1
|
Malbos M, Vera G, Sheth H, Schnur RE, Juven A, Brehin AC, Sheth J, Gandhi A, Shapiro FL, Bruel AL, Marguet F, Begtrup A, Monaghan KG, Safraou H, Brasseur-Daudruy M, Mau-Them FT, Duffourd Y, Faivre L, Thauvin-Robinet C, Benke PJ, Philippe C. SCYL2-related autosomal recessive neurodevelopmental disorders: Arthrogryposis multiplex congenita-4 and beyond? Clin Genet 2024; 106:757-763. [PMID: 39169672 DOI: 10.1111/cge.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
SCY1-like protein 2 (SCYL2) is a member of the SCY1-like pseudokinase family which regulates secretory protein trafficking. It plays a crucial role in the nervous system by suppressing excitotoxicity in the developing brain. Scyl2 knockout mice have excess prenatal mortality and survivors show severe neurological dysfunction. Bi-allelic loss-of-function (LOF) variants in SCYL2 were recently associated with arthrogryposis multiplex congenita-4 (AMC4) following the report of 6 individuals from two consanguineous unrelated families. The AMC4 phenotype described included severe arthrogryposis, corpus callosum agenesis, epilepsy and frequently, early death. We describe here two additional similarly affected individuals with AMC4, including one diagnosed in the prenatal period, with bi-allelic LOF variants in SCYL2, and two individuals homozygous for missense variants in the protein kinase domain of SCYL2 and presenting with developmental delay only. Our study confirms the association of SCYL2 with AMC4 and suggests a milder phenotype can occur, extending the phenotypic spectrum of autosomal recessive SCYL2-related disorders.
Collapse
Affiliation(s)
- Marlène Malbos
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Gabriella Vera
- Department of Pathology, Department of Genetics and Reference Center for Developmental Abnormalities, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Rouen, France
| | - Harsh Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, India
| | - Rhonda E Schnur
- Cooper Medical School of Rowan University/Cooper University Health Care, Camden, New Jersey, USA
| | - Aurélien Juven
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Claire Brehin
- Department of Pathology, Department of Genetics and Reference Center for Developmental Abnormalities, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Rouen, France
| | - Jayesh Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, India
| | - Ajit Gandhi
- FRIGE's Institute of Human Genetics, Ahmedabad, India
| | - Faye L Shapiro
- Cooper Medical School of Rowan University/Cooper University Health Care, Camden, New Jersey, USA
| | - Ange-Line Bruel
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR1231 GAD, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Florent Marguet
- Department of Pathology, Department of Genetics and Reference Center for Developmental Abnormalities, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Rouen, France
| | | | | | - Hana Safraou
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR1231 GAD, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | | | - Frédéric Tran Mau-Them
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR1231 GAD, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Yannis Duffourd
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Paul J Benke
- Division of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Christophe Philippe
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR1231 GAD, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Laboratoire de Génétique, CHR Metz-Thionville, Hôpital Mercy, Metz, France
| |
Collapse
|
2
|
Stockhammer A, Spalt C, Klemt A, Benz LS, Harel S, Natalia V, Wiench L, Freund C, Kuropka B, Bottanelli F. When less is more - a fast TurboID knock-in approach for high-sensitivity endogenous interactome mapping. J Cell Sci 2024; 137:jcs261952. [PMID: 39056144 PMCID: PMC11385326 DOI: 10.1242/jcs.261952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, proximity labeling has established itself as an unbiased and powerful approach to map the interactome of specific proteins. Although physiological expression of labeling enzymes is beneficial for the mapping of interactors, generation of the desired cell lines remains time-consuming and challenging. Using our established pipeline for rapid generation of C- and N-terminal CRISPR-Cas9 knock-ins (KIs) based on antibiotic selection, we were able to compare the performance of commonly used labeling enzymes when endogenously expressed. Endogenous tagging of the µ subunit of the adaptor protein (AP)-1 complex with TurboID allowed identification of known interactors and cargo proteins that simple overexpression of a labeling enzyme fusion protein could not reveal. We used the KI strategy to compare the interactome of the different AP complexes and clathrin and were able to assemble lists of potential interactors and cargo proteins that are specific for each sorting pathway. Our approach greatly simplifies the execution of proximity labeling experiments for proteins in their native cellular environment and allows going from CRISPR transfection to mass spectrometry analysis and interactome data in just over a month.
