1
|
Mei Q, Li M, Chen J, Yang J, Duan D, Yang J, Ma F, Mao K. Genome-wide analyses of Ariadne family genes reveal their involvement in abiotic stress responses in apple. Gene 2025; 935:149076. [PMID: 39505090 DOI: 10.1016/j.gene.2024.149076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
E3 ligases are essential for ubiquitination and play a role in regulating various aspects of eukaryotic life. Ariadne (ARI) proteins, a subfamily of RBR (RING-between-RING) proteins, have been recognized as a new class of RING-finger E3 ligases. Recent research has shed light on their potential involvement in plants' responses to abiotic stress. However, comprehensive studies on ARI genes in apple (Malus domestica) are still lacking. This study identified ten MdARI genes in the apple genome, and examined intraspecific and interspecific collinearity to explore the evolutionary relationships of ARI family members. Phylogenetic analyses classified MdARIs into two subfamilies (A and B), and by integrating gene structure, conserved motifs, and sequence comparison results, subfamily B was further divided into two subgroups (I and II). Tissue expression analyses revealed varied expression patterns of MdARI genes in different tissues, and subcellular localization showed that MdARI1-1, MdARI1-2, and MdARI9-1 were located in the nucleus, while the other seven MdARIs were distributed throughout the cell. Analyses of promoter cis-elements and expression patterns under cold, salt, and drought treatments indicated the involvement of MdARIs in abiotic stress responses. Several proteins crucial to the plant stress response were predicted to be potential MdARIs-interacting proteins based on the protein interaction network. Additionally, the interaction between UBC11 (E2) and MdARI7-2 was confirmed by a yeast two-hybrid (Y2H) experiment, suggesting that MdARI7-2 may function as an E3. These findings will greatly benefit future research on the role and mechanisms of ARI proteins in apple stress response.
Collapse
Affiliation(s)
- Quanlin Mei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxin Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Ji MG, Khakurel D, Hwang JW, Nguyen CC, Nam B, Shin GI, Jeong SY, Ahn G, Cha JY, Lee SH, Park HJ, Kim MG, Yun DJ, Rubio V, Kim WY. The E3 ubiquitin ligase COP1 regulates salt tolerance via GIGANTEA degradation in roots. PLANT, CELL & ENVIRONMENT 2024; 47:3241-3252. [PMID: 38741272 DOI: 10.1111/pce.14946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Excess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium-dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt-induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome-dependent degradation of GI exclusively in the roots. Salt stress-induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt-stress conditions. Notably, the gi-201 cop1-4 double mutant shows an enhanced tolerance to salt stress similar to gi-201, indicating that GI is epistatic to COP1 under salt-stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1-mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt-tolerant crops.
Collapse
Affiliation(s)
- Myung Geun Ji
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhruba Khakurel
- Department of Biology, Graduate School, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Won Hwang
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Cam Chau Nguyen
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Byoungwoo Nam
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyeongik Ahn
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Ho Lee
- Department of Biology, Graduate School, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Min Gab Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju, Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Vicente Rubio
- Plant Molecular Genetics Department, Centro Nacionalde Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Zhang N, Wei CQ, Xu DJ, Deng ZP, Zhao YC, Ai LF, Sun Y, Wang ZY, Zhang SW. Photoregulatory protein kinases fine-tune plant photomorphogenesis by directing a bifunctional phospho-code on HY5 in Arabidopsis. Dev Cell 2024; 59:1737-1749.e7. [PMID: 38677285 DOI: 10.1016/j.devcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Photomorphogenesis is a light-dependent plant growth and development program. As the core regulator of photomorphogenesis, ELONGATED HYPOCOTYL 5 (HY5) is affected by dynamic changes in its transcriptional activity and protein stability; however, little is known about the mediators of these processes. Here, we identified PHOTOREGULATORY PROTEIN KINASE 1 (PPK1), which interacts with and phosphorylates HY5 in Arabidopsis, as one such mediator. The phosphorylation of HY5 by PPK1 is essential to establish high-affinity binding with B-BOX PROTEIN 24 (BBX24) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which inhibit the transcriptional activity and promote the degradation of HY5, respectively. As such, PPKs regulate not only the binding of HY5 to its target genes under light conditions but also HY5 degradation when plants are transferred from light to dark. Our data identify a PPK-mediated phospho-code on HY5 that integrates the molecular mechanisms underlying the regulation of HY5 to precisely control plant photomorphogenesis.
Collapse
Affiliation(s)
- Nan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuang-Qi Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Da-Jin Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Ping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ya-Chao Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lian-Feng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
4
|
Willige BC, Yoo CY, Saldierna Guzmán JP. What is going on inside of phytochrome B photobodies? THE PLANT CELL 2024; 36:2065-2085. [PMID: 38511271 PMCID: PMC11132900 DOI: 10.1093/plcell/koae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024]
Abstract
Plants exhibit an enormous phenotypic plasticity to adjust to changing environmental conditions. For this purpose, they have evolved mechanisms to detect and measure biotic and abiotic factors in their surroundings. Phytochrome B exhibits a dual function, since it serves as a photoreceptor for red and far-red light as well as a thermosensor. In 1999, it was first reported that phytochromes not only translocate into the nucleus but also form subnuclear foci upon irradiation by red light. It took more than 10 years until these phytochrome speckles received their name; these foci were coined photobodies to describe unique phytochrome-containing subnuclear domains that are regulated by light. Since their initial discovery, there has been much speculation about the significance and function of photobodies. Their presumed roles range from pure experimental artifacts to waste deposits or signaling hubs. In this review, we summarize the newest findings about the meaning of phyB photobodies for light and temperature signaling. Recent studies have established that phyB photobodies are formed by liquid-liquid phase separation via multivalent interactions and that they provide diverse functions as biochemical hotspots to regulate gene expression on multiple levels.
Collapse
Affiliation(s)
- Björn Christopher Willige
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Chan Yul Yoo
- School of Biological Sciences, University of Utah, UT 84112, USA
| | - Jessica Paola Saldierna Guzmán
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
5
|
Kwon Y, Kim C, Choi G. Phytochrome B photobody components. THE NEW PHYTOLOGIST 2024; 242:909-915. [PMID: 38477037 DOI: 10.1111/nph.19675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Phytochrome B (phyB) is a red and far-red photoreceptor that promotes light responses. Upon photoactivation, phyB enters the nucleus and forms a molecular condensate called a photobody through liquid-liquid phase separation. Phytochrome B photobody comprises phyB, the main scaffold molecule, and at least 37 client proteins. These clients belong to diverse functional categories enriched with transcription regulators, encompassing both positive and negative light signaling factors, with the functional bias toward the negative factors. The functionally diverse clients suggest that phyB photobody acts either as a trap to capture proteins, including negatively acting transcription regulators, for processes such as sequestration, modification, or degradation or as a hub where proteins are brought into close proximity for interaction in a light-dependent manner.
