biennial species, such as Arabidopsis, fruit trees, vegetables and wheat. This phenomenon is regulated by diverse genetic networks, and memory of vernalisation in a life cycle mainly depends on epigenetic mechanisms. However, less is known about how to count winter-dosage for flowering in plants. Here, we compare the vernalisation genetic framework between the dicots Arabidopsis, temperate grasses, wheat, barley and Brachypodium. We discuss vernalisation mechanisms involving crosstalk between phosphorylation and O-GlcNAcylation modification of key proteins, and epigenetic modifications of the key gene VRN1 in wheat. We also highlight the potential evolutionary origins of vernalisation in various species. Current progress toward understanding the regulation of vernalisation requirements provides insight that will inform the design of molecular breeding strategies for winter crops.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Taylor M, Tornqvist CE, Zhao X, Grabowski P, Doerge R, Ma J, Volenec J, Evans J, Ramstein GP, Sanciangco MD, Buell CR, Casler MD, Jiang Y. Genome-Wide Association Study in Pseudo-F 2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates. FRONTIERS IN PLANT SCIENCE 2018; 9:1250. [PMID: 30271414 PMCID: PMC6146286 DOI: 10.3389/fpls.2018.01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/06/2018] [Indexed: 06/01/2023]
Abstract
Switchgrass (Panicum virgatum) is a native prairie grass and valuable bio-energy crop. The physiological change from juvenile to reproductive adult can draw important resources away from growth into producing reproductive structures, thereby limiting the growth potential of early flowering plants. Delaying the flowering of switchgrass is one approach by which to increase total biomass. The objective of this research was to identify genetic variants and candidate genes for controlling heading and anthesis in segregating switchgrass populations. Four pseudo-F2 populations (two pairs of reciprocal crosses) were developed from lowland (late flowering) and upland (early flowering) ecotypes, and heading and anthesis dates of these populations were collected in Lafayette, IN and DeKalb, IL in 2015 and 2016. Across 2 years, there was a 34- and 73-day difference in heading and a 52- and 75-day difference in anthesis at the Lafayette and DeKalb locations, respectively. A total of 37,901 single nucleotide polymorphisms obtained by exome capture sequencing of the populations were used in a genome-wide association study (GWAS) that identified five significant signals at three loci for heading and two loci for anthesis. Among them, a homolog of FLOWERING LOCUS T on chromosome 5b associated with heading date was identified at the Lafayette location across 2 years. A homolog of ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5, a light modulator in the circadian clock associated with heading date was detected on chromosome 8a across locations and years. These results demonstrate that genetic variants related to floral development could lend themselves to a long-term goal of developing late flowering varieties of switchgrass with high biomass yield.
Collapse
Affiliation(s)
- Megan Taylor
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Carl-Erik Tornqvist
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Xiongwei Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Paul Grabowski
- U.S. Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service, Madison, WI, United States
| | - Rebecca Doerge
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- Department of Biology and Department of Statistics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Jeffrey Volenec
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Joseph Evans
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Guillaume P. Ramstein
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Millicent D. Sanciangco
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Michael D. Casler
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
- U.S. Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service, Madison, WI, United States
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
20
|
Huan Q, Mao Z, Chong K, Zhang J. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. THE NEW PHYTOLOGIST 2018; 219:1373-1387. [PMID: 30063801 DOI: 10.1111/nph.15288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/20/2018] [Indexed: 05/21/2023]
Abstract
Vernalization, the requirement of plants for long-term exposure to low environmental temperature for flowering, is an epigenetic phenomenon. Histone modification regulation has been revealed in vernalization, but is limited to key genes. Now, we know that VRN1 is epigenetically critical for monocots. Genome-wide analysis is still unavailable, however. We performed chromatin immunoprecipitation-sequencing for H3K4me3/H3K27me3 in Brachypodium distachyon to obtain a global view of histone modifications in vernalization on a genome-wide scale and for different pathways/genes. Our data showed that H3K4me3 and H3K27me3 play distinct roles in vernalization. Unlike H3K4me3, H3K27me3 exhibited regional regulation, showed main regulation targets in vernalization and contributed to epigenetic memory. For genes in four flowering regulation pathways, only FT2 (functional ortholog of VRN3 in B. distachyon) and VRN1 showed coordinated changes in H3K4me3/H3K27me3. The epigenetic response at VRN3 was weaker under short-day than under long-day conditions. VRN3 was revealed as an epigenetic regulation point integrating vernalization and day length signals. We globally identified genes maintaining vernalization-induced epigenetic changes. Most of these genes showed dose-dependent vernalization responses, revealing a quantitative 'recording system' for vernalization. Our studies shed light on the epigenetic role of VRN3 and H3K4me3/H3K27me3 in vernalization and reveal genes underlying epigenetic memory, laying the foundation for further study.