Collapse
Affiliation(s)
- Alexander Stockhammer
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Carissa Spalt
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Antonia Klemt
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Laila S Benz
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Shelly Harel
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Vini Natalia
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lukas Wiench
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Benno Kuropka
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Francesca Bottanelli
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
3
|
Xu M, Ni Y, Tu Y, Wang Y, Zhang Z, Jiao Y, Zhang X. A SCYL2 gene from Oryza sativa is involved in phytosterol accumulation and regulates plant growth and salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112062. [PMID: 38461862 DOI: 10.1016/j.plantsci.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Rice is a crucial food for humans due to its high nutritional value. Phytosterols, essential components of the plant membrane lipid bilayer, play a vital role in plant growth and contribute significantly to lipid-lowering, antitumor, and immunomodulation processes. In this study, SCY1-like protein kinases 2 (SCYL2) was found to be closely related to the accumulation of phytosterols. The levels of campesterol, stigmasterol, and β-sitosterol significantly increased in transgenic rice seeds, husks, and leaves, whereas there was a considerable reduction in scyl2 plants. Subsequent investigations revealed the crucial role of SCYL2 in plant development. Mutations in this gene led to stunted plant growth while overexpressing OsSCYL2 in Arabidopsis and rice resulted in larger leaves, taller plants, and accelerated development. When subjected to salt stress, Arabidopsis plants overexpressed OsSCYL2 showed significantly higher germination rates than wild-type plants. Similarly, transgenic rice seedlings displayed better growth than both ZH11 and mutant plants, exhibiting lower malondialdehyde (MDA) content and higher peroxidase (POD), and catalase (CAT) activities. Conversely, scyl2 plants exhibited more yellow leaves or even death. These findings suggested that OsSCYL2 proteins might be involved in phytosterols synthesis and play an important role during plant growth and development. This study provides a theoretical basis for developing functional rice.
Collapse
Affiliation(s)
- Minyan Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Ni
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yaling Tu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yanping Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuhuan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Xu M, Zhang W, Jiao Y, Yang Q, Chen M, Cheng H, Cheng B, Zhang X. OsSCYL2 is Involved in Regulating ABA Signaling-Mediated Seed Germination in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1088. [PMID: 38674497 PMCID: PMC11054224 DOI: 10.3390/plants13081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Seed germination represents a multifaceted biological process influenced by various intrinsic and extrinsic factors. In the present study, our investigation unveiled the regulatory role of OsSCYL2, a gene identified as a facilitator of seed germination in rice. Notably, the germination kinetics of OsSCYL2-overexpressing seeds surpassed those of their wild-type counterparts, indicating the potency of OsSCYL2 in enhancing this developmental process. Moreover, qRT-PCR results showed that OsSCYL2 was consistently expressed throughout the germination process in rice. Exogenous application of ABA on seeds and seedlings underscored the sensitivity of OsSCYL2 to ABA during both seed germination initiation and post-germination growth phases. Transcriptomic profiling following OsSCYL2 overexpression revealed profound alterations in metabolic pathways, MAPK signaling cascades, and phytohormone-mediated signal transduction pathways, with 15 genes related to the ABA pathways exhibiting significant expression changes. Complementary in vivo and in vitro assays unveiled the physical interaction between OsSCYL2 and TOR, thereby implicating OsSCYL2 in the negative modulation of ABA-responsive