Collapse
Affiliation(s)
- Yongmin Kwon
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Chanhee Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
6
|
Qin C, Li YH, Li D, Zhang X, Kong L, Zhou Y, Lyu X, Ji R, Wei X, Cheng Q, Jia Z, Li X, Wang Q, Wang Y, Huang W, Yang C, Liu L, Wang X, Xing G, Hu G, Shan Z, Wang R, Li H, Li H, Zhao T, Liu J, Lu Y, Hu X, Kong F, Qiu LJ, Liu B. PH13 improves soybean shade traits and enhances yield for high-density planting at high latitudes. Nat Commun 2023; 14:6813. [PMID: 37884530 PMCID: PMC10603158 DOI: 10.1038/s41467-023-42608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Shading in combination with extended photoperiods can cause exaggerated stem elongation (ESE) in soybean, leading to lodging and reduced yields when planted at high-density in high-latitude regions. However, the genetic basis of plant height in adaptation to these regions remains unclear. Here, through a genome-wide association study, we identify a plant height regulating gene on chromosome 13 (PH13) encoding a WD40 protein with three main haplotypes in natural populations. We find that an insertion of a Ty1/Copia-like retrotransposon in the haplotype 3 leads to a truncated PH13H3 with reduced interaction with GmCOP1s, resulting in accumulation of STF1/2, and reduced plant height. In addition, PH13H3 allele has been strongly selected for genetic improvement at high latitudes. Deletion of both PH13 and its paralogue PHP can prevent shade-induced ESE and allow high-density planting. This study provides insights into the mechanism of shade-resistance and offers potential solutions for breeding high-yielding soybean cultivar for high-latitude regions.
Collapse
Affiliation(s)
- Chao Qin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ying-Hui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Delin Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueru Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ronghuan Ji
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuzhi Wei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qican Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiwei Jia
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Xiaojiao Li
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Qiang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, China
| | - Yueqiang Wang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, 130033, China
| | - Wen Huang
- Tonghua Academy of Agricultural Sciences, Tonghua, Jilin, 135007, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050035, China
| | - Like Liu
- Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, Jiangsu, 221131, China
| | - Guangnan Xing
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guoyu Hu
- Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Zhihui Shan
- Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, Hubei, 430062, China
| | - Ruizhen Wang
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Lu
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Xiping Hu
- Beidahuang KenFeng Seed Co., Ltd, Binxi Economic Development Zone, Harbin, Heilongjiang, 150090, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Li-Juan Qiu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Fraikin GY, Belenikina NS, Rubin AB. Molecular Bases of Signaling Processes Regulated by Cryptochrome Sensory Photoreceptors in Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:770-782. [PMID: 37748873 DOI: 10.1134/s0006297923060056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The blue-light sensors, cryptochromes, compose the extensive class of flavoprotein photoreceptors, regulating signaling processes in plants underlying their development, growth, and metabolism. In several algae, cryptochromes may act not only as sensory photoreceptors but also as photolyases, catalyzing repair of the UV-induced DNA lesions. Cryptochromes bind FAD as the chromophore at the photolyase homologous region (PHR) domain and contain the cryptochrome C-terminal extension (CCE), which is absent in photolyases. Photosensory process in cryptochrome is initiated by photochemical chromophore conversions, including formation of the FAD redox forms. In the state with the chromophore reduced to neutral radical (FADH×), the photoreceptor protein undergoes phosphorylation, conformational changes, and disengagement from the PHR domain and CCE with subsequent formation of oligomers of cryptochrome molecules. Photooligomerization is a structural basis of the functional activities of cryptochromes, since it ensures formation of their complexes with a variety of signaling proteins, including transcriptional factors and regulators of transcription. Interactions in such complexes change the protein signaling activities, leading to regulation of gene expression and plant photomorphogenesis. In recent years, multiple papers, reporting novel, more detailed information about the molecular mechanisms of above-mentioned processes were published. The present review mainly focuses on analysis of the data contained in these publications, particularly regarding structural aspects of the cryptochrome transitions into photoactivated states and regulatory signaling processes mediated by the cryptochrome photoreceptors in plants.
Collapse
Affiliation(s)
| | | | - Andrey B Rubin
- Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Liu Y, Wang Q, Abbas F, Zhou Y, He J, Fan Y, Yu R. Light Regulation of LoCOP1 and Its Role in Floral Scent Biosynthesis in Lilium 'Siberia'. PLANTS (BASEL, SWITZERLAND) 2023; 12:2004. [PMID: 37653921 PMCID: PMC10223427 DOI: 10.3390/plants12102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 09/02/2023]
Abstract
Light is an important environmental signal that governs plant growth, development, and metabolism. Constitutive photomorphogenic 1 (COP1) is a light signaling component that plays a vital role in plant light responses. We isolated the COP1 gene (LoCOP1) from the petals of Lilium 'Siberia' and investigated its function. The LoCOP1 protein was found to be the most similar to Apostasia shenzhenica COP1. LoCOP1 was found to be an important factor located in the nucleus and played a negative regulatory role in floral scent production and emission using the virus-induced gene silencing (VIGS) approach. The yeast two-hybrid, β-galactosidase, and bimolecular fluorescence complementation (BiFC) assays revealed that LoCOP1 interacts with LoMYB1 and LoMYB3. Furthermore, light modified both the subcellular distribution of LoCOP1 and its interactions with LoMYB1 and MYB3 in onion cells. The findings highlighted an important regulatory mechanism in the light signaling system that governs scent emission in Lilium 'Siberia' by the ubiquitination and degradation of transcription factors via the proteasome pathway.
