1
|
Freyria NJ, de Oliveira TC, Chovatia M, Johnson J, Kuo A, Lipzen A, Barry KW, Grigoriev IV, Lovejoy C. Stress responses in an Arctic microalga (Pelagophyceae) following sudden salinity change revealed by gene expression analysis. Commun Biol 2024; 7:1084. [PMID: 39232195 PMCID: PMC11375080 DOI: 10.1038/s42003-024-06765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Marine microbes that have for eons been adapted to stable salinity regimes are confronted with sudden decreases in salinity in the Arctic Ocean. The episodic freshening is increasing due to climate change with melting multi-year sea-ice and glaciers, greater inflows from rivers, and increased precipitation. To investigate algal responses to lowered salinity, we analyzed the responses and acclimatation over 24 h in a non-model Arctic marine alga (pelagophyte CCMP2097) following transfer to realistic lower salinities. Using RNA-seq transcriptomics, here we show rapid differentially expressed genes related to stress oxidative responses, proteins involved in the photosystem and circadian clock, and those affecting lipids and inorganic ions. After 24 h the pelagophyte adjusted to the lower salinity seen in the overexpression of genes associated with freezing resistance, cold adaptation, and salt tolerance. Overall, a suite of ancient widespread pathways is recruited enabling the species to adjust to the stress of rapid salinity change.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Québec Océan, Département de Biologie, Université Laval, Québec, QC, Canada.
| | - Thais C de Oliveira
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Centre d'Étude de la Forêt, Faculté de Foresterie, de Géographie et de Génomique, Université Laval, Québec, QC, Canada
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Connie Lovejoy
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Québec Océan, Département de Biologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Fujiwara T, Hirooka S, Yamashita S, Yagisawa F, Miyagishima SY. Development of a rapamycin-inducible protein-knockdown system in the unicellular red alga Cyanidioschyzon merolae. PLANT PHYSIOLOGY 2024; 196:77-94. [PMID: 38833589 PMCID: PMC11376382 DOI: 10.1093/plphys/kiae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
An inducible protein-knockdown system is highly effective for investigating the functions of proteins and mechanisms essential for the survival and growth of organisms. However, this technique is not available in photosynthetic eukaryotes. The unicellular red alga Cyanidioschyzon merolae possesses a very simple cellular and genomic architecture and is genetically tractable but lacks RNA interference machinery. In this study, we developed a protein-knockdown system in this alga. The constitutive system utilizes the destabilizing activity of the FK506-binding protein 12 (FKBP12)-rapamycin-binding (FRB) domain of human target of rapamycin kinase or its derivatives to knock down target proteins. In the inducible system, rapamycin treatment induces the heterodimerization of the human FRB domain fused to the target proteins with the human FKBP fused to S-phase kinase-associated protein 1 or Cullin 1, subunits of the SCF E3 ubiquitin ligase. This results in the rapid degradation of the target proteins through the ubiquitin-proteasome pathway. With this system, we successfully degraded endogenous essential proteins such as the chloroplast division protein dynamin-related protein 5B and E2 transcription factor, a regulator of the G1/S transition, within 2 to 3 h after rapamycin administration, enabling the assessment of resulting phenotypes. This rapamycin-inducible protein-knockdown system contributes to the functional analysis of genes whose disruption leads to lethality.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka 411-8540, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Shota Yamashita
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Fumi Yagisawa
- Research Facility Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka 411-8540, Japan
| |
Collapse
|
3
|
Lee J, Miyagishima SY, Bhattacharya D, Yoon HS. From dusk till dawn: cell cycle progression in the red seaweed Gracilariopsis chorda (Rhodophyta). iScience 2024; 27:110190. [PMID: 38984202 PMCID: PMC11231608 DOI: 10.1016/j.isci.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
The conserved eukaryotic functions of cell cycle genes have primarily been studied using animal/plant models and unicellular algae. Cell cycle progression and its regulatory components in red (Rhodophyta) seaweeds are poorly understood. We analyzed diurnal gene expression data to investigate the cell cycle in the red seaweed Gracilariopsis chorda. We identified cell cycle progression and transitions in G. chorda which are induced by interactions of key regulators such as E2F/DP, RBR, cyclin-dependent kinases, and cyclins from dusk to dawn. However, several typical CDK inhibitor proteins are absent in red seaweeds. Interestingly, the G1-S transition in G. chorda is controlled by delayed transcription of GINS subunit 3. We propose that the delayed S phase entry in this seaweed may have evolved to minimize DNA damage (e.g., due to UV radiation) during replication. Our results provide important insights into cell cycle-associated physiology and its molecular mechanisms in red seaweeds.