1
|
Dohnálek V, Doležal P. Installation of LYRM proteins in early eukaryotes to regulate the metabolic capacity of the emerging mitochondrion. Open Biol 2024; 14:240021. [PMID: 38772414 PMCID: PMC11293456 DOI: 10.1098/rsob.240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/13/2024] [Indexed: 05/23/2024] Open
Abstract
Core mitochondrial processes such as the electron transport chain, protein translation and the formation of Fe-S clusters (ISC) are of prokaryotic origin and were present in the bacterial ancestor of mitochondria. In animal and fungal models, a family of small Leu-Tyr-Arg motif-containing proteins (LYRMs) uniformly regulates the function of mitochondrial complexes involved in these processes. The action of LYRMs is contingent upon their binding to the acylated form of acyl carrier protein (ACP). This study demonstrates that LYRMs are structurally and evolutionarily related proteins characterized by a core triplet of α-helices. Their widespread distribution across eukaryotes suggests that 12 specialized LYRMs were likely present in the last eukaryotic common ancestor to regulate the assembly and folding of the subunits that are conserved in bacteria but that lack LYRM homologues. The secondary reduction of mitochondria to anoxic environments has rendered the function of LYRMs and their interaction with acylated ACP dispensable. Consequently, these findings strongly suggest that early eukaryotes installed LYRMs in aerobic mitochondria as orchestrated switches, essential for regulating core metabolism and ATP production.
Collapse
Affiliation(s)
- Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec252 50, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec252 50, Czech Republic
| |
Collapse
|
2
|
Pedroletti L, Moseler A, Meyer AJ. Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3328-3344. [PMID: 36846908 DOI: 10.1093/jxb/erad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
3
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
4
|
VanBuren R, Wai CM, Giarola V, Župunski M, Pardo J, Kalinowski M, Grossmann G, Bartels D. Core cellular and tissue-specific mechanisms enable desiccation tolerance in Craterostigma. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:231-245. [PMID: 36843450 DOI: 10.1111/tpj.16165] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within the Craterostigma genome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. The Craterostigma genome contains almost 200 tandemly duplicated early light-induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation-responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.
Collapse
Affiliation(s)
- Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Milan Župunski
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jeremy Pardo
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael Kalinowski
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dorothea Bartels
- IMBIO, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
5
|
Wang G, Wang Y, Ni J, Li R, Zhu F, Wang R, Tian Q, Shen Q, Yang Q, Tang J, Murcha MW, Wang G. An MCIA-like complex is required for mitochondrial complex I assembly and seed development in maize. MOLECULAR PLANT 2022; 15:1470-1487. [PMID: 35957532 DOI: 10.1016/j.molp.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
During adaptive radiation, mitochondria have co-evolved with their hosts, leading to gain or loss of subunits and assembly factors of respiratory complexes. Plant mitochondrial complex I harbors ∼40 nuclear- and 9 mitochondrial-encoded subunits, and is formed by stepwise assembly during which different intermediates are integrated via various assembly factors. In mammals, the mitochondrial complex I intermediate assembly (MCIA) complex is required for building the membrane arm module. However, plants have lost almost all of the MCIA complex components, giving rise to the hypothesis that plants follow an ancestral pathway to assemble the membrane arm subunits. Here, we characterize a maize crumpled seed mutant, crk1, and reveal by map-based cloning that CRK1 encodes an ortholog of human complex I assembly factor 1, zNDUFAF1, the only evolutionarily conserved MCIA subunit in plants. zNDUFAF1 is localized in the mitochondria and accumulates in two intermediate complexes that contain complex I membrane arm subunits. Disruption of zNDUFAF1 results in severe defects in complex I assembly and activity, a cellular bioenergetic shift to aerobic glycolysis, and mitochondrial vacuolation. Moreover, we found that zNDUFAF1, the putative mitochondrial import inner membrane translocase ZmTIM17-1, and the isovaleryl-coenzyme A dehydrogenase ZmIVD1 interact each other, and could be co-precipitated from the mitochondria and co-migrate in the same assembly intermediates. Knockout of either ZmTIM17-1 or ZmIVD1 could lead to the significantly reduced complex I stability and activity as well as defective seeds. These results suggest that zNDUFAF1, ZmTIM17-1 and ZmIVD1 probably form an MCIA-like complex that is essential for the biogenesis of mitochondrial complex I and seed development in maize. Our findings also imply that plants and mammals recruit MCIA subunits independently for mitochondrial complex I assembly, highlighting the importance of parallel evolution in mitochondria adaptation to their hosts.