Collapse
Affiliation(s)
- Yang Liu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Qin Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Jingjuan He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Stafen CF, Kleine-Vehn J, Maraschin FDS. Signaling events for photomorphogenic root development. TRENDS IN PLANT SCIENCE 2022; 27:1266-1282. [PMID: 36057533 DOI: 10.1016/j.tplants.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A germinating seedling incorporates environmental signals such as light into developmental outputs. Light is not only a source of energy, but also a central coordinative signal in plants. Traditionally, most research focuses on aboveground organs' response to light; therefore, our understanding of photomorphogenesis in roots is relatively scarce. However, root development underground is highly responsive to light signals from the shoot and understanding these signaling mechanisms will give a better insight into early seedling development. Here, we review the central light signaling hubs and their role in root growth promotion of Arabidopsis thaliana seedlings.
Collapse
Affiliation(s)
- Cássia Fernanda Stafen
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Chair of Molecular Plant Physiology (MoPP), University of Freiburg, Freiburg, Germany; Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Felipe Dos Santos Maraschin
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Chen Q, Wang W, Zhang Y, Zhan Q, Liu K, Botella JR, Bai L, Song C. Abscisic acid-induced cytoplasmic translocation of constitutive photomorphogenic 1 enhances reactive oxygen species accumulation through the HY5-ABI5 pathway to modulate seed germination. PLANT, CELL & ENVIRONMENT 2022; 45:1474-1489. [PMID: 35199338 PMCID: PMC9311139 DOI: 10.1111/pce.14298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/05/2022] [Indexed: 05/13/2023]
Abstract
Seed germination is a physiological process regulated by multiple factors. Abscisic acid (ABA) can inhibit seed germination to improve seedling survival under conditions of abiotic stress, and this process is often regulated by light signals. Constitutive photomorphogenic 1 (COP1) is an upstream core repressor of light signals and is involved in several ABA responses. Here, we demonstrate that COP1 is a negative regulator of the ABA-mediated inhibition of seed germination. Disruption of COP1 enhanced Arabidopsis seed sensitivity to ABA and increased reactive oxygen species (ROS) levels. In seeds, ABA induced the translocation of COP1 to the cytoplasm, resulting in enhanced ABA-induced ROS levels. Genetic evidence indicated that HY5 and ABI5 act downstream of COP1 in the ABA-mediated inhibition of seed germination. ABA-induced COP1 cytoplasmic localization increased HY5 and ABI5 protein levels in the nucleus, leading to increased expression of ABI5 target genes and ROS levels in seeds. Together, our results reveal that ABA-induced cytoplasmic translocation of COP1 activates the HY5-ABI5 pathway to promote the expression of ABA-responsive genes and the accumulation of ROS during ABA-mediated inhibition of seed germination. These findings enhance the role of COP1 in the ABA signal transduction pathway.
Collapse
Affiliation(s)
- Qing‐Bin Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Jing Wang
- Department of Biology and Food ScienceShangqiu Normal UniversityShangqiuChina
| | - Yue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Qi‐Di Zhan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Kang Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ling Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
11
|
Ponnu J, Hoecker U. Signaling Mechanisms by Arabidopsis Cryptochromes. FRONTIERS IN PLANT SCIENCE 2022; 13:844714. [PMID: 35295637 PMCID: PMC8918993 DOI: 10.3389/fpls.2022.844714] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 05/29/2023]
Abstract
Cryptochromes (CRYs) are blue light photoreceptors that regulate growth, development, and metabolism in plants. In Arabidopsis thaliana (Arabidopsis), CRY1 and CRY2 possess partially redundant and overlapping functions. Upon exposure to blue light, the monomeric inactive CRYs undergo phosphorylation and oligomerization, which are crucial to CRY function. Both the N- and C-terminal domains of CRYs participate in light-induced interaction with multiple signaling proteins. These include the COP1/SPA E3 ubiquitin ligase, several transcription factors, hormone signaling intermediates and proteins involved in chromatin-remodeling and RNA N6 adenosine methylation. In this review, we discuss the mechanisms of Arabidopsis CRY signaling in photomorphogenesis and the recent breakthroughs in Arabidopsis CRY research.
Collapse
Affiliation(s)
| | - Ute Hoecker
- *Correspondence: Ute Hoecker, , orcid.org/0000-0002-5636-9777
| |
Collapse
|
12
|
Schwenk P, Hiltbrunner A. Phytochrome A Mediates the Disassembly of Processing Bodies in Far-Red Light. FRONTIERS IN PLANT SCIENCE 2022; 13:828529. [PMID: 35283917 PMCID: PMC8905148 DOI: 10.3389/fpls.2022.828529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
Phytochromes are red- and far-red light receptors that control the growth and development of plants, enabling them to respond adequately to changing light conditions. It has been shown that halted mRNAs stored in RNA granules called processing bodies are released upon light perception and contribute to the adaptation to the light environment. However, the photophysiological background of this process is largely unknown. We found that light of different wavelengths can trigger the disassembly of processing bodies in a dose- and time-dependent manner. We show that phytochromes control this process in red- and far-red light and that cytoplasmic phytochrome A is sufficient and necessary for the far-red light-induced disassembly of processing bodies. This adds a novel, unexpected cytoplasmic function to the processes controlled by phytochrome A. Overall, our findings suggest a role of phytochromes in the control of translationally halted mRNAs that are stored in processing bodies. We expect our findings to facilitate understanding of how light and environmental cues control the assembly and disassembly of processing bodies, which could have broader implications for the regulation of non-membranous organelles in general.
Collapse
Affiliation(s)
- Philipp Schwenk
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Zhang L, Li T, Su S, Peng H, Li S, Li K, Ji L, Xing Y, Zhang J, Du X, Bian M, Liao Y, Yang Z, Zuo Z. Functions of COP1/SPA E3 Ubiquitin Ligase Mediated by MpCRY in the Liverwort Marchantia polymorpha under Blue Light. Int J Mol Sci 2021; 23:ijms23010158. [PMID: 35008588 PMCID: PMC8745113 DOI: 10.3390/ijms23010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
COP1/SPA1 complex in Arabidopsis inhibits photomorphogenesis through the ubiquitination of multiple photo-responsive transcription factors in darkness, but such inhibiting function of COP1/SPA1 complex would be suppressed by cryptochromes in blue light. Extensive studies have been conducted on these mechanisms in Arabidopsis whereas little attention has been focused on whether another branch of land plants bryophyte utilizes this blue-light regulatory pathway. To study this problem, we conducted a study in the liverwort Marchantia polymorpha and obtained a MpSPA knock-out mutant, in which Mpspa exhibits the phenotype of an increased percentage of individuals with asymmetrical thallus growth, similar to MpCRY knock-out mutant. We also verified interactions of MpSPA with MpCRY (in a blue light-independent way) and with MpCOP1. Concomitantly, both MpSPA and MpCOP1 could interact with MpHY5, and MpSPA can promote MpCOP1 to ubiquitinate MpHY5 but MpCRY does not regulate the ubiquitination of MpHY5 by MpCOP1/MpSPA complex. These data suggest that COP1/SPA ubiquitinating HY5 is conserved in Marchantia polymorpha, but dissimilar to CRY in Arabidopsis, MpCRY is not an inhibitor of this process under blue light.