genes and its consequential impact on seed germination dynamics. This study elucidated novel insights into the function of OsSCYL2 in regulating the germination process of rice seeds through the modulation of ABA signaling pathways, thereby enhancing the understanding of the functional significance of the SCYL protein family in plant physiological processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Zhang C, Ma W, Xu M, Li T, Han G, Gu L, Chen M, Zhang M, Cheng B, Zhang X. Identification and Functional Characterization of ZmSCYL2 Involved in Phytosterol Accumulation in Plants. Int J Mol Sci 2023; 24:10411. [PMID: 37373558 DOI: 10.3390/ijms241210411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phytosterols are natural active substances widely found in plants and play an important role in hypolipidemia, antioxidants, antitumor, immunomodulation, plant growth, and development. In this study, phytosterols were extracted and identified from the seed embryos of 244 maize inbred lines. Based on this, a genome-wide association study (GWAS) was used to predict the possible candidate genes responsible for phytosterol content; 9 SNPs and 32 candidate genes were detected, and ZmSCYL2 was identified to be associated with phytosterol accumulation. We initially confirmed its functions in transgenic Arabidopsis and found that mutation of ZmSCYL2 resulted in slow plant growth and a significant reduction in sterol content, while overexpression of ZmSCYL2 accelerated plant growth and significantly increased sterol content. These results were further confirmed in transgenic tobacco and suggest that ZmSCYL2 was closely related to plant growth; overexpression of ZmSCYL2 not only facilitated plant growth and development but also promoted the accumulation of phytosterols.
Collapse
Affiliation(s)
- Chenchen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Wanlu Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Minyan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Tao Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Guomin Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Meng Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 PMCID: PMC9134090 DOI: 10.1093/plcell/koac071] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
| | | | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | | | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
7
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Yao Y, Zhou J, Cheng C, Niu F, Zhang A, Sun B, Tu R, Wan J, Li Y, Huang Y, Xie K, Dai Y, Zhang H, Hong JH, Pan X, Zhu J, Zhou H, Liu Z, Cao L, Chu H. A conserved clathrin-coated vesicle component, OsSCYL2, regulates plant innate immunity in rice. PLANT, CELL & ENVIRONMENT 2022; 45:542-555. [PMID: 34866195 PMCID: PMC9305246 DOI: 10.1111/pce.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 05/07/2023]
Abstract
Clathrin-mediated vesicle trafficking (CMVT) is a fundamental process in all eukaryotic species, and indispensable to organism's growth and development. Recently, it has been suggested that CMVT also plays important roles in the regulation of plant immunity. However, the molecular link between CMVT and plant immunity is largely unknown. SCY1-LIKE2 (SCYL2) is evolutionally conserved among the eukaryote species. Loss-of-function of SCYL2 in Arabidopsis led to severe growth defects. Here, we show that mutation of OsSCYL2 in rice gave rise to a novel phenotype-hypersensitive response-like (HR) cell death in a light-dependent manner. Although mutants of OsSCYL2 showed additional defects in the photosynthetic system, they exhibited enhanced resistance to bacterial pathogens. Subcellular localisation showed that OsSCYL2 localized at Golgi, trans-Golgi network and prevacuolar compartment. OsSCYL2 interacted with OsSPL28, subunit of a clathrin-associated adaptor protein that is known to regulate HR-like cell death in rice. We further showed that OsSCYL2-OsSPL28 interaction is mediated by OsCHC1. Collectively, we characterized a novel component of the CMVT pathway in the regulation of plant immunity. Our work also revealed unidentified new functions of the very conserved SCYL2. It thus may provide new breeding targets to achieve both high yield and enhanced resistance in crops.
