1
|
Chaisupa P, Rahman MM, Hildreth SB, Moseley S, Gatling C, Bryant MR, Helm RF, Wright RC. Genetically Encoded, Noise-Tolerant, Auxin Biosensors in Yeast. ACS Synth Biol 2024; 13:2804-2819. [PMID: 39197086 PMCID: PMC11421217 DOI: 10.1021/acssynbio.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Auxins are crucial signaling molecules that regulate the growth, metabolism, and behavior of various organisms, most notably plants but also bacteria, fungi, and animals. Many microbes synthesize and perceive auxins, primarily indole-3-acetic acid (IAA, referred to as auxin herein), the most prevalent natural auxin, which influences their ability to colonize plants and animals. Understanding auxin biosynthesis and signaling in fungi may allow us to better control interkingdom relationships and microbiomes from agricultural soils to the human gut. Despite this importance, a biological tool for measuring auxin with high spatial and temporal resolution has not been engineered in fungi. In this study, we present a suite of genetically encoded, ratiometric, protein-based auxin biosensors designed for the model yeast Saccharomyces cerevisiae. Inspired by auxin signaling in plants, the ratiometric nature of these biosensors enhances the precision of auxin concentration measurements by minimizing clonal and growth phase variation. We used these biosensors to measure auxin production across diverse growth conditions and phases in yeast cultures and calibrated their responses to physiologically relevant levels of auxin. Future work will aim to improve the fold change and reversibility of these biosensors. These genetically encoded auxin biosensors are valuable tools for investigating auxin biosynthesis and signaling in S. cerevisiae and potentially other yeast and fungi and will also advance quantitative functional studies of the plant auxin perception machinery, from which they are built.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Md Mahbubur Rahman
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherry B Hildreth
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saede Moseley
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chauncey Gatling
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Matthew R Bryant
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard F Helm
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Ferreira Neres D, Wright RC. Pleiotropy, a feature or a bug? Toward co-ordinating plant growth, development, and environmental responses through engineering plant hormone signaling. Curr Opin Biotechnol 2024; 88:103151. [PMID: 38823314 PMCID: PMC11316663 DOI: 10.1016/j.copbio.2024.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
The advent of gene editing technologies such as CRISPR has simplified co-ordinating trait development. However, identifying candidate genes remains a challenge due to complex gene networks and pathways. These networks exhibit pleiotropy, complicating the determination of specific gene and pathway functions. In this review, we explore how systems biology and single-cell sequencing technologies can aid in identifying candidate genes for co-ordinating specifics of plant growth and development within specific temporal and tissue contexts. Exploring sequence-function space of these candidate genes and pathway modules with synthetic biology allows us to test hypotheses and define genotype-phenotype relationships through reductionist approaches. Collectively, these techniques hold the potential to advance breeding and genetic engineering strategies while also addressing genetic diversity issues critical for adaptation and trait development.
Collapse
Affiliation(s)
- Deisiany Ferreira Neres
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States; Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States
| | - R Clay Wright
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States; Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States.
| |
Collapse
|
3
|
Ferreira SS, Antunes MS. Genetically encoded Boolean logic operators to sense and integrate phenylpropanoid metabolite levels in plants. THE NEW PHYTOLOGIST 2024; 243:674-687. [PMID: 38752334 DOI: 10.1111/nph.19823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Synthetic biology has the potential to revolutionize biotechnology, public health, and agriculture. Recent studies have shown the enormous potential of plants as chassis for synthetic biology applications. However, tools to precisely manipulate metabolic pathways for bioproduction in plants are still needed. We used bacterial allosteric transcription factors (aTFs) that control gene expression in a ligand-specific manner and tested their ability to repress semi-synthetic promoters in plants. We also tested the modulation of their repression activity in response to specific plant metabolites, especially phenylpropanoid-related molecules. Using these aTFs, we also designed synthetic genetic circuits capable of computing Boolean logic operations. Three aTFs, CouR, FapR, and TtgR, achieved c. 95% repression of their respective target promoters. For TtgR, a sixfold de-repression could be triggered by inducing its ligand accumulation, showing its use as biosensor. Moreover, we designed synthetic genetic circuits that use AND, NAND, IMPLY, and NIMPLY Boolean logic operations and integrate metabolite levels as input to the circuit. We showed that biosensors can be implemented in plants to detect phenylpropanoid-related metabolites and activate a genetic circuit that follows a predefined logic, demonstrating their potential as tools for exerting control over plant metabolic pathways and facilitating the bioproduction of natural products.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
4
|
Anderson CE, Ferreira SS, Antunes MS. Integration of multiple stress signals in plants using synthetic Boolean logic gates. PLANT PHYSIOLOGY 2023; 192:3189-3202. [PMID: 37119276 PMCID: PMC10400031 DOI: 10.1093/plphys/kiad254] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