Collapse
Affiliation(s)
- Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
| | - Tianhong Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
| | - Shengzhong Su
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (H.P.); (Y.L.)
| | - Sudi Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
| | - Ke Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (L.J.); (Y.X.)
| | - Luyao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (L.J.); (Y.X.)
| | - Yaoyun Xing
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (L.J.); (Y.X.)
| | - Junchuan Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (H.P.); (Y.L.)
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
- Correspondence: (Z.Y.); (Z.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Z.); (T.L.); (S.S.); (S.L.); (J.Z.); (X.D.); (M.B.)
- Correspondence: (Z.Y.); (Z.Z.)
| |
Collapse
|
14
|
Schenk T, Trimborn L, Chen S, Schenkel C, Hoecker U. Light-induced degradation of SPA2 via its N-terminal kinase domain is required for photomorphogenesis. PLANT PHYSIOLOGY 2021; 187:276-288. [PMID: 33822236 PMCID: PMC8418447 DOI: 10.1093/plphys/kiab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and members of the SUPPRESSOR OF PHYTOCHROMEA-105 (SPA) protein family form an E3 ubiquitin ligase that suppresses light signaling in darkness by polyubiquitinating positive regulators of the light response. COP1/SPA is inactivated by light to allow photomorphogenesis to proceed. Mechanisms of inactivation include light-induced degradation of SPA1 and, in particular, SPA2, corresponding to a particularly efficient inactivation of COP1/SPA2 by light. Here, we show that SPA3 and SPA4 proteins are stable in the light, indicating that light-induced destabilization is specific to SPA1 and SPA2, possibly related to the predominant function of SPA1 and SPA2 in dark-grown etiolating seedlings. SPA2 degradation involves cullin and the COP10-DEETIOLATED-DAMAGED-DNA BINDING PROTEIN (DDB1) CDD complex, besides COP1. Consistent with this finding, light-induced SPA2 degradation required the DDB1-interacting Trp-Asp (WD)-repeat domain of SPA2. Deletion of the N-terminus of SPA2 containing the kinase domain led to strong stabilization of SPA2 in darkness and fully abolished light-induced degradation of SPA2. This prevented seedling de-etiolation even in very strong far-red and blue light and reduced de-etiolation in red light, indicating destabilization of SPA2 through its N-terminal domain is essential for light response. SPA2 is exclusively destabilized by phytochrome A in far-red and blue light. However, deletion of the N-terminal domain of SPA2 did not abolish SPA2-phytochrome A interaction in yeast nor in vivo. Our domain mapping suggests there are two SPA2-phytochrome A interacting domains, the N-terminal domain and the WD-repeat domain. Conferring a light-induced SPA2-phyA interaction only via the WD-repeat domain may thus not lead to COP1/SPA2 inactivation.
Collapse
Affiliation(s)
- Tobias Schenk
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Laura Trimborn
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Song Chen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Christian Schenkel
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| |
Collapse
|
15
|
Wang W, Paik I, Kim J, Hou X, Sung S, Huq E. Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:2311-2326. [PMID: 33686674 PMCID: PMC8641065 DOI: 10.1111/nph.17332] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 05/25/2023]
Abstract
Elongated hypocotyl5 (HY5) is a key transcription factor that promotes photomorphogenesis. Constitutive photomorphogenic1 (COP1)-Suppressor of phytochrome A-105 (SPA) E3 ubiquitin ligase complex promotes ubiquitination and degradation of HY5 to repress photomorphogenesis in darkness. HY5 is also regulated by phosphorylation at serine 36 residue. However, the kinase responsible for phosphorylation of HY5 remains unknown. Here, using extensive in vitro and in vivo biochemical, genetic, and photobiological techniques, we have identified a new kinase that phosphorylates HY5 and demonstrated the significance of phosphorylation of HY5 in Arabidopsis thaliana. We show that SPA proteins are the missing kinases necessary for HY5 phosphorylation. SPAs can directly phosphorylate HY5 in vitro, and the phosphorylated HY5 is absent in the spaQ background in vivo. We also demonstrate that the unphosphorylated HY5 interacts strongly with both COP1 and SPA1 and is the preferred substrate for degradation, whereas the phosphorylated HY5 is more stable in the dark. In addition, the unphosphorylated HY5 actively binds to the target promoters and is the physiologically more active form. Consistently, the transgenic plants expressing the unphosphorylated form of HY5 display enhanced photomorphogenesis. Collectively, our study revealed the missing kinase responsible for direct phosphorylation of HY5 that fine-tunes its stability and activity to regulate photomorphogenesis.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Junghyun Kim
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sibum Sung
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Wang W, Paik I, Kim J, Hou X, Sung S, Huq E. Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:2311-2326. [PMID: 33686674 DOI: 10.1101/2020.09.10.291773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 05/23/2023]
Abstract
Elongated hypocotyl5 (HY5) is a key transcription factor that promotes photomorphogenesis. Constitutive photomorphogenic1 (COP1)-Suppressor of phytochrome A-105 (SPA) E3 ubiquitin ligase complex promotes ubiquitination and degradation of HY5 to repress photomorphogenesis in darkness. HY5 is also regulated by phosphorylation at serine 36 residue. However, the kinase responsible for phosphorylation of HY5 remains unknown. Here, using extensive in vitro and in vivo biochemical, genetic, and photobiological techniques, we have identified a new kinase that phosphorylates HY5 and demonstrated the significance of phosphorylation of HY5 in Arabidopsis thaliana. We show that SPA proteins are the missing kinases necessary for HY5 phosphorylation. SPAs can directly phosphorylate HY5 in vitro, and the phosphorylated HY5 is absent in the spaQ background in vivo. We also demonstrate that the unphosphorylated HY5 interacts strongly with both COP1 and SPA1 and is the preferred substrate for degradation, whereas the phosphorylated HY5 is more stable in the dark. In addition, the unphosphorylated HY5 actively binds to the target promoters and is the physiologically more active form. Consistently, the transgenic plants expressing the unphosphorylated form of HY5 display enhanced photomorphogenesis. Collectively, our study revealed the missing kinase responsible for direct phosphorylation of HY5 that fine-tunes its stability and activity to regulate photomorphogenesis.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Junghyun Kim
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sibum Sung
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Liu T, Zhang X. Transcriptome and Metabolomic Analyses Reveal Regulatory Networks Controlling Maize Stomatal Development in Response to Blue Light. Int J Mol Sci 2021. [PMID: 34065495 DOI: 10.21203/rs.3.rs-152688/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
(1) Background: Blue light is important for the formation of maize stomata, but the signal network remains unclear. (2) Methods: We replaced red light with blue light in an experiment and provided a complementary regulatory network for the stomatal development of maize by using transcriptome and metabolomics analysis. (3) Results: Exposure to blue light led to 1296 differentially expressed genes and 419 differential metabolites. Transcriptome comparisons and correlation signaling network analysis detected 55 genes, and identified 6 genes that work in the regulation of the HY5 module and MAPK cascade, that interact with PTI1, COI1, MPK2, and MPK3, in response to the substitution of blue light in environmental adaptation and signaling transduction pathways. Metabolomics analysis showed that two genes involved in carotenoid biosynthesis and starch and sucrose metabolism participate in stomatal development. Their signaling sites located on the PHI1 and MPK2 sites of the MAPK cascade respond to blue light signaling. (4) Conclusions: Blue light remarkably changed the transcriptional signal transduction and metabolism of metabolites, and eight obtained genes worked in the HY5 module and MAPK cascade.