Collapse
Affiliation(s)
- Qing Huan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiwei Mao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
21
|
Lomax A, Woods DP, Dong Y, Bouché F, Rong Y, Mayer KS, Zhong X, Amasino RM. An ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 is required for proper flowering in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:871-882. [PMID: 29314414 DOI: 10.1111/tpj.13815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 05/22/2023]
Abstract
Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. In Arabidopsis thaliana, vernalization leads to the stable repression of the floral repressor FLOWERING LOCUS C via chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter, VERNALIZATION 1 (VRN1). From a screen for mutants with a reduced vernalization requirement in the model grass Brachypodium distachyon, we identified two recessive alleles of ENHANCER OF ZESTE-LIKE 1 (EZL1). EZL1 is orthologous to A. thaliana CURLY LEAF 1, a gene that encodes the catalytic subunit of PRC2. B. distachyon ezl1 mutants flower rapidly without vernalization in long-day (LD) photoperiods; thus, EZL1 is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies in ezl1 revealed mis-regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss of EZL1 results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution to PRC2 activity in B. distachyon. Furthermore, in ezl1 mutants, the flowering genes VRN1 and AGAMOUS (AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNA knock-down of either VRN1 or AG in ezl1-1 mutants partially restores wild-type flowering behavior in non-vernalized plants, suggesting that ectopic expression in ezl1 mutants may contribute to the rapid-flowering phenotype.
Collapse
Affiliation(s)
- Aaron Lomax
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Daniel P Woods
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yinxin Dong
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Frédéric Bouché
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Rong
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Kevin S Mayer
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Richard M Amasino
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Tränkner C, Pfeiffer N, Kirchhoff M, Kopisch-Obuch FJ, van Dijk H, Schilhabel M, Hasler M, Emrani N. Deciphering the complex nature of bolting time regulation in Beta vulgaris. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1649-1667. [PMID: 28478574 DOI: 10.1007/s00122-017-2916-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Only few genetic loci are sufficient to increase the variation of bolting time in Beta vulgaris dramatically, regarding vernalization requirement, seasonal bolting time and reproduction type. Beta species show a wide variation of bolting time regarding the year of first reproduction, seasonal bolting time and the number of reproduction cycles. To elucidate the genetics of bolting time control, we used three F3 mapping populations that were produced by crossing a semelparous, annual sugar beet with iteroparous, vernalization-requiring wild beet genotypes. The semelparous plants died after reproduction, whereas iteroparous plants reproduced at least twice. All populations segregated for vernalization requirement, seasonal bolting time and the number of reproduction cycles. We found that vernalization requirement co-segregated with the bolting locus B on chromosome 2 and was inherited independently from semel- or iteroparous reproduction. Furthermore, we found that seasonal bolting time is a highly heritable trait (h 2 > 0.84), which is primarily controlled by two major QTL located on chromosome 4 and 9. Late bolting alleles of both loci act in a partially recessive manner and were identified in both iteroparous pollinators. We observed an additive interaction of both loci for bolting delay. The QTL region on chromosome 4 encompasses the floral promoter gene BvFT2, whereas the QTL on chromosome 9 co-localizes with the BR 1 locus, which controls post-winter bolting resistance. Our findings are applicable for marker-assisted sugar beet breeding regarding early bolting to accelerate generation cycles and late bolting to develop bolting-resistant spring and winter beets. Unexpectedly, one population segregated also for dwarf growth that was found to be controlled by a single locus on chromosome 9.
Collapse
Affiliation(s)
- Conny Tränkner
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
- Leibniz Institute of Vegetable and Ornamental Crops, Kühnhäuser Straße 101, 99090, Erfurt, Germany.
| | - Nina Pfeiffer
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- KWS LOCHOW GMBH, Zuchtstation Wetze, 37154, Northeim, Germany
| | - Martin Kirchhoff
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Nordsaat Saatzucht GmbH, Böhnshauser Straße 1, 38895, Langenstein, Germany
| | - Friedrich J Kopisch-Obuch
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- KWS SAAT SE, Grimsehlstraße 31, 37555, Einbeck, Germany
| | - Henk van Dijk
- Universite Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, University of Kiel, Hermann-Rodewald-Straße 9, 24098, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
23
|
Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. Proc Natl Acad Sci U S A 2017; 114:6623-6628. [PMID: 28584114 DOI: 10.1073/pnas.1700536114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A requirement for vernalization, the process by which prolonged cold exposure provides competence to flower, is an important adaptation to temperate climates that ensures flowering does not occur before the onset of winter. In temperate grasses, vernalization results in the up-regulation of VERNALIZATION1 (VRN1) to establish competence to flower; however, little is known about the mechanism underlying repression of VRN1 in the fall season, which is necessary to establish a vernalization requirement. Here, we report that a plant-specific gene containing a bromo-adjacent homology and transcriptional elongation factor S-II domain, which we named REPRESSOR OF VERNALIZATION1 (RVR1), represses VRN1 before vernalization in Brachypodium distachyon That RVR1 is upstream of VRN1 is supported by the observations that VRN1 is precociously elevated in an rvr1 mutant, resulting in rapid flowering without cold exposure, and the rapid-flowering rvr1 phenotype is dependent on VRN1 The precocious VRN1 expression in rvr1 is associated with reduced levels of the repressive chromatin modification H3K27me3 at VRN1, which is similar to the reduced VRN1 H3K27me3 in vernalized plants. Furthermore, the transcriptome of vernalized wild-type plants overlaps with that of nonvernalized rvr1 plants, indicating loss of rvr1 is similar to the vernalized state at a molecular level. However, loss of rvr1 results in more differentially expressed genes than does vernalization, indicating that RVR1 may be involved in processes other than vernalization despite a lack of any obvious pleiotropy in the rvr1 mutant. This study provides an example of a role for this class of plant-specific genes.