As photosynthetic organisms, plants have a potential role in the sustainable production of high-value products such as medicines, biofuels, and chemical feedstocks. With effective engineering using synthetic biology approaches, plant-based platforms could conceivably be designed to minimize the costs and waste of production for materials that would otherwise be uneconomical. Additionally, modern agricultural crops could be engineered to be more productive, resilient, or restorative in different or rapidly changing environments and climates. Information-processing genetic devices and circuits containing multiple interacting parts that behave predictably must be developed to achieve these complex goals. A genetic Boolean AND logic gate is a device that computes the presence or absence of 2 inputs (signals and stimuli) and produces an output (response) only when both inputs are present. We optimized individual genetic components and used synthetic protein heterodimerizing domains to rationally assemble genetic AND logic gates that integrate 2 hormonal inputs in transgenic Arabidopsis thaliana plants. These AND gates produce an output only in the presence of both abscisic acid and auxin but not when either or neither hormone is present. The AND logic gate can also integrate signals resulting from 2 plant stresses, cold temperature and bacterial infection, to produce a response. The design principles used here are generalizable, and, therefore, multiple orthogonal AND gates could be assembled and rationally layered to process complex genetic information in plants. These layered logic gates may be used in genetic circuits to probe fundamental questions in plant biology, such as hormonal crosstalk, in addition to plant engineering for bioproduction.
Collapse
Affiliation(s)
- Charles E Anderson
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
5
|
Helmy M, Selvarajoo K. Application of GeneCloudOmics: Transcriptomic Data Analytics for Synthetic Biology. Methods Mol Biol 2023; 2553:221-263. [PMID: 36227547 DOI: 10.1007/978-1-0716-2617-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Research in synthetic biology and metabolic engineering require a deep understanding on the function and regulation of complex pathway genes. This can be achieved through gene expression profiling which quantifies the transcriptome-wide expression under any condition, such as a cell development stage, mutant, disease, or treatment with a drug. The expression profiling is usually done using high-throughput techniques such as RNA sequencing (RNA-Seq) or microarray. Although both methods are based on different technical approaches, they provide quantitative measures of the expression levels of thousands of genes. The expression levels of the genes are compared under different conditions to identify the differentially expressed genes (DEGs), the genes with different expression levels under different conditions. DEGs, usually involving thousands in number, are then investigated using bioinformatics and data analytic tools to infer and compare their functional roles between conditions. Dealing with such large datasets, therefore, requires intensive data processing and analyses to ensure its quality and produce results that are statistically sound. Thus, there is a need for deep statistical and bioinformatics knowledge to deal with high-throughput gene expression data. This represents a barrier for wet biologists with limited computational, programming, and data analytic skills that prevent them from getting the full potential of the data. In this chapter, we present a step-by-step protocol to perform transcriptome analysis using GeneCloudOmics, a cloud-based web server that provides an end-to-end platform for high-throughput gene expression analysis.
Collapse
Affiliation(s)
- Mohamed Helmy
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada.
| | - Kumar Selvarajoo
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
7
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Gaillochet C, Develtere W, Jacobs TB. CRISPR screens in plants: approaches, guidelines, and future prospects. THE PLANT CELL 2021; 33:794-813. [PMID: 33823021 PMCID: PMC8226290 DOI: 10.1093/plcell/koab099] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 05/20/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated systems have revolutionized genome engineering by facilitating a wide range of targeted DNA perturbations. These systems have resulted in the development of powerful new screens to test gene functions at the genomic scale. While there is tremendous potential to map and interrogate gene regulatory networks at unprecedented speed and scale using CRISPR screens, their implementation in plants remains in its infancy. Here we discuss the general concepts, tools, and workflows for establishing CRISPR screens in plants and analyze the handful of recent reports describing the use of this strategy to generate mutant knockout collections or to diversify DNA sequences. In addition, we provide insight into how to design CRISPR knockout screens in plants given the current challenges and limitations and examine multiple design options. Finally, we discuss the unique multiplexing capabilities of CRISPR screens to investigate redundant gene functions in highly duplicated plant genomes. Combinatorial mutant screens have the potential to routinely generate higher-order mutant collections and facilitate the characterization of gene networks. By integrating this approach with the numerous genomic profiles that have been generated over the past two decades, the implementation of CRISPR screens offers new opportunities to analyze plant genomes at deeper resolution and will lead to great advances in functional and synthetic biology.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
9
|
Licausi F, Giuntoli B. Synthetic biology of hypoxia. THE NEW PHYTOLOGIST 2021; 229:50-56. [PMID: 31960974 PMCID: PMC7754509 DOI: 10.1111/nph.16441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/03/2020] [Indexed: 05/06/2023]
Abstract
Synthetic biology can greatly aid the investigation of fundamental regulatory mechanisms and enable their direct deployment in the host organisms of choice. In the field of plant hypoxia physiology, a synthetic biology approach has recently been exploited to infer general properties of the plant oxygen sensing mechanism, by expression of plant-specific components in yeast. Moreover, genetic sensors have been devised to report cellular oxygen levels or physiological parameters associated with hypoxia, and orthogonal switches have been introduced in plants to trigger oxygen-specific responses. Upcoming applications are expected, such as genetic tailoring of oxygen-responsive traits, engineering of plant hypoxic metabolism and oxygen delivery to hypoxic tissues, and expansion of the repertoire of genetically encoded oxygen sensors.