Collapse
Affiliation(s)
- Tiedong Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiwen Zhang
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Transcriptome and Metabolomic Analyses Reveal Regulatory Networks Controlling Maize Stomatal Development in Response to Blue Light. Int J Mol Sci 2021; 22:ijms22105393. [PMID: 34065495 PMCID: PMC8161096 DOI: 10.3390/ijms22105393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Blue light is important for the formation of maize stomata, but the signal network remains unclear. (2) Methods: We replaced red light with blue light in an experiment and provided a complementary regulatory network for the stomatal development of maize by using transcriptome and metabolomics analysis. (3) Results: Exposure to blue light led to 1296 differentially expressed genes and 419 differential metabolites. Transcriptome comparisons and correlation signaling network analysis detected 55 genes, and identified 6 genes that work in the regulation of the HY5 module and MAPK cascade, that interact with PTI1, COI1, MPK2, and MPK3, in response to the substitution of blue light in environmental adaptation and signaling transduction pathways. Metabolomics analysis showed that two genes involved in carotenoid biosynthesis and starch and sucrose metabolism participate in stomatal development. Their signaling sites located on the PHI1 and MPK2 sites of the MAPK cascade respond to blue light signaling. (4) Conclusions: Blue light remarkably changed the transcriptional signal transduction and metabolism of metabolites, and eight obtained genes worked in the HY5 module and MAPK cascade.
Collapse
|
19
|
Chen Q, Bai L, Wang W, Shi H, Ramón Botella J, Zhan Q, Liu K, Yang H, Song C. COP1 promotes ABA-induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. THE NEW PHYTOLOGIST 2021; 229:2035-2049. [PMID: 33048351 PMCID: PMC7898331 DOI: 10.1111/nph.17001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
Plant stomata play a crucial role in leaf function, controlling water transpiration in response to environmental stresses and modulating the gas exchange necessary for photosynthesis. The phytohormone abscisic acid (ABA) promotes stomatal closure and inhibits light-induced stomatal opening. The Arabidopsis thaliana E3 ubiquitin ligase COP1 functions in ABA-mediated stomatal closure. However, the underlying molecular mechanisms are still not fully understood. Yeast two-hybrid assays were used to identify ABA signaling components that interact with COP1, and biochemical, molecular and genetic studies were carried out to elucidate the regulatory role of COP1 in ABA signaling. The cop1 mutants are hyposensitive to ABA-triggered stomatal closure under light and dark conditions. COP1 interacts with and ubiquitinates the Arabidopsis clade A type 2C phosphatases (PP2Cs) ABI/HAB group and AHG3, thus triggering their degradation. Abscisic acid enhances the COP1-mediated degradation of these PP2Cs. Mutations in ABI1 and AHG3 partly rescue the cop1 stomatal phenotype and the phosphorylation level of OST1, a crucial SnRK2-type kinase in ABA signaling. Our data indicate that COP1 is part of a novel signaling pathway promoting ABA-mediated stomatal closure by regulating the stability of a subset of the Clade A PP2Cs. These findings provide novel insights into the interplay between ABA and the light signaling component in the modulation of stomatal movement.
Collapse
Affiliation(s)
- Qingbin Chen
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Ling Bai
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Wenjing Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Huazhong Shi
- Department of Chemistry and BiochemistryTexas Tech UniversityLubbockTX79409USA
| | - José Ramón Botella
- Plant Genetic Engineering LaboratorySchool of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| | - Qidi Zhan
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Kang Liu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Hong‐Quan Yang
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghai200234China
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| |
Collapse
|
20
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|
21
|
Kahle N, Sheerin DJ, Fischbach P, Koch LA, Schwenk P, Lambert D, Rodriguez R, Kerner K, Hoecker U, Zurbriggen MD, Hiltbrunner A. COLD REGULATED 27 and 28 are targets of CONSTITUTIVELY PHOTOMORPHOGENIC 1 and negatively affect phytochrome B signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1038-1053. [PMID: 32890447 DOI: 10.1111/tpj.14979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 05/23/2023]
Abstract
Phytochromes are red/far-red light receptors in plants involved in the regulation of growth and development. Phytochromes can sense the light environment and contribute to measuring day length; thereby, they allow plants to respond and adapt to changes in the ambient environment. Two well-characterized signalling pathways act downstream of phytochromes and link light perception to the regulation of gene expression. The CONSTITUTIVELY PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA-105 (COP1/SPA) E3 ubiquitin ligase complex and the PHYTOCHROME INTERACTING FACTORs (PIFs) are key components of these pathways and repress light responses in the dark. In light-grown seedlings, phytochromes inhibit COP1/SPA and PIF activity and thereby promote light signalling. In a yeast-two-hybrid screen for proteins binding to light-activated phytochromes, we identified COLD-REGULATED GENE 27 (COR27). COR27 and its homologue COR28 bind to phyA and phyB, the two primary phytochromes in seed plants. COR27 and COR28 have been described previously with regard to a function in the regulation of freezing tolerance, flowering and the circadian clock. Here, we show that COR27 and COR28 repress early seedling development in blue, far-red and in particular red light. COR27 and COR28 contain a conserved Val-Pro (VP)-peptide motif, which mediates binding to the COP1/SPA complex. COR27 and COR28 are targeted for degradation by COP1/SPA and mutant versions with a VP to AA amino acid substitution in the VP-peptide motif are stabilized. Overall, our data suggest that COR27 and COR28 accumulate in light but act as negative regulators of light signalling during early seedling development, thereby preventing an exaggerated response to light.
