1
|
Zhang L, Yang C, Liu C. Revealing the significance of chlorophyll b in the moss Physcomitrium patens by knocking out two functional chlorophyllide a oxygenase. PHOTOSYNTHESIS RESEARCH 2023; 158:171-180. [PMID: 37653264 DOI: 10.1007/s11120-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
The chlorophyllide a oxygenase (CAO) plays a crucial role in the biosynthesis of chlorophyll b (Chl b). In the moss Physcomitrium patens (P. patens), two distinct gene copies, PpCAO1 and PpCAO2, are present. In this study, we investigate the differential expression of these CAOs following light exposure after a period of darkness (24 h) and demonstrate that the accumulation of Chl b is only abolished when both genes are knocked out. In the ppcao1cao2 mutant, most of the antenna proteins associated with both photosystems (PS) I and II are absent. Despite of the existence of LHCSR proteins and zeaxanthin, the mutant exhibits minimal non-photochemical quenching (NPQ) capacity. Nevertheless, the ppcao1cao2 mutant retains a certain level of pseudo-cyclic electron transport to provide photoprotection for PSI. These findings shed light on the dual dependency of Chl b synthesis on two CAOs and highlight the distinct effects of Chl b deprival on PSI and PSII core complexes in P. patens, a model species for bryophytes.
Collapse
Affiliation(s)
- Lin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunhong Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Sun H, Shang H, Pan X, Li M. Structural insights into the assembly and energy transfer of the Lhcb9-dependent photosystem I from moss Physcomitrium patens. NATURE PLANTS 2023; 9:1347-1358. [PMID: 37474782 DOI: 10.1038/s41477-023-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
In plants and green algae, light-harvesting complexes I and II (LHCI and LHCII) constitute the antennae of photosystem I (PSI), thus effectively increasing the cross-section of the PSI core. The moss Physcomitrium patens (P. patens) represents a well-studied primary land-dwelling photosynthetic autotroph branching from the common ancestor of green algae and land plants at the early stage of evolution. P. patens possesses at least three types of PSI with different antenna sizes. The largest PSI form (PpPSI-L) exhibits a unique organization found neither in flowering plants nor in algae. Its formation is mediated by the P. patens-specific LHC protein, Lhcb9. While previous studies have revealed the overall architecture of PpPSI-L, its assembly details and the relationship between different PpPSI types remain unclear. Here we report the high-resolution structure of PpPSI-L. We identified 14 PSI core subunits, one Lhcb9, one phosphorylated LHCII trimer and eight LHCI monomers arranged as two belts. Our structural analysis established the essential role of Lhcb9 and the phosphorylated LHCII in stabilizing the complex. In addition, our results suggest that PpPSI switches between different types, which share identical modules. This feature may contribute to the dynamic adjustment of the light-harvesting capability of PSI under different light conditions.
Collapse
Affiliation(s)
- Haiyu Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Xiaowei Pan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Gerotto C, Trotta A, Bajwa AA, Morosinotto T, Aro EM. Role of serine/threonine protein kinase STN7 in the formation of two distinct photosystem I supercomplexes in Physcomitrium patens. PLANT PHYSIOLOGY 2022; 190:698-713. [PMID: 35736511 PMCID: PMC9434285 DOI: 10.1093/plphys/kiac294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Reversible thylakoid protein phosphorylation provides most flowering plants with dynamic acclimation to short-term changes in environmental light conditions. Here, through generating Serine/Threonine protein kinase 7 (STN7)-depleted mutants in the moss Physcomitrella (Physcomitrium patens), we identified phosphorylation targets of STN7 kinase and their roles in short- and long-term acclimation of the moss to changing light conditions. Biochemical and mass spectrometry analyses revealed STN7-dependent phosphorylation of N-terminal Thr in specific Light-Harvesting Complex II (LHCII) trimer subunits (LHCBM2 and LHCBM4/8) and provided evidence that phospho-LHCBM accumulation is responsible for the assembly of two distinct Photosystem I (PSI) supercomplexes (SCs), both of which are largely absent in STN7-depleted mutants. Besides the canonical state transition complex (PSI-LHCI-LHCII), we isolated the larger moss-specific PSI-Large (PSI-LHCI-LHCB9-LHCII) from stroma-exposed thylakoids. Unlike PSI-LHCI-LHCII, PSI-Large did not demonstrate short-term dynamics for balancing the distribution of excitation energy between PSII and PSI. Instead, PSI-Large contributed to a more stable increase in PSI antenna size in Physcomitrella, except under prolonged high irradiance. Additionally, the STN7-depleted mutants revealed altered light-dependent phosphorylation of a monomeric antenna protein, LHCB6, whose phosphorylation displayed a complex regulation by multiple kinases. Collectively, the unique phosphorylation plasticity and dynamics of Physcomitrella monomeric LHCB6 and trimeric LHCBM isoforms, together with the presence of PSI SCs with different antenna sizes and responsiveness to light changes, reflect the evolutionary position of mosses between green algae and vascular plants, yet with clear moss-specific features emphasizing their adaptation to terrestrial low-light environments.