Collapse
|
24
|
Bettgenhaeuser J, Corke FMK, Opanowicz M, Green P, Hernández-Pinzón I, Doonan JH, Moscou MJ. Natural Variation in Brachypodium Links Vernalization and Flowering Time Loci as Major Flowering Determinants. PLANT PHYSIOLOGY 2017; 173:256-268. [PMID: 27650449 PMCID: PMC5210709 DOI: 10.1104/pp.16.00813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/18/2016] [Indexed: 05/20/2023]
Abstract
The domestication of plants is underscored by the selection of agriculturally favorable developmental traits, including flowering time, which resulted in the creation of varieties with altered growth habits. Research into the pathways underlying these growth habits in cereals has highlighted the role of three main flowering regulators: VERNALIZATION1 (VRN1), VRN2, and FLOWERING LOCUS T (FT). Previous reverse genetic studies suggested that the roles of VRN1 and FT are conserved in Brachypodium distachyon yet identified considerable ambiguity surrounding the role of VRN2 To investigate the natural diversity governing flowering time pathways in a nondomesticated grass, the reference B. distachyon accession Bd21 was crossed with the vernalization-dependent accession ABR6. Resequencing of ABR6 allowed the creation of a single-nucleotide polymorphism-based genetic map at the F4 stage of the mapping population. Flowering time was evaluated in F4:5 families in five environmental conditions, and three major loci were found to govern flowering time. Interestingly, two of these loci colocalize with the B. distachyon homologs of the major flowering pathway genes VRN2 and FT, whereas no linkage was observed at VRN1 Characterization of these candidates identified sequence and expression variation between the two parental genotypes, which may explain the contrasting growth habits. However, the identification of additional quantitative trait loci suggests that greater complexity underlies flowering time in this nondomesticated system. Studying the interaction of these regulators in B. distachyon provides insights into the evolutionary context of flowering time regulation in the Poaceae as well as elucidates the way humans have utilized the natural variation present in grasses to create modern temperate cereals.
Collapse
Affiliation(s)
- Jan Bettgenhaeuser
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (J.B., P.G., I.H.-P., M.J.M.)
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom (F.M.K.C., J.H.D.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (F.M.K.C., M.O., J.H.D.); and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (M.J.M.)
| | - Fiona M K Corke
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (J.B., P.G., I.H.-P., M.J.M.)
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom (F.M.K.C., J.H.D.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (F.M.K.C., M.O., J.H.D.); and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (M.J.M.)
| | - Magdalena Opanowicz
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (J.B., P.G., I.H.-P., M.J.M.)
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom (F.M.K.C., J.H.D.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (F.M.K.C., M.O., J.H.D.); and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (M.J.M.)
| | - Phon Green
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (J.B., P.G., I.H.-P., M.J.M.)
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom (F.M.K.C., J.H.D.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (F.M.K.C., M.O., J.H.D.); and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (M.J.M.)
| | - Inmaculada Hernández-Pinzón
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (J.B., P.G., I.H.-P., M.J.M.)
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom (F.M.K.C., J.H.D.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (F.M.K.C., M.O., J.H.D.); and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (M.J.M.)
| | - John H Doonan
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (J.B., P.G., I.H.-P., M.J.M.);
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom (F.M.K.C., J.H.D.);
- John Innes Centre, Norwich NR4 7UH, United Kingdom (F.M.K.C., M.O., J.H.D.); and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (M.J.M.)
| | - Matthew J Moscou
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (J.B., P.G., I.H.-P., M.J.M.);
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom (F.M.K.C., J.H.D.);
- John Innes Centre, Norwich NR4 7UH, United Kingdom (F.M.K.C., M.O., J.H.D.); and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (M.J.M.)
| |
Collapse
|
25
|
Bouché F, Woods DP, Amasino RM. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. PLANT PHYSIOLOGY 2017; 173:27-35. [PMID: 27756819 PMCID: PMC5210730 DOI: 10.1104/pp.16.01322] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Molecular mechanisms contribute to the memory of winter in different plant groups.
Collapse
Affiliation(s)
- Frédéric Bouché
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Daniel P Woods
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| |
Collapse
|
26
|
Amasino RM, Cheung AY, Dresselhaus T, Kuhlemeier C. Focus on Flowering and Reproduction. PLANT PHYSIOLOGY 2017; 173:1-4. [PMID: 28049854 PMCID: PMC5210767 DOI: 10.1104/pp.16.01867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Richard M Amasino
- Guest Editor
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Alice Y Cheung
- Associate Editor
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas Dresselhaus
- Guest Editor
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cris Kuhlemeier
- Monitoring Editor
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| |
Collapse
|