Collapse
Affiliation(s)
- Yao Yao
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Jihua Zhou
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Can Cheng
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Fuan Niu
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Anpeng Zhang
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Bin Sun
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Rongjian Tu
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Jianing Wan
- Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Yao Li
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of Fisheries and LifeShanghai Ocean UniversityShanghaiChina
| | - Yiwen Huang
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Kaizhen Xie
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of Fisheries and LifeShanghai Ocean UniversityShanghaiChina
| | - Yuting Dai
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Hui Zhang
- College of Life ScienceShanghai Normal UniversityShanghaiChina
| | - Jing Han Hong
- Cancer and Stem Cell Biology ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Xiaohua Pan
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Jiaojiao Zhu
- School of Agriculture and Biology, Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong Zhou
- School of Agriculture and Biology, Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhenhua Liu
- School of Agriculture and Biology, Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Liming Cao
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Huangwei Chu
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| |
Collapse
|
9
|
Wang G, Long D, Yu F, Zhang H, Chen C, Wang Y, Ji W. Genome-wide identification, evolution, and expression of the SNARE gene family in wheat resistance to powdery mildew. PeerJ 2021; 9:e10788. [PMID: 33552743 PMCID: PMC7831368 DOI: 10.7717/peerj.10788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
SNARE proteins mediate eukaryotic cell membrane/transport vesicle fusion and act in plant resistance to fungi. Herein, 173 SNARE proteins were identified in wheat and divided into 5 subfamilies and 21 classes. The number of the SYP1 class type was largest in TaSNAREs. Phylogenetic tree analysis revealed that most of the SNAREs were distributed in 21 classes. Analysis of the genetic structure revealed large differences among the 21 classes, and the structures in the same group were similar, except across individual genes. Excluding the first homoeologous group, the number in the other homoeologous groups was similar. The 2,000 bp promoter region of the TaSNARE genes were analyzed, and many W-box, MYB and disease-related cis-acting elements were identified. The qRT-PCR-based analysis of the SNARE genes revealed similar expression patterns of the same subfamily in one wheat variety. The expression patterns of the same gene in resistant/sensitive varieties largely differed at 6 h after infection, suggesting that SNARE proteins play an important role in early pathogen infection. Here, the identification and expression analysis of SNARE proteins provide a theoretical basis for studies of SNARE protein function and wheat resistance to powdery mildew.
Collapse
Affiliation(s)
- Guanghao Wang
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, China.,College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Deyu Long
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Fagang Yu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Zhang
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, China.,College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunhuan Chen
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, China.,College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajuan Wang
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, China.,College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, China.,College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
MARTINIÈRE A, MOREAU P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never‐ending story. J Microsc 2020; 280:140-157. [DOI: 10.1111/jmi.12952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- A. MARTINIÈRE
- Univ Montpellier, CNRS, INRAE, Montpellier SupAgro BPMP Montpellier France
| | - P. MOREAU
- UMR 5200 Membrane Biogenesis Laboratory CNRS and University of Bordeaux, INRAE Bordeaux Villenave d'Ornon France
| |
Collapse
|
11
|
Zhang L, Xing J, Lin J. At the intersection of exocytosis and endocytosis in plants. THE NEW PHYTOLOGIST 2019; 224:1479-1489. [PMID: 31230354 DOI: 10.1111/nph.16018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
Vesicle exocytosis and endocytosis control the activities and turnover of plasma membrane proteins required for signaling triggering or attenuating at the cell surface. In recent years, the diverse exocytic and endocytic trafficking pathways have been uncovered in plants. The balance between conventional and unconventional protein secretion provides an efficient strategy to respond to stress conditions. Similarly, clathrin-dependent and -independent endocytosis cooperatively regulate the dynamics of membrane proteins in response to environmental cues. In fact, many aspects of plant growth and development, such as tip growth, immune response, and protein polarity establishment, involve the tight deployment of exo-endocytic trafficking. However, our understanding of their intersection is limited. Here, we discuss recent advances in the molecular factors coupling plant exo-endocytic trafficking and the biological significance of balance between exocytosis and endocytosis in plants.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|