Collapse
Affiliation(s)
| | | | - Azfar Ali Bajwa
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | | | | |
Collapse
|
4
|
Electron transfer via cytochrome b6f complex displays sensitivity to Antimycin A upon STT7 kinase activation. Biochem J 2022; 479:111-127. [PMID: 34981811 DOI: 10.1042/bcj20210802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent in stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.
Collapse
|
5
|
Colpo A, Baldisserotto C, Pancaldi S, Sabia A, Ferroni L. Photosystem II photoinhibition and photoprotection in a lycophyte, Selaginella martensii. PHYSIOLOGIA PLANTARUM 2022; 174:e13604. [PMID: 34811759 PMCID: PMC9300044 DOI: 10.1111/ppl.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 05/13/2023]
Abstract
The Lycophyte Selaginella martensii efficiently acclimates to diverse light environments, from deep shade to full sunlight. The plant does not modulate the abundance of the Light Harvesting Complex II, mostly found as a free trimer, and does not alter the maximum capacity of thermal dissipation (NPQ). Nevertheless, the photoprotection is expected to be modulatable upon long-term light acclimation to preserve the photosystems (PSII, PSI). The effects of long-term light acclimation on PSII photoprotection were investigated using the chlorophyll fluorometric method known as "photochemical quenching measured in the dark" (qPd ). Singularly high-qPd values at relatively low irradiance suggest a heterogeneous antenna system (PSII antenna uncoupling). The extent of antenna uncoupling largely depends on the light regime, reaching the highest value in sun-acclimated plants. In parallel, the photoprotective NPQ (pNPQ) increased from deep-shade to high-light grown plants. It is proposed that the differences in the long-term modulation in the photoprotective capacity are proportional to the amount of uncoupled LHCII. In deep-shade plants, the inconsistency between invariable maximum NPQ and lower pNPQ is attributed to the thermal dissipation occurring in the PSII core.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| | | | - Simonetta Pancaldi
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| | - Alessandra Sabia
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| | - Lorenzo Ferroni
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| |
Collapse
|
6
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
7
|
Ferroni L, Brestič M, Živčak M, Cantelli R, Pancaldi S. Increased photosynthesis from a deep-shade to high-light regime occurs by enhanced CO 2 diffusion into the leaf of Selaginella martensii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:143-154. [PMID: 33486204 DOI: 10.1016/j.plaphy.2021.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The current understanding of photosynthesis across land plant phylogeny strongly indicates that ancient vascular plants are mainly limited by strong constitutive CO2 diffusional constraints, particularly low stomatal and mesophyll conductance. Considering that the lycophyte Selaginella martensii can demonstrate long-term light acclimation, this study addresses the regulation extent of CO2 assimilation in this species cultivated under contrasting light regimes of deep shade, medium shade and high light. Comparative analyses of photosynthetic traits, CO2 conductance and leaf morpho-anatomy revealed acclimation plasticity similar to that of seed plants, though occurring in the context of an inherently low photosynthetic capacity typical of lycophytes. Specific modulations of the stomatal density and aperture, chloroplast surface exposed to mesophyll airspaces and cell wall thickness sustained a marked improvement in CO2 diffusion from deep shade to high light. However, the maximum carboxylation rate was comparatively less effectively upregulated, leading to a greater incidence of biochemical limitations of photosynthesis. Because of a low carboxylation capacity under any light regime, a lycophyte prevents potential photodamage to the chloroplast by not only exploiting the thermal dissipation of excess absorbed energy but also diverting a large fraction of photosynthetic electrons to sinks alternative to carboxylation.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy; Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia.
| | - Marián Brestič
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia.
| | - Marek Živčak
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia
| | - Riccardo Cantelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| |
Collapse
|
8
|
Li D, Wang M, Zhang T, Chen X, Li C, Liu Y, Brestic M, Chen THH, Yang X. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. PHOTOSYNTHESIS RESEARCH 2021; 147:301-315. [PMID: 33394352 DOI: 10.1007/s11120-020-00810-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Photosystem II (PSII), especially the D1 protein, is highly sensitive to the detrimental impact of heat stress. Photoinhibition always occurs when the rate of photodamage exceeds the rate of D1 protein repair. Here, genetically engineered codA-tomato with the capability to accumulate glycinebetaine (GB) was established. After photoinhibition treatment at high temperature, the transgenic lines displayed more thermotolerance to heat-induced photoinhibition than the control line. GB maintained high expression of LeFtsHs and LeDegs and degraded the damaged D1 protein in time. Meanwhile, the increased transcription of synthesis-related genes accelerated the de novo synthesis of D1 protein. Low ROS accumulation reduced the inhibition of D1 protein translation in the transgenic plants, thereby reducing protein damage. The increased D1 protein content and decreased phosphorylated D1 protein (pD1) in the transgenic plants compared with control plants imply that GB may minimize photodamage and maximize D1 protein stability. As D1 protein exhibits a high turnover, PSII maybe repaired rapidly and efficiently in transgenic plants under photoinhibition treatment at high temperature, with the resultant mitigation of photoinhibition of PSII.
Collapse
Affiliation(s)
- Daxing Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Mengwei Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiao Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Tony H H Chen
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China.
| |
Collapse
|
9
|
Verhoeven AS, Berkowitz JM, Walton BN, Berube BK, Willour JJ, Polich SB. Is zeaxanthin needed for desiccation tolerance? Sustained forms of thermal dissipation in tolerant versus sensitive bryophytes. PHYSIOLOGIA PLANTARUM 2021; 171:453-467. [PMID: 33161567 DOI: 10.1111/ppl.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerant (DT) plants engage and disengage sustained forms of energy dissipation in response to desiccation and rehydration. This project sought to characterize the role of zeaxanthin and thylakoid protein phosphorylation status in sustained energy dissipation during desiccation in bryophytes with varying DT. Tolerant (Polytrichum piliferum, Dicranum species, Calliergon stramineum) and sensitive (Grimmia species, Schistidium rivulare, Sphagnum species) moss were desiccated in darkness or natural light conditions for up to three weeks. Desiccation caused pronounced reductions in Fv /Fm in all cases which was enhanced by light exposure during desiccation. Desiccation in darkness resulted in no accumulation of Z in any species, however, in natural light conditions there was significant accumulation of Z in tolerant but not sensitive species. Desiccation in natural light, relative to darkness, resulted in more pronounced reductions in Fo in tolerant but not sensitive species. Recovery of Fv /Fm upon rehydration occurred in two phases, a rapid phase (minutes) and a slower phase (hours). Increased time of desiccation, and light exposure, resulted in a reduction in the rapid phase. Desiccation in light conditions resulted in some accumulation of the phosphorylated form of the major light harvesting trimer (LHCII). Data are consistent with two mechanisms of sustained quenching, neither of which requires Z. However, when desiccation occurs in natural light conditions, accumulation of Z likely contributes to one or both of the sustained forms of dissipation. Increases in LHCII phosphorylation during desiccation are consistent with increased connectivity between the photosystems. The absence of Z formation in sensitive species may contribute to their lack of desiccation tolerance.
Collapse
Affiliation(s)
- Amy S Verhoeven
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | | | - Brenna N Walton
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brandt K Berube
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Jerry J Willour
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Sidney B Polich
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
10
|
Ferroni L, Colpo A, Baldisserotto C, Pancaldi S. In an ancient vascular plant the intermediate relaxing component of NPQ depends on a reduced stroma: Evidence from dithiothreitol treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 215:112114. [PMID: 33385824 DOI: 10.1016/j.jphotobiol.2020.112114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
In plants, the non-photochemical quenching of chlorophyll fluorescence (NPQ) induced by high light reveals the occurrence of a multiplicity of regulatory processes of photosynthesis, primarily devoted to photoprotection of photosystem I and II (PSI and PSII). The study of NPQ relaxation in darkness allows the separation of three kinetically distinct phases: the fast relaxing high-energy quenching qE, the intermediate relaxing phase and the nearly non-relaxatable photoinhibitory quenching. Several processes can underlie the intermediate phase. In the ancient vascular plant Selaginella martensii (Lycopodiophyta) this component, here termed qX, was previously proposed to reflect mainly a photoprotective energy-spillover from PSII to PSI. It is hypothesized that qX is induced by an over-reduced photosynthetic electron transport chain from PSII to final acceptors. To test this hypothesis the leaves were treated with the reductant dithiothreitol (DTT) and the chlorophyll fluorescence changes were analysed during the induction with high irradiance and the subsequent relaxation in darkness. DTT treatment caused the well-known decrease in NPQ induction and expectedly resulted in a disturbed photosynthetic electron flow. The relaxation curves of Y(NPQ), formally representing the quantum yield of the regulatory thermal dissipation, revealed a DTT dose-dependent decrease in amplitude not only of qE, but also of qX, up to the complete disappearance of the latter. Modelling of the relaxation curves under alternative scenarios led to the conclusion that DTT is permissive with respect to qX induction but suppresses its dark relaxation. The strong dependence of qX on the chloroplast redox state is discussed with respect to its proposed energy-spillover photoprotective significance in a lycophyte.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Andrea Colpo
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Costanza Baldisserotto
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Simonetta Pancaldi
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Janicki M, Marczak M, Cieśla A, Ludwików A. Identification of Novel Inhibitors of a Plant Group A Protein Phosphatase Type 2C Using a Combined In Silico and Biochemical Approach. FRONTIERS IN PLANT SCIENCE 2020; 11:526460. [PMID: 33042170 PMCID: PMC7524867 DOI: 10.3389/fpls.2020.526460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) of group A play a significant role in the regulation of various processes in plants including growth, development, ion transport, and stress acclimation. In this study, we selected potential PP2C group A inhibitors using a structure-based virtual screening method followed by biochemical and in vitro validation. Over twenty million chemical compounds from the ZINC database were used for docking studies. The precision of the calculations was increased by an induced-fit docking protocol and the molecular mechanics/generalized Born surface area (MM/GBSA) method, which yielded approximate values for the binding energy of the protein-ligand complex. After clustering and ranking their activity, the top-ranking compounds were tested against PP2C group A members in vitro and their in vivo activity was also explored. Phosphatase activity assays identified two compounds with significant inhibitory activity against ABI1 protein ranging from around 57 to 91% at a concentration of 100 μM. Importantly, this in vitro activity correlated well with in vivo inhibition of seed germination, as expected for PP2C inhibitors. The results should promote the design of novel inhibitors with improved potency against ABI1-like and other PP2Cs that might be used in agriculture for the protection of crops against stress.
Collapse
|
12
|
Alegre S, Pascual J, Trotta A, Angeleri M, Rahikainen M, Brosche M, Moffatt B, Kangasjärvi S. Evolutionary conservation and post-translational control of S-adenosyl-L-homocysteine hydrolase in land plants. PLoS One 2020; 15:e0227466. [PMID: 32678822 PMCID: PMC7367456 DOI: 10.1371/journal.pone.0227466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/30/2020] [Indexed: 02/01/2023] Open
Abstract
Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH in Arabidopsis thaliana and Physcomitrella patens further suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues.
Collapse
Affiliation(s)
- Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Jesús Pascual
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
- Institute of Biosciences and Bioresources, National Research Council of Italy, Sesto Fiorentino, Firenze, Italy
| | - Martina Angeleri
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, Vidal S. A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:845. [PMID: 32636864 PMCID: PMC7317016 DOI: 10.3389/fpls.2020.00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
COR413 genes belong to a poorly characterized group of plant-specific cold-regulated genes initially identified as part of the transcriptional activation machinery of plants during cold acclimation. They encode multispanning transmembrane proteins predicted to target the plasma membrane or the chloroplast inner membrane. Despite being ubiquitous throughout the plant kingdom, little is known about their biological function. In this study, we used reverse genetics to investigate the relevance of a predicted chloroplast localized COR413 protein (PpCOR413im) from the moss Physcomitrella patens in developmental and abiotic stress responses. Expression of PpCOR413im was strongly induced by abscisic acid (ABA) and by various environmental stimuli, including low temperature, hyperosmosis, salinity and high light. In vivo subcellular localization of PpCOR413im-GFP fusion protein revealed that this protein is localized in chloroplasts, confirming the in silico predictions. Loss-of-function mutants of PpCOR413im exhibited growth and developmental alterations such as growth retardation, reduced caulonema formation and hypersensitivity to ABA. Mutants also displayed altered photochemistry under various abiotic stresses, including dehydration and low temperature, and exhibited a dramatic growth inhibition upon exposure to high light. Disruption of PpCOR413im also caused altered chloroplast ultrastructure, increased ROS accumulation, and enhanced starch and sucrose levels under high light or after ABA treatment. In addition, loss of PpCOR413im affected both nuclear and chloroplast gene expression in response to ABA and high light, suggesting a role for this gene downstream of ABA in the regulation of growth and environmental stress responses. Developmental alterations exhibited by PpCOR413im knockout mutants had remarkable similarities to those exhibited by hxk1, a mutant lacking a major chloroplastic hexokinase, an enzyme involved in energy homeostasis. Based on these findings, we propose that PpCOR413im is involved in coordinating energy metabolism with ABA-mediated growth and developmental responses.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jorge Quezada
- Unidad de Biotecnología Vegetal, Instituto de Biología Molecular y Biotecnología, Carrera de Biología – Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
Trotta A, Bajwa AA, Mancini I, Paakkarinen V, Pribil M, Aro EM. The Role of Phosphorylation Dynamics of CURVATURE THYLAKOID 1B in Plant Thylakoid Membranes. PLANT PHYSIOLOGY 2019; 181:1615-1631. [PMID: 31615849 PMCID: PMC6878015 DOI: 10.1104/pp.19.00942] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 05/18/2023]
Abstract
Thylakoid membranes in land plant chloroplasts are organized into appressed and nonappressed membranes, which contribute to the control of energy distribution between the two photosystems (PSI and PSII) from the associated light-harvesting complexes (LHCs). Under fluctuating light conditions, fast reversible phosphorylation of the N-terminal thylakoid protein domains and changes in electrostatic forces induce modifications in thylakoid organization. To gain insight into the role and dynamics of thylakoid protein phosphorylation, we used targeted proteomics to quantify amounts of the structural proteins CURVATURE THYLAKOID1 (CURT1), including the levels of CURT1B N terminus phosphorylation and acetylation, after short-term fluctuating light treatments of Arabidopsis (Arabidopsis thaliana). The CURT1B protein was localized to a specific curvature domain separated from the margin domain, and specifically depleted of chlorophyll-binding protein complexes. The acetylation and phosphorylation of the CURT1B N terminus were mutually exclusive. The level of CURT1B phosphorylation, but not of acetylation, increased upon light shifts that also led to an increase in PSII core protein phosphorylation. These dynamics were largely absent in the knockout mutant of PSII core protein kinase SER/THR PROTEIN KINASE8 (STN8). Moreover, in mutants impaired in interaction between phosphorylated LHCII and PSI, the phosphorylation dynamics of CURT1B and the amount of the other CURT1 proteins were misregulated, indicating a functional interaction between CURT1B and PSI-LHCII complexes in grana margins. The complex relationships between phosphorylation of PSII, LHCII, and CURT1B support the dynamics of thylakoid protein complexes that are crucial in the optimization of photosynthesis under fluctuating light intensities.
Collapse
Affiliation(s)
- Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| | - Azfar Ali Bajwa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| | - Ilaria Mancini
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Copenhagen, Denmark
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|