Collapse
Affiliation(s)
- Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiacheng Ni
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rongrong Li
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Fengling Zhu
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruyin Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiuzhen Tian
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingwen Shen
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Monika W Murcha
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Meyer EH, Letts JA, Maldonado M. Structural insights into the assembly and the function of the plant oxidative phosphorylation system. THE NEW PHYTOLOGIST 2022; 235:1315-1329. [PMID: 35588181 DOI: 10.1111/nph.18259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 05/23/2023]
Abstract
One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.
Collapse
Affiliation(s)
- Etienne H Meyer
- Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Maria Maldonado
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochem Soc Trans 2022; 50:1119-1132. [PMID: 35587610 PMCID: PMC9246333 DOI: 10.1042/bst20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.
Collapse
|
8
|
Li Y, Belt K, Alqahtani SF, Saha S, Fenske R, Van Aken O, Whelan J, Millar AH, Murcha MW, Huang S. The mitochondrial LYR protein SDHAF1 is required for succinate dehydrogenase activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:499-512. [PMID: 35080330 PMCID: PMC9306560 DOI: 10.1111/tpj.15684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 06/02/2023]
Abstract
Succinate dehydrogenase (SDH, complex II), which plays an essential role in mitochondrial respiration and tricarboxylic acid metabolism, requires the assembly of eight nuclear-encoded subunits and the insertion of various cofactors. Here, we report on the characterization of an Arabidopsis thaliana leucine-tyrosine-arginine (LYR) protein family member SDHAF1, (At2g39725) is a factor required for SDH activity. SDHAF1 is located in mitochondria and can fully complement the yeast SDHAF1 deletion strain. Knockdown of SDHAF1 using RNA interference resulted in a decrease in seedling hypocotyl elongation and reduced SDH activity. Proteomic analyses revealed a decreased abundance of various SDH subunits and assembly factors. Protein interaction assays revealed that SDHAF1 can interact exclusively with the Fe-S cluster-containing subunit SDH2 and HSCB, a cochaperone involved in Fe-S cluster complex recruitment. Therefore, we propose that in Arabidopsis, SDHAF1 plays a role in the biogenesis of SDH2 to form the functional complex II, which is essential for mitochondrial respiration and metabolism.
Collapse
Affiliation(s)
- Ying Li
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Katharina Belt
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Saad F. Alqahtani
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Biochemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Saurabh Saha
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Department of Biology, Faculty of ScienceLund UniversitySE‐223 62LundSweden
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life ScienceLa Trobe UniversityVictoriaAustralia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Monika W. Murcha
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| |
Collapse
|
9
|
López-López A, Keech O, Rouhier N. Maturation and Assembly of Iron-Sulfur Cluster-Containing Subunits in the Mitochondrial Complex I From Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:916948. [PMID: 35677241 PMCID: PMC9168917 DOI: 10.3389/fpls.2022.916948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 05/13/2023]
Abstract
In plants, the mitochondrial complex I is the protein complex encompassing the largest number of iron-sulfur (Fe-S) clusters. The whole, membrane-embedded, holo-complex is assembled stepwise from assembly intermediates. The Q and N modules are combined to form a peripheral arm in the matrix, whereas the so-called membrane arm is formed after merging a carbonic anhydrase (CA) module with so-called Pp (proximal) and the Pd (distal) domains. A ferredoxin bridge connects both arms. The eight Fe-S clusters present in the peripheral arm for electron transfer reactions are synthesized via a dedicated protein machinery referred to as the iron-sulfur cluster (ISC) machinery. The de novo assembly occurs on ISCU scaffold proteins from iron, sulfur and electron delivery proteins. In a second step, the preformed Fe-S clusters are transferred, eventually converted and inserted in recipient apo-proteins. Diverse molecular actors, including a chaperone-cochaperone system, assembly factors among which proteins with LYR motifs, and Fe-S cluster carrier/transfer proteins, have been identified as contributors to the second step. This mini-review highlights the recent progresses in our understanding of how specificity is achieved during the delivery of preformed Fe-S clusters to complex I subunits.
Collapse
Affiliation(s)
- Alicia López-López
- INRAE, IAM, Université de Lorraine, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Nicolas Rouhier
- INRAE, IAM, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier,
| |
Collapse
|
10
|
Maziak A, Heidorn-Czarna M, Weremczuk A, Janska H. FTSH4 and OMA1 mitochondrial proteases reduce moderate heat stress-induced protein aggregation. PLANT PHYSIOLOGY 2021; 187:769-786. [PMID: 34608962 PMCID: PMC8491029 DOI: 10.1093/plphys/kiab296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 05/12/2023]
Abstract
The threat of global warming makes uncovering mechanisms of plant tolerance to long-term moderate heat stress particularly important. We previously reported that Arabidopsis (Arabidopsis thaliana) plants lacking mitochondrial proteases FTSH4 or OMA1 suffer phenotypic changes under long-term stress of 30°C, while their growth at 22°C is not affected. Here we found that these morphological and developmental changes are associated with increased accumulation of insoluble mitochondrial protein aggregates that consist mainly of small heat-shock proteins (sHSPs). Greater accumulation of sHSPs in ftsh4 than oma1 corresponds with more severe phenotypic abnormalities. We showed that the proteolytic activity of FTSH4, and to a lesser extent of OMA1, as well as the chaperone function of FTSH4, is crucial for protecting mitochondrial proteins against aggregation. We demonstrated that HSP23.6 and NADH dehydrogenase subunit 9 present in aggregates are proteolytic substrates of FTSH4, and this form of HSP23.6 is also a substrate of OMA1 protease. In addition, we found that the activity of FTSH4 plays an important role during recovery from elevated to optimal temperatures. Isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analyses, along with identification of aggregation-prone proteins, implicated mitochondrial pathways affected by protein aggregation (e.g. assembly of complex I) and revealed that the mitochondrial proteomes of ftsh4 and oma1 plants are similarly adapted to long-term moderate heat stress. Overall, our data indicate that both FTSH4 and OMA1 increase the tolerance of plants to long-term moderate heat stress by reducing detergent-tolerant mitochondrial protein aggregation.
Collapse
Affiliation(s)
- Agata Maziak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Aleksandra Weremczuk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
- Author for communication:
| |
Collapse
|
11
|
Ivanova A, Ghifari AS, Berkowitz O, Whelan J, Murcha MW. The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly. PLANT PHYSIOLOGY 2021; 186:599-610. [PMID: 33616659 PMCID: PMC8154063 DOI: 10.1093/plphys/kiab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 06/02/2023]
Abstract
ATP is generated in mitochondria by oxidative phosphorylation. Complex I (NADH:ubiquinone oxidoreductase or NADH dehydrogenase) is the first multisubunit protein complex of this pathway, oxidizing NADH and transferring electrons to the ubiquinone pool. Typically, Complex I mutants display a slow growth rate compared to wild-type plants. Here, using a forward genetic screen approach for restored growth of a Complex I mutant, we have identified the mitochondrial ATP-dependent metalloprotease, Filamentous Temperature Sensitive H 3 (FTSH3), as a factor that is required for the disassembly of Complex I. An ethyl methanesulfonate-induced mutation in FTSH3, named as rmb1 (restoration of mitochondrial biogenesis 1), restored Complex I abundance and plant growth. Complementation could be achieved with FTSH3 lacking proteolytic activity, suggesting the unfoldase function of FTSH3 has a role in Complex I disassembly. The introduction of the rmb1 to an additional, independent, and extensively characterized Complex I mutant, ndufs4, resulted in similar increases to Complex I abundance and a partial restoration of growth. These results show that disassembly or degradation of Complex I plays a role in determining its steady-state abundance and thus turnover may vary under different conditions.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Vic, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Vic, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
12
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
13
|
Petereit J, Duncan O, Murcha MW, Fenske R, Cincu E, Cahn J, Pružinská A, Ivanova A, Kollipara L, Wortelkamp S, Sickmann A, Lee J, Lister R, Millar AH, Huang S. Mitochondrial CLPP2 Assists Coordination and Homeostasis of Respiratory Complexes. PLANT PHYSIOLOGY 2020; 184:148-164. [PMID: 32571844 PMCID: PMC7479914 DOI: 10.1104/pp.20.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/12/2020] [Indexed: 05/04/2023]
Abstract
Protein homeostasis in eukaryotic organelles and their progenitor prokaryotes is regulated by a series of proteases including the caseinolytic protease (CLPP). CLPP has essential roles in chloroplast biogenesis and maintenance, but the significance of the plant mitochondrial CLPP remains unknown and factors that aid coordination of nuclear- and mitochondrial-encoded subunits for complex assembly in mitochondria await discovery. We generated knockout lines of the single gene for the mitochondrial CLP protease subunit, CLPP2, in Arabidopsis (Arabidopsis thaliana). Mutants showed a higher abundance of transcripts from mitochondrial genes encoding oxidative phosphorylation protein complexes, whereas nuclear genes encoding other subunits of the same complexes showed no change in transcript abundance. By contrast, the protein abundance of specific nuclear-encoded subunits in oxidative phosphorylation complexes I and V increased in CLPP2 knockouts, without accumulation of mitochondrial-encoded counterparts in the same complex. Complexes with subunits mainly or entirely encoded in the nucleus were unaffected. Analysis of protein import and function of complex I revealed that while function was retained, protein homeostasis was disrupted, leading to accumulation of soluble subcomplexes of nuclear-encoded subunits. Therefore, CLPP2 contributes to the mitochondrial protein degradation network through supporting coordination and homeostasis of protein complexes encoded across mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jakob Petereit
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Emilia Cincu
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Jonathan Cahn
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Aneta Ivanova
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Stefanie Wortelkamp
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Jiwon Lee
- Centre for advanced Microscopy, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
- The Harry Perkins Institute of Medical Research, Perth, Washington 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| |
Collapse
|
14
|
Maldonado M, Padavannil A, Zhou L, Guo F, Letts JA. Atomic structure of a mitochondrial complex I intermediate from vascular plants. eLife 2020; 9:56664. [PMID: 32840211 PMCID: PMC7447434 DOI: 10.7554/elife.56664] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Respiration, an essential metabolic process, provides cells with chemical energy. In eukaryotes, respiration occurs via the mitochondrial electron transport chain (mETC) composed of several large membrane-protein complexes. Complex I (CI) is the main entry point for electrons into the mETC. For plants, limited availability of mitochondrial material has curbed detailed biochemical and structural studies of their mETC. Here, we present the cryoEM structure of the known CI assembly intermediate CI* from Vigna radiata at 3.9 Å resolution. CI* contains CI's NADH-binding and CoQ-binding modules, the proximal-pumping module and the plant-specific γ-carbonic-anhydrase domain (γCA). Our structure reveals significant differences in core and accessory subunits of the plant complex compared to yeast, mammals and bacteria, as well as the details of the γCA domain subunit composition and membrane anchoring. The structure sheds light on differences in CI assembly across lineages and suggests potential physiological roles for CI* beyond assembly.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Long Zhou
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States.,BIOEM Facility, University of California Davis, Davis, United States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| |
Collapse
|
15
|
De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance. Sci Rep 2020; 10:5192. [PMID: 32251358 PMCID: PMC7089983 DOI: 10.1038/s41598-020-61857-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 01/04/2023] Open
Abstract
With the rapidly deteriorating environmental conditions, the development of stress tolerant plants has become a priority for sustaining agricultural productivity. Therefore, studying the process of stress tolerance in naturally tolerant species hold significant promise. Phragmites karka is an invasive plant species found abundantly in tropical and sub tropical regions, fresh water regions and brackish marshy areas, such as river banks and lake shores. The plant possesses the ability to adapt and survive under conditions of high salinity. We subjected P. karka seedlings to salt stress and carried out whole transcriptome profiling of leaf and root tissues. Assessing the global transcriptome changes under salt stress resulted in the identification of several genes that are differentially regulated under stress conditions in root and leaf tissue. A total of 161,403 unigenes were assembled and used as a reference for digital gene expression analysis. A number of key metabolic pathways were found to be over-represented. Digital gene expression analysis was validated using qRT-PCR. In addition, a number of different transcription factor families including WRKY, MYB, CCCH, NAC etc. were differentially expressed under salinity stress. Our data will facilitate further characterisation of genes involved in salinity stress tolerance in P. karka. The DEGs from our results are potential candidates for understanding and engineering abiotic stress tolerance in plants.
Collapse
|
16
|
Assembly of Mitochondrial Complex I Requires the Low-Complexity Protein AMC1 in Chlamydomonas reinhardtii. Genetics 2020; 214:895-911. [PMID: 32075865 DOI: 10.1534/genetics.120.303029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
Complex I is the first enzyme involved in the mitochondrial electron transport chain. With >40 subunits of dual genetic origin, the biogenesis of complex I is highly intricate and poorly understood. We used Chlamydomonas reinhardtii as a model system to reveal factors involved in complex I biogenesis. Two insertional mutants, displaying a complex I assembly defect characterized by the accumulation of a 700 kDa subcomplex, were analyzed. Genetic analyses showed these mutations were allelic and mapped to the gene AMC1 (Cre16.g688900) encoding a low-complexity protein of unknown function. The complex I assembly and activity in the mutant was restored by complementation with the wild-type gene, confirming AMC1 is required for complex I biogenesis. The N terminus of AMC1 targets a reporter protein to yeast mitochondria, implying that AMC1 resides and functions in the Chlamydomonas mitochondria. Accordingly, in both mutants, loss of AMC1 function results in decreased abundance of the mitochondrial nd4 transcript, which encodes the ND4 membrane subunit of complex I. Loss of ND4 in a mitochondrial nd4 mutant is characterized by a membrane arm assembly defect, similar to that exhibited by loss of AMC1. These results suggest AMC1 is required for the production of mitochondrially-encoded complex I subunits, specifically ND4. We discuss the possible modes of action of AMC1 in mitochondrial gene expression and complex I biogenesis.
Collapse
|