Collapse
Affiliation(s)
- Nikolai Kahle
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Patrick Fischbach
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Philipp Schwenk
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, 79104, Germany
| | - Dorothee Lambert
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Ryan Rodriguez
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Konstantin Kerner
- Institute for Plant Sciences, University of Cologne, Cologne, 50674, Germany
| | - Ute Hoecker
- Institute for Plant Sciences, University of Cologne, Cologne, 50674, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
22
|
Ponnu J. Molecular mechanisms suppressing COP1/SPA E3 ubiquitin ligase activity in blue light. PHYSIOLOGIA PLANTARUM 2020; 169:418-429. [PMID: 32248530 DOI: 10.1111/ppl.13103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 05/23/2023]
Abstract
Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) is an E3 ubiquitin ligase complex that prevents photomorphogenesis in darkness by ubiquitinating and subsequently degrading light-responsive transcription factors. Upon light perception, photoreceptors directly interact with the COP1/SPA complex to suppress its activity. In blue light (450-500 nm of visible spectrum), COP1/SPA activity is inhibited by the cryptochrome photoreceptors (CRY1 and CRY2), FKF1 from the ZEITLUPE family as well as phytochrome A. Together, these photoreceptors regulate vital aspects of plant growth and development from seedling stage to the induction of flowering. This review presents and discusses the recent advances in blue light-mediated suppression of COP1/SPA activity.
Collapse
Affiliation(s)
- Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
23
|
Yadukrishnan P, Rahul PV, Ravindran N, Bursch K, Johansson H, Datta S. CONSTITUTIVELY PHOTOMORPHOGENIC1 promotes ABA-mediated inhibition of post-germination seedling establishment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:481-496. [PMID: 32436306 DOI: 10.1111/tpj.14844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
Under acute stress conditions, precocious seedling development may result in the premature death of young seedlings, before they switch to autotrophic growth. The phytohormone abscisic acid (ABA) inhibits seed germination and post-germination seedling establishment under unfavorable conditions. Various environmental signals interact with the ABA pathway to optimize these early developmental events under stress. Here, we show that light availability critically influences ABA sensitivity during early seedling development. In dark conditions, the ABA-mediated inhibition of post-germination seedling establishment is strongly enhanced. COP1, a central regulator of seedling development in the dark, is necessary for this enhanced post-germination ABA sensitivity in darkness. Despite their slower germination, cop1 seedlings establish faster than wild type in the presence of ABA in both light and dark. PHY and CRY photoreceptors that inhibit COP1 activity in light modulate ABA-mediated inhibition of seedling establishment in light. Genetically, COP1 acts downstream to ABI5, a key transcriptional regulator of ABA signaling, and does not influence the transcriptional and protein levels of ABI5 during the early post-germination stages. COP1 promotes post-germination growth arrest independent of the antagonistic interaction between ABA and cytokinin signaling pathways. COP1 facilitates the binding of ABI5 on its target promoters and the ABA-mediated upregulation of these target genes is reduced in cop1-4. Together, our results suggest that COP1 positively regulates ABA signaling to inhibit post-germination seedling establishment under stress.
Collapse
Affiliation(s)
- Premachandran Yadukrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Puthan Valappil Rahul
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Nevedha Ravindran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Katharina Bursch
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Univeristät Berlin, Albrecht-Thaer-Weg 6, Berlin, D-14195, Germany
| | - Henrik Johansson
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Univeristät Berlin, Albrecht-Thaer-Weg 6, Berlin, D-14195, Germany
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| |
Collapse
|
24
|
Han X, Huang X, Deng XW. The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution. PLANT COMMUNICATIONS 2020; 1:100044. [PMID: 33367240 PMCID: PMC7748024 DOI: 10.1016/j.xplc.2020.100044] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 05/23/2023]
Abstract
Green plants on the earth have evolved intricate mechanisms to acclimatize to and utilize sunlight. In Arabidopsis, light signals are perceived by photoreceptors and transmitted through divergent but overlapping signaling networks to modulate plant photomorphogenic development. COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) was first cloned as a central repressor of photomorphogenesis in higher plants and has been extensively studied for over 30 years. It acts as a RING E3 ubiquitin ligase downstream of multiple photoreceptors to target key light-signaling regulators for degradation, primarily as part of large protein complexes. The mammalian counterpart of COP1 is a pluripotent regulator of tumorigenesis and metabolism. A great deal of information on COP1 has been derived from whole-genome sequencing and functional studies in lower green plants, which enables us to illustrate its evolutionary history. Here, we review the current understanding about COP1, with a focus on the conservation and functional diversification of COP1 and its signaling partners in different taxonomic clades.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University-Southern University of Science and Technology Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University-Southern University of Science and Technology Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Cryptochrome 2 competes with COP1 substrates to repress COP1 ubiquitin ligase activity during Arabidopsis photomorphogenesis. Proc Natl Acad Sci U S A 2019; 116:27133-27141. [PMID: 31822614 DOI: 10.1073/pnas.1909181116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In plants, the cryptochrome photoreceptors suppress the activity of the COP1/SPA ubiquitin ligase to initiate photomorphogenesis in blue light. Both CRY1 and CRY2 interact with the COP1/SPA complex in a blue light-dependent manner. The mechanisms underlying the inhibition of COP1 activity through direct interactions with photoactivated CRYs are not fully understood. Here we tested the hypothesis that CRY2 inhibits COP1 by displacing the degradation substrates from COP1. To this end, we analyzed the role of a conserved valine-proline (VP) motif in the C-terminal domain of CRY2 (CCT2), which resembles the core COP1-WD40-binding sequences present in the substrates of COP1. We show that the VP motif in CRY2 is essential for the interaction of CRY2 with COP1 in yeast two-hybrid assays and in planta Mutations in the VP motif of CRY2 abolished the CRY2 activity in photomorphogenesis, indicating the importance of VP. The interaction between COP1 and its VP-containing substrate PAP2 was prevented in the presence of coexpressed CRY2, but not in the presence of CRY2 carrying a VP mutation. Thus, since both PAP2 and CRY2 engage VP motifs to bind to COP1, these results demonstrate that CRY2 outcompetes PAP2 for binding to COP1. We further found that the previously unknown interaction between SPA1-WD and CCT2 occurs via the VP motif in CRY2, suggesting structural similarities in the VP-binding pockets of COP1-WD40 and SPA1-WD40 domains. A VP motif present in CRY1 is also essential for binding to COP1. Thus, CRY1 and CRY2 might share this mechanism of COP1 inactivation.