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Hu Q, Hu Z, Yan X, Lu J, Wang C. Extracellular vesicles involved in growth regulation and metabolic modulation in Haematococcus pluvialis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:15. [PMID: 38282041 PMCID: PMC10823724 DOI: 10.1186/s13068-024-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Microalgae-derived extracellular vesicles (EVs), which transfer their cargos to the extracellular environment to affect recipient cells, play important roles in microalgal growth and environmental adaptation. And, they are also considered as sustainable and renewable bioresources of delivery nanocarrier for bioactive molecules and/or artificial drug molecules. However, their molecular composition and functions remain poorly understood. RESULTS In this study, isolation, characterization, and functional verification of Haematococcus pluvialis-derived EVs (HpEVs) were performed. The results indicated that HpEVs with typical EV morphology and size were secreted by H. pluvialis cells during the whole period of growth and accumulated in the culture medium. Cellular uptake of HpEVs by H. pluvialis was confirmed, and their roles in regulation of growth and various physiological processes of the recipient cells were also characterized. The short-term inhibition of HpEV secretion results in the accumulation of functional cellular components of HpEVs, thereby altering the biological response of these cells at the molecular level. Meanwhile, continuously inhibiting the secretion of HpEVs negatively influenced growth, and fatty acid and astaxanthin accumulation in H. pluvialis. Small RNA high-throughput sequencing was further performed to determine the miRNA cargoes and compelling details in HpEVs in depth. Comparative analysis revealed commonalities and differences in miRNA species and expression levels in three stages of HpEVs. A total of 163 mature miRNAs were identified with a few unique miRNAs reveal the highest expression levels, and miRNA expression profile of the HpEVs exhibited a clear stage-specific pattern. Moreover, a total of 12 differentially expressed miRNAs were identified and their target genes were classified to cell cycle control, lipid transport and metabolism, secondary metabolites biosynthesis and so on. CONCLUSION It was therefore proposed that cargos of HpEVs, including miRNA constituents, were suggested potential roles in modulate cell physiological state of H. pluvialis. To summarize, this work uncovers the intercellular communication and metabolism regulation functions of HpEVs.
Collapse
Affiliation(s)
- Qunju Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Yan
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
6
|
Kamikawa R, Mochizuki T, Sakamoto M, Tanizawa Y, Nakayama T, Onuma R, Cenci U, Moog D, Speak S, Sarkozi K, Toseland A, van Oosterhout C, Oyama K, Kato M, Kume K, Kayama M, Azuma T, Ishii KI, Miyashita H, Henrissat B, Lombard V, Win J, Kamoun S, Kashiyama Y, Mayama S, Miyagishima SY, Tanifuji G, Mock T, Nakamura Y. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. SCIENCE ADVANCES 2022; 8:eabi5075. [PMID: 35486731 PMCID: PMC9054022 DOI: 10.1126/sciadv.abi5075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Secondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphotosynthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to have facilitated the lifestyle of a free-living secondary heterotroph.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takako Mochizuki
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Ugo Cenci
- Université de Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Samuel Speak
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Krisztina Sarkozi
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kaori Oyama
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Misako Kato
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Keitaro Kume
- Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ken-ichiro Ishii
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, Fukui, Japan
| | - Shigeki Mayama
- Advanced Support Center for Science Teachers, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| |
Collapse
|
7
|
Guan X, Mao Y, Stiller JW, Shu S, Pang Y, Qu W, Zhang Z, Tang F, Qian H, Chen R, Sun B, Guoying D, Mo Z, Kong F, Tang X, Wang D. Comparative Gene Expression and Physiological Analyses Reveal Molecular Mechanisms in Wound-Induced Spore Formation in the Edible Seaweed Nori. FRONTIERS IN PLANT SCIENCE 2022; 13:840439. [PMID: 35371140 PMCID: PMC8969420 DOI: 10.3389/fpls.2022.840439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
Genetic reprogramming of differentiated cells is studied broadly in multicellular Viridiplantae as an adaptation to herbivory or damage; however, mechanisms underlying cell development and redifferentiation are largely unknown in red algae, their nearest multicellular relatives. Here we investgate cell reprogramming in the widely cultivated, edible seaweed Neopyropia yezoesis ("nori"), where vegetative cells in wounded blades differentiate and release as large numbers of asexual spores. Based upon physiological changes and transcriptomic dynamics after wound stress in N. yezoensis and its congener Neoporphyra haitanensis, another cultivar that does not differentiate spores after wounding, we propose a three-phase model of wound-induced spore development in N. yezoensis. In Phase I, propagation of ROS by RBOH and SOD elicites systematic transduction of the wound signal, while Ca2+ dependent signaling induces cell reprogramming. In Phase II, a TOR signaling pathway and regulation of cyclin and CDK genes result in cell divisions that spread inward from the wound edge. Once sporangia form, Phase III involves expression of proteins required for spore maturation and cell wall softening. Our analyses not only provide the first model for core molecular processes controlling cellular reprogramming in rhodophytes, but also have practical implications for achieving greater control over seeding in commercial nori farming.
Collapse
Affiliation(s)
- Xiaowei Guan
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
| | - John W. Stiller
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Shanshan Shu
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Pang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Weihua Qