1
|
Kwasniak-Owczarek M, Janska H. Experimental approaches to studying translation in plant semi-autonomous organelles. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5175-5187. [PMID: 38592734 PMCID: PMC11389837 DOI: 10.1093/jxb/erae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Plant mitochondria and chloroplasts are semi-autonomous organelles originated from free-living bacteria that have retained reduced genomes during evolution. As a consequence, relatively few of the mitochondrial and chloroplast proteins are encoded in the organellar genomes and synthesized by the organellar ribosomes. Since both organellar genomes encode mainly components of the energy transduction systems, oxidative phosphorylation in mitochondria and photosynthetic apparatus in chloroplasts, understanding organellar translation is critical for a thorough comprehension of key aspects of mitochondrial and chloroplast activity affecting plant growth and development. Recent studies have clearly shown that translation is a key regulatory node in the expression of plant organellar genes, underscoring the need for an adequate methodology to study this unique stage of gene expression. The organellar translatome can be analysed by studying newly synthesized proteins or the mRNA pool recruited to the organellar ribosomes. In this review, we present experimental approaches used for studying translation in plant bioenergetic organelles. Their benefits and limitations, as well as the critical steps, are discussed. Additionally, we briefly mention several recently developed strategies to study organellar translation that have not yet been applied to plants.
Collapse
Affiliation(s)
- Malgorzata Kwasniak-Owczarek
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| |
Collapse
|
2
|
Tran HC, Schmitt V, Lama S, Wang C, Launay-Avon A, Bernfur K, Sultan K, Khan K, Brunaud V, Liehrmann A, Castandet B, Levander F, Rasmusson AG, Mireau H, Delannoy E, Van Aken O. An mTRAN-mRNA interaction mediates mitochondrial translation initiation in plants. Science 2023; 381:eadg0995. [PMID: 37651534 DOI: 10.1126/science.adg0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.
Collapse
Affiliation(s)
| | | | - Sbatie Lama
- Department of Biology, Lund University, Lund, Sweden
| | - Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Katja Bernfur
- Department of Chemistry, Lund University, Lund, Sweden
| | - Kristin Sultan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Arnaud Liehrmann
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université Paris-Saclay, CNRS, Université d'Évry, Laboratoire de Mathématiques et Modélisation d'Évry, 91037 Évry-Courcouronnes, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | | | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | |
Collapse
|
3
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Ren Z, Fan K, Zhen S, Zhang J, Liu Y, Fu J, Qi C, Wei Q, Du Y, Tatar W, Zhang X, Wang G, Rasmusson AG, Wang J, Liu Y. Tetratricopeptide-containing SMALL KERNEL 11 is essential for the assembly of cytochrome c oxidase in maize mitochondria. PLANT PHYSIOLOGY 2023; 192:170-187. [PMID: 36722259 DOI: 10.1093/plphys/kiad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 05/03/2023]
Abstract
Assembly of the functional complexes of the mitochondrial respiratory chain requires sophisticated and efficient regulatory mechanisms. In plants, the subunit composition and assembly factors involved in the biogenesis of cytochrome c oxidase (complex IV) are substantially less defined than in mammals and yeast. In this study, we cloned maize (Zea mays) Small kernel 11 (Smk11) via map-based cloning. Smk11 encodes a mitochondria-localized tetratricopeptide repeat protein. Disruption of Smk11 severely affected the assembly and activity of mitochondrial complex IV, leading to delayed plant growth and seed development. Protein interactions studies revealed that SMK11 might interact with four putative complex IV assembly factors, Inner membrane peptidase 1A (ZmIMP1A), MYB domain protein 3R3 (ZmMYB3R-3), cytochrome c oxidase 23 (ZmCOX23), and mitochondrial ferredoxin 1 (ZmMFDX1), among which ZmMFDX1 might interact with subunits ZmCOX6a and ZmCOX-X1; ZmMYB3R-3 might also interact with ZmCOX6a. The mutation of SMK11 perturbed the normal assembly of these subunits, leading to the inactivation of complex IV. The results of this study revealed that SMK11 serves as an accessory assembly factor required for the normal assembly of subunits into complex IV, which will accelerate the elucidation of the assembly of complex IV in plant mitochondria.
Collapse
Affiliation(s)
- Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sihan Zhen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Jie Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunlai Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianhan Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Yao Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Wurinile Tatar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jianhua Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Escamez S, Robinson KM, Luomaranta M, Gandla ML, Mähler N, Yassin Z, Grahn T, Scheepers G, Stener LG, Jansson S, Jönsson LJ, Street NR, Tuominen H. Genetic markers and tree properties predicting wood biorefining potential in aspen (Populus tremula) bioenergy feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:65. [PMID: 37038157 PMCID: PMC10088276 DOI: 10.1186/s13068-023-02315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Wood represents the majority of the biomass on land and constitutes a renewable source of biofuels and other bioproducts. However, wood is recalcitrant to bioconversion, raising a need for feedstock improvement in production of, for instance, biofuels. We investigated the properties of wood that affect bioconversion, as well as the underlying genetics, to help identify superior tree feedstocks for biorefining. RESULTS We recorded 65 wood-related and growth traits in a population of 113 natural aspen genotypes from Sweden ( https://doi.org/10.5061/dryad.gtht76hrd ). These traits included three growth and field performance traits, 20 traits for wood chemical composition, 17 traits for wood anatomy and structure, and 25 wood saccharification traits as indicators of bioconversion potential. Glucose release after saccharification with acidic pretreatment correlated positively with tree stem height and diameter and the carbohydrate content of the wood, and negatively with the content of lignin and the hemicellulose sugar units. Most of these traits displayed extensive natural variation within the aspen population and high broad-sense heritability, supporting their potential in genetic improvement of feedstocks towards improved bioconversion. Finally, a genome-wide association study (GWAS) revealed 13 genetic loci for saccharification yield (on a whole-tree-biomass basis), with six of them intersecting with associations for either height or stem diameter of the trees. CONCLUSIONS The simple growth traits of stem height and diameter were identified as good predictors of wood saccharification yield in aspen trees. GWAS elucidated the underlying genetics, revealing putative genetic markers for bioconversion of bioenergy tree feedstocks.
Collapse
Affiliation(s)
- Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Kathryn M Robinson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Mikko Luomaranta
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Zakiya Yassin
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | - Thomas Grahn
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | | | - Lars-Göran Stener
- The Forestry Research Institute of Sweden, Ekebo, 268 90, Svalöv, Sweden
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| |
Collapse
|
6
|
Song X, Chen Z, Du X, Li B, Fei Y, Tao Y, Wang F, Xu Y, Li W, Wang J, Liang G, Zhou Y, Tan X, Li Y, Yang J. Generation of new rice germplasms with low amylose content by CRISPR/CAS9-targeted mutagenesis of the FLOURY ENDOSPERM 2 gene. FRONTIERS IN PLANT SCIENCE 2023; 14:1138523. [PMID: 36993856 PMCID: PMC10040805 DOI: 10.3389/fpls.2023.1138523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
FLOURY ENDOSPERM 2 (FLO2), encoding a tetratricopeptide repeat domain (TPR)-containing protein located in the nucleus, is considered to be a regulatory protein that controls the biosynthesis of seed storage substances. The diversity of flo2 allele is attributable for the variations in grain appearance, amylose content (AC), and physicochemical properties, influencing the eating and cooking quality (ECQ) of rice. In this study, we used CRISPR/Cas9 to introduce loss-of-function mutations into the FLOURY ENDOSPERM 2 gene in Suken118 (SK118), a widely cultivated elite japonica rice variety in Jiangsu, China. Physiochemical analyses of the flo2 mutants were congruent with previous studies, exhibiting lowered AC and viscosity, risen gel consistency (GC) and gelatinization temperature (GT) values, which were all instrumental to the improvement of ECQ. However, the wrinkled opaque appearance and the decrease in grain width, grain thickness and grain weight imply trade-offs in grain yield. Despite the ex-ante estimation for low yielding, the superior ECQ in these novel genotypes generated by using genome editing approach may have the potential for formulating high value specialty food.
Collapse
Affiliation(s)
- Xiaohong Song
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
| | - Zhihui Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xi Du
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Bin Li
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
| | - Yunyan Fei
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yajun Tao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Fangquan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Wenqi Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Guohua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaoli Tan
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yulong Li
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jie Yang
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Vargas J, Gómez I, Vidal EA, Lee CP, Millar AH, Jordana X, Roschzttardtz H. Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1176. [PMID: 36904036 PMCID: PMC10007191 DOI: 10.3390/plants12051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions.
Collapse
Affiliation(s)
- Joaquín Vargas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
8
|
Schäfer K, Engstler C, Dischinger K, Carrie C. Assessment of Mitochondrial Protein Topology and Membrane Insertion. Methods Mol Biol 2022; 2363:165-181. [PMID: 34545493 DOI: 10.1007/978-1-0716-1653-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Analyzing the membrane integrity and topology of a mitochondrial protein is essential for truly understanding its function. In this chapter, we demonstrate how to analyze mitochondrial membrane proteins using both an immunological-based assay and an in vivo self-assembling GFP approach. First, immunological approaches to investigate the solubility or membrane association of a protein within mitochondria are described. With this method, we demonstrate how the topology of soluble domains of a membrane-integrated protein can be determined. Using protein-specific antibodies, the localization of the soluble domains of a protein are analyzed by a proteolytic-cleavage approach using proteinase K in mitochondria, outer membrane-ruptured mitochondria, and solubilized mitochondrial membranes. In a second approach, we determine the topology of plant mitochondrial proteins using an in vivo self-assembling GFP localization approach.
Collapse
Affiliation(s)
- Kerstin Schäfer
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Carina Engstler
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Korbinian Dischinger
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Chris Carrie
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
9
|
Pyrih J, Pánek T, Durante IM, Rašková V, Cimrhanzlová K, Kriegová E, Tsaousis AD, Eliáš M, Lukeš J. Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria. Mol Biol Evol 2021; 38:3170-3187. [PMID: 33837778 PMCID: PMC8321541 DOI: 10.1093/molbev/msab090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The main bacterial pathway for inserting proteins into the plasma membrane relies on the signal recognition particle (SRP), composed of the Ffh protein and an associated RNA component, and the SRP-docking protein FtsY. Eukaryotes use an equivalent system of archaeal origin to deliver proteins into the endoplasmic reticulum, whereas a bacteria-derived SRP and FtsY function in the plastid. Here we report on the presence of homologs of the bacterial Ffh and FtsY proteins in various unrelated plastid-lacking unicellular eukaryotes, namely Heterolobosea, Alveida, Goniomonas, and Hemimastigophora. The monophyly of novel eukaryotic Ffh and FtsY groups, predicted mitochondrial localization experimentally confirmed for Naegleria gruberi, and a strong alphaproteobacterial affinity of the Ffh group, collectively suggest that they constitute parts of an ancestral mitochondrial signal peptide-based protein-targeting system inherited from the last eukaryotic common ancestor, but lost from the majority of extant eukaryotes. The ability of putative signal peptides, predicted in a subset of mitochondrial-encoded N. gruberi proteins, to target a reporter fluorescent protein into the endoplasmic reticulum of Trypanosoma brucei, likely through their interaction with the cytosolic SRP, provided further support for this notion. We also illustrate that known mitochondrial ribosome-interacting proteins implicated in membrane protein targeting in opisthokonts (Mba1, Mdm38, and Mrx15) are broadly conserved in eukaryotes and nonredundant with the mitochondrial SRP system. Finally, we identified a novel mitochondrial protein (MAP67) present in diverse eukaryotes and related to the signal peptide-binding domain of Ffh, which may well be a hitherto unrecognized component of the mitochondrial membrane protein-targeting machinery.
Collapse
Affiliation(s)
- Jan Pyrih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Kristýna Cimrhanzlová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Kriegová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
10
|
Kolli R, Engstler C, Akbaş Ş, Mower JP, Soll J, Carrie C. The OXA2a Insertase of Arabidopsis Is Required for Cytochrome c Maturation. PLANT PHYSIOLOGY 2020; 184:1042-1055. [PMID: 32759271 PMCID: PMC7536658 DOI: 10.1104/pp.19.01248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/28/2020] [Indexed: 06/02/2023]
Abstract
In yeast (Saccharomyces cerevisiae) and human (Homo sapiens) mitochondria, Oxidase assembly protein1 (Oxa1) is the general insertase for protein insertion from the matrix side into the inner membrane while Cytochrome c oxidase assembly protein18 (Cox18/Oxa2) is specifically involved in the topogenesis of the complex IV subunit, Cox2. Arabidopsis (Arabidopsis thaliana) mitochondria contain four OXA homologs: OXA1a, OXA1b, OXA2a, and OXA2b. OXA2a and OXA2b are unique members of the Oxa1 superfamily, in that they possess a tetratricopeptide repeat (TPR) domain at their C termini. Here, we determined the role of OXA2a by studying viable mutant plants generated by partial complementation of homozygous lethal OXA2a transfer-DNA insertional mutants using the developmentally regulated ABSCISIC ACID INSENSITIVE3 (ABI3) promoter. The ABI3p:OXA2a plants displayed growth retardation due to a reduction in the steady-state abundances of both c-type cytochromes, cytochrome c 1 and cytochrome c The observed reduction in the steady-state abundance of complex III could be attributed to cytochrome c 1 being one of its subunits. Expression of a soluble heme lyase from an organism with cytochrome c maturation system III could functionally complement the lack of OXA2a. This implies that OXA2a is required for the system I cytochrome c maturation of Arabidopsis. Due to the interaction of OXA2a with Cytochrome c maturation protein CcmF C-terminal-like protein (CCMFC) in a yeast split-ubiquitin based interaction assay, we propose that OXA2a aids in the membrane insertion of CCMFC, which is presumed to form the heme lyase component of the cytochrome c maturation pathway. In contrast with the crucial role played by the TPR domain of OXA2b, the TPR domain of OXA2a is not essential for its functionality.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Carina Engstler
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Şebnem Akbaş
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
11
|
Gras DE, Mansilla N, Rodríguez C, Welchen E, Gonzalez DH. Arabidopsis thaliana SURFEIT1-like genes link mitochondrial function to early plant development and hormonal growth responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:690-704. [PMID: 32248588 DOI: 10.1111/tpj.14762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Mutations in SURFEIT1 (SURF1) genes affect cytochrome c oxidase (COX) levels in different prokaryotic and eukaryotic organisms. In this work, we report that Arabidopsis thaliana has two genes that potentially encode SURF1 proteins, as a result of a duplication that took place in Brassicaceae. Both genes encode mitochondrial proteins and mutation in AtSURF1a causes embryonic lethality. Mutation in AtSURF1b, instead, causes defects in hypocotyl elongation under growth-stimulating conditions, such as low light intensity, increased ambient temperature and incubation with glucose. Mutants in AtSURF1b show reduced expression of the auxin reporter DR5:GUS and increased levels of the gibberellin reporter GFP-RGA, suggesting that auxin and gibberellin homeostasis are affected. In agreement, growth defects caused by AtSURF1b mutation can be overcome by treatment with indole-3-acetic acid and gibberellin A3 , and also by increasing expression of the auxin biosynthesis gene YUC8 or the transcription factor PIF4, which shows lower abundance in AtSURF1b-deficient plants. Mutants in AtSURF1b display lower COX levels, higher alternative oxidase and superoxide levels, and increased expression of genes that respond to mitochondrial dysfunction. Decreased hypocotyl growth and DR5:GUS expression can be reversed by treatment with reduced glutathione, suggesting that redox changes, probably related to mitochondrial dysfunction, are responsible for the effect of AtSURF1b deficiency on hormone responses. The results indicate that changes in AtSURF1b affect mitochondrial function and the production of reactive oxygen species, which, in turn, impinges on a growth regulatory circuit that involves auxin, gibberellins and the transcription factor PIF4.
Collapse
Affiliation(s)
- Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Carina Rodríguez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
12
|
The Plant Mitochondrial TAT Pathway Is Essential for Complex III Biogenesis. Curr Biol 2020; 30:840-853.e5. [PMID: 32084398 DOI: 10.1016/j.cub.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
Twin arginine translocation (TAT) pathways have been extensively studied in bacteria and chloroplasts for their role in membrane translocation of folded proteins. However, an increasing number of organisms have been found to contain mitochondria-located TAT subunits, including plant mitochondria, which contain TAT subunits, though in an unusual arrangement with only TatB and TatC subunits. To date, no confirmed function has been attributed to mitochondrial TAT pathways in any organism. Using a truncation mutant approach, we demonstrate that the plant mitochondrial TatB (MTTATB) is required for complex III biogenesis. More specifically, MTTATB performs at a late stage in complex III biogenesis, conveying the translocation of the C terminus of the Rieske FeS subunit back across the inner membrane. This work confirms that plant mitochondria retained a functional TAT pathway for the Rieske FeS translocation, most likely from the original mitochondrial ancestor. It is hypothesized that the original mitochondria contained a bacteria-derived TAT pathway required for at least the Rieske FeS translocation. In several eukaryotic lineages, this mitochondrial TAT pathway was lost and replaced by BCS1. Interestingly, plant mitochondria appear to assemble complex III in the same subunit order as yeast and mammals but in contrast use bacteria-like assembly factors for this process.
Collapse
|
13
|
Kuhnert F, Stefanski A, Overbeck N, Drews L, Reichert AS, Stühler K, Weber APM. Rapid Single-Step Affinity Purification of HA-Tagged Plant Mitochondria. PLANT PHYSIOLOGY 2020; 182:692-706. [PMID: 31818904 PMCID: PMC6997695 DOI: 10.1104/pp.19.00732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/22/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.
Collapse
Affiliation(s)
- Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Nina Overbeck
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations. Int J Mol Sci 2019; 20:ijms20153830. [PMID: 31387303 PMCID: PMC6696091 DOI: 10.3390/ijms20153830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential cofactor for aerobic respiration, since it is required as a redox cofactor in Cytochrome c Oxidase (COX). This ancient and highly conserved enzymatic complex from the family of heme-copper oxidase possesses two copper sites: CuA and CuB. Biosynthesis of the oxidase is a complex, stepwise process that requires a high number of assembly factors. In this review, we summarize the state-of-the-art in the assembly of COX, with special emphasis in the assembly of copper sites. Assembly of the CuA site is better understood, being at the same time highly variable among organisms. We also discuss the current challenges that prevent the full comprehension of the mechanisms of assembly and the pending issues in the field.
Collapse
|
15
|
Meyer EH, Welchen E, Carrie C. Assembly of the Complexes of the Oxidative Phosphorylation System in Land Plant Mitochondria. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:23-50. [PMID: 30822116 DOI: 10.1146/annurev-arplant-050718-100412] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants-compared with those described in fungal and animal models-we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.
Collapse
Affiliation(s)
- Etienne H Meyer
- Organelle Biology and Biotechnology Research Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Current affiliation: Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany;
| | - Elina Welchen
- Cátedra de Biología Celular y Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Chris Carrie
- Plant Sciences Research Group, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| |
Collapse
|