Collapse
|
26
|
Artz O, Dickopf S, Ranjan A, Kreiss M, Abraham ET, Boll V, Rensing SA, Hoecker U. Characterization of spa mutants in the moss Physcomitrella provides evidence for functional divergence of SPA genes during the evolution of land plants. THE NEW PHYTOLOGIST 2019; 224:1613-1626. [PMID: 31222750 DOI: 10.1111/nph.16004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The Arabidopsis COP1/SPA complex is a key repressor of photomorphogenesis that suppresses light signaling in the dark. Both COP1 and SPA proteins are essential components of this complex. Although COP1 also exists in humans, SPA genes are specific to the green lineage. To elucidate the evolution of SPA genes we analyzed SPA functions in the moss Physcomitrella patens by characterizing knockout mutants in the two Physcomitrella SPA genes PpSPAa and PpSPAb. Light-grown PpspaAB double mutants exhibit smaller gametophores than the wild-type. In the dark, PpspaAB mutant gametophores show enhanced continuation of growth but etiolate normally. Gravitropism in the dark is reduced in PpspaAB mutant protonemata. The expression of light-regulated genes is mostly not constitutive in PpspaAB mutants. PpSPA and PpCOP1 interact; PpCOP1 also interacts with the transcription factor PpHY5 and, indeed, PpHY5 is destabilized in dark-grown Physcomitrella. Degradation of PpHY5 in darkness, however, does not require PpSPAa and PpSPAb. The data suggest that COP1/SPA-mediated light signaling is only partially conserved between Arabidopsis and Physcomitrella. Whereas COP1/SPA interaction and HY5 degradation in darkness is conserved, the role of SPA proteins appears to have diverged. PpSPA genes, unlike their Arabidopsis counterparts, are only required to suppress a subset of light responses in darkness.
Collapse
Affiliation(s)
- Oliver Artz
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stephen Dickopf
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Aashish Ranjan
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Melanie Kreiss
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Elena Theres Abraham
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Vanessa Boll
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
27
|
UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun 2019; 10:4417. [PMID: 31562307 PMCID: PMC6764944 DOI: 10.1038/s41467-019-12369-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/03/2019] [Indexed: 02/08/2023] Open
Abstract
Alterations in light quality significantly affect plant growth and development. In canopy shade, phytochrome photoreceptors perceive reduced ratios of red to far-red light (R:FR) and initiate stem elongation to enable plants to overtop competitors. This shade avoidance response is achieved via the stabilisation and activation of PHYTOCHROME INTERACTING FACTORs (PIFs) which elevate auxin biosynthesis. UV-B inhibits shade avoidance by reducing the abundance and activity of PIFs, yet the molecular mechanisms controlling PIF abundance in UV-B are unknown. Here we show that the UV-B photoreceptor UVR8 promotes rapid PIF5 degradation via the ubiquitin-proteasome system in a response requiring the N terminus of PIF5. In planta interactions between UVR8 and PIF5 are not observed. We further demonstrate that PIF5 interacts with the E3 ligase COP1, promoting PIF5 stabilisation in light-grown plants. Binding of UVR8 to COP1 in UV-B disrupts this stabilisation, providing a mechanism to rapidly lower PIF5 abundance in sunlight. UV-B light suppresses the shade avoidance response in plants by reducing the abundance of PIF transcription factors by an undefined mechanism. Here the authors show that UV-B perceived by the UVR8 receptor inhibits the shade avoidance response by preventing stabilisation of PIF5 by COP1.
Collapse
|
28
|
Paik I, Chen F, Ngoc Pham V, Zhu L, Kim JI, Huq E. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nat Commun 2019; 10:4216. [PMID: 31527679 PMCID: PMC6746701 DOI: 10.1038/s41467-019-12110-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/22/2019] [Indexed: 01/20/2023] Open
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a highly conserved E3 ubiquitin ligase from plants to animals and acts as a central repressor of photomorphogenesis in plants. SUPPRESSOR OF PHYA-105 1 family members (SPA1-SPA4) directly interact with COP1 and enhance COP1 activity. Despite the presence of a kinase domain at the N-terminus, no COP1-independent role of SPA proteins has been reported. Here we show that SPA1 acts as a serine/threonine kinase and directly phosphorylates PIF1 in vitro and in vivo. SPAs are necessary for the light-induced phosphorylation, ubiquitination and subsequent degradation of PIF1. Moreover, the red/far-red light photoreceptor phyB interacts with SPA1 through its C-terminus and enhances the recruitment of PIF1 for phosphorylation. These data provide a mechanistic view on how the COP1-SPA complexes serve as an example of a cognate kinase-E3 ligase complex that selectively triggers rapid phosphorylation and removal of its substrates, and how phyB modulates this process to promote photomorphogenesis. SPA proteins repress plant photomorphogenesis by promoting the E3 ligase activity of COP1. Here the authors show that SPAs also act as serine/threonine kinase and are required for phyB-mediated light-dependent phosphorylation and degradation of the PIF1 transcription factor.