Collapse
Affiliation(s)
- Francesco Licausi
- Biology DepartmentUniversity of PisaVia L. Ghini 1356126PisaItaly
- Institute of Life SciencesScuola Superiore Sant’AnnaPlantlab, Via Guidiccioni 8/10PisaItaly
| | - Beatrice Giuntoli
- Biology DepartmentUniversity of PisaVia L. Ghini 1356126PisaItaly
- Institute of Life SciencesScuola Superiore Sant’AnnaPlantlab, Via Guidiccioni 8/10PisaItaly
| |
Collapse
|
10
|
Lin CY, Eudes A. Strategies for the production of biochemicals in bioenergy crops. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:71. [PMID: 32318116 PMCID: PMC7158082 DOI: 10.1186/s13068-020-01707-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 05/12/2023]
Abstract
Industrial crops are grown to produce goods for manufacturing. Rather than food and feed, they supply raw materials for making biofuels, pharmaceuticals, and specialty chemicals, as well as feedstocks for fabricating fiber, biopolymer, and construction materials. Therefore, such crops offer the potential to reduce our dependency on petrochemicals that currently serve as building blocks for manufacturing the majority of our industrial and consumer products. In this review, we are providing examples of metabolites synthesized in plants that can be used as bio-based platform chemicals for partial replacement of their petroleum-derived counterparts. Plant metabolic engineering approaches aiming at increasing the content of these metabolites in biomass are presented. In particular, we emphasize on recent advances in the manipulation of the shikimate and isoprenoid biosynthetic pathways, both of which being the source of multiple valuable compounds. Implementing and optimizing engineered metabolic pathways for accumulation of coproducts in bioenergy crops may represent a valuable option for enhancing the commercial value of biomass and attaining sustainable lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
11
|
Wurtzel ET, Vickers CE, Hanson AD, Millar AH, Cooper M, Voss-Fels KP, Nikel PI, Erb TJ. Revolutionizing agriculture with synthetic biology. NATURE PLANTS 2019; 5:1207-1210. [PMID: 31740769 DOI: 10.1038/s41477-019-0539-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/27/2019] [Indexed: 05/26/2023]
Abstract
Synthetic biology is here to stay and will transform agriculture if given the chance. The huge challenges facing food, fuel and chemical production make it vital to give synthetic biology that chance-notwithstanding the shifts in mindset, training and infrastructure investment this demands. Here, we assess opportunities for agricultural synthetic biology and ways to remove barriers to their realization.
Collapse
Affiliation(s)
- Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, USA.
- Graduate School and University Center-CUNY, New York, NY, USA.
| | - Claudia E Vickers
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australia.
- Australian Institute for Bioengineering & Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Cooper
- Queensland Alliance for Agriculture & Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture & Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Pablo I Nikel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Tobias J Erb
- Max-Planck-Institute for Terrestrial Microbiology, Department of Biochemistry & Synthetic Metabolism, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
12
|
Hanson AD, Hibberd JM, Koffas MAG, Kopka J, Wurtzel ET. Focus Issue Editorial: Synthetic Biology. PLANT PHYSIOLOGY 2019; 179:772-774. [PMID: 30808713 PMCID: PMC6393805 DOI: 10.1104/pp.19.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Eleanore T Wurtzel
- Lehman College and The Graduate Center, City University of New York, Bronx, New York 10468
| |
Collapse
|