Collapse
Affiliation(s)
- Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Fulu Chen
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Vinh Ngoc Pham
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,Syngenta Crop Protection, LLC., Research Triangle Park, NC, 27709, USA
| | - Jeong-Il Kim
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
29
|
Xiong L, Li C, Li H, Lyu X, Zhao T, Liu J, Zuo Z, Liu B. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1070-1077. [PMID: 30929191 DOI: 10.1007/s11427-018-9496-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Soybean (Glycine max (L.) Merr.), grown for its plant oils and proteins, is one of the most important crops throughout the world. Generating stable and heritable transgenic soybeans is relatively inefficient; therefore, there is an urgent need for a simple and high-efficient transient transformation method by which to enable the investigation of gene functions in soybeans, which will facilitate the elucidation and improvement of the molecular mechanisms regulating the associated agronomic traits. We established a system of transient expression in soybean mesophyll protoplasts and obtained a high level of protoplast transfection efficiency (up to 83.5%). The subcellular activity of the protoplasts was well preserved, as demonstrated by the dynamic formation of GmCRY nucleus photobodies (NPs) and/or cytoplasmic photobody-like structures (CPs) in response to blue light. In addition, we showed that GmCRY1b CPs colocalized with GmCOP1b, a co-ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which provided new insight into the potential roles of GmCRY1s in the cytoplasm.
Collapse
Affiliation(s)
- Lu Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangguang Lyu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Vu LD, Gevaert K, De Smet I. Feeling the Heat: Searching for Plant Thermosensors. TRENDS IN PLANT SCIENCE 2019; 24:210-219. [PMID: 30573309 DOI: 10.1016/j.tplants.2018.11.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 05/21/2023]
Abstract
To draw the complete picture of plant thermal signaling, it is important to find the missing links between the temperature cue, the actual sensing, and the subsequent response. In this context, several plant thermosensors have been proposed. Here, we compare these with thermosensors in various other organisms, put them in the context of thermosensing in plants, and suggest a set of criteria to which a thermosensor must adhere. Finally, we propose that more emphasis should be given to structural analysis of DNA, RNA, and proteins in light of the activity of potential thermosensors.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium; These authors contributed equally. https://twitter.com/KrisGevaert_VIB
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; These authors contributed equally.
| |
Collapse
|
31
|
Kung JE, Jura N. The pseudokinase TRIB1 toggles an intramolecular switch to regulate COP1 nuclear export. EMBO J 2019; 38:e99708. [PMID: 30692133 PMCID: PMC6376274 DOI: 10.15252/embj.201899708] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023] Open
Abstract
COP1 is a highly conserved ubiquitin ligase that regulates diverse cellular processes in plants and metazoans. Tribbles pseudokinases, which only exist in metazoans, act as scaffolds that interact with COP1 and its substrates to facilitate ubiquitination. Here, we report that, in addition to this scaffolding role, TRIB1 promotes nuclear localization of COP1 by disrupting an intramolecular interaction between the WD40 domain and a previously uncharacterized regulatory site within COP1. This site, which we have termed the pseudosubstrate latch (PSL), resembles the consensus COP1-binding motif present in known COP1 substrates. Our findings support a model in which binding of the PSL to the WD40 domain stabilizes a conformation of COP1 that is conducive to CRM1-mediated nuclear export, and TRIB1 displaces this intramolecular interaction to induce nuclear retention of COP1. Coevolution of Tribbles and the PSL in metazoans further underscores the importance of this role of Tribbles in regulating COP1 function.
Collapse
Affiliation(s)
- Jennifer E Kung
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Podolec R, Ulm R. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:18-25. [PMID: 29775763 DOI: 10.1016/j.pbi.2018.04.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 05/19/2023]
Abstract
Plants have evolved specific photoreceptors that capture informational cues from sunlight. The phytochrome, cryptochrome, and UVR8 photoreceptors perceive red/far-red, blue/UV-A, and UV-B light, respectively, and control overlapping photomorphogenic responses important for plant growth and development. A major repressor of such photomorphogenic responses is the E3 ubiquitin ligase formed by CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) proteins, which acts by regulating the stability of photomorphogenesis-promoting transcription factors. The direct interaction of light-activated photoreceptors with the COP1/SPA complex represses its activity via nuclear exclusion of COP1, disruption of the COP1-SPA interaction, and/or SPA protein degradation. This process enables plants to integrate different light signals at the level of the COP1/SPA complex to enact appropriate photomorphogenic responses according to the light environment.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
33
|
Park E, Kim Y, Choi G. Phytochrome B Requires PIF Degradation and Sequestration to Induce Light Responses across a Wide Range of Light Conditions. THE PLANT CELL 2018; 30:1277-1292. [PMID: 29764986 PMCID: PMC6048787 DOI: 10.1105/tpc.17.00913] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 05/10/2018] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) inhibits the function of phytochrome-interacting factors (PIFs) by inducing their degradation and sequestration, but the relative physiological importance of these two phyB activities is unclear. In an analysis of published Arabidopsis thaliana phyB mutations, we identified a point mutation in the N-terminal half of phyB (phyBG111D) that abolishes its PIF sequestration activity without affecting its PIF degradation activity. We also identified a point mutation in the phyB C-terminal domain, which, when combined with a deletion of the C-terminal end (phyB990G767R), does the opposite; it blocks PIF degradation without affecting PIF sequestration. The resulting phyB proteins, phyB990G767R and phyBG111D, are equally capable of inducing light responses under continuous red light. However, phyBG111D, which exhibits only the PIF degradation activity, induces stronger light responses than phyB990G767R under white light with prolonged dark periods (i.e., diurnal cycles). In contrast, phyB990G767R, which exhibits only the PIF sequestration activity, induces stronger light responses in flickering light (a condition that mimics sunflecks). Together, our results indicate that both of these separable phyB activities are required for light responses in varying light conditions.
Collapse
Affiliation(s)
- Eunae Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
34
|
Holtkotte X, Ponnu J, Ahmad M, Hoecker U. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling. PLoS Genet 2017; 13:e1007044. [PMID: 28991901 PMCID: PMC5648270 DOI: 10.1371/journal.pgen.1007044] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022] Open
Abstract
Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.
Collapse
Affiliation(s)
- Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Margaret Ahmad
- UMR 8256 (B2A) CNRA—UPMC, IBPS, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, France
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
35
|
Holtkotte X, Ponnu J, Ahmad M, Hoecker U. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling. PLoS Genet 2017. [PMID: 28991901 DOI: 10.1371/journal.pone.1007044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.
Collapse
Affiliation(s)
- Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Margaret Ahmad
- UMR 8256 (B2A) CNRA-UPMC, IBPS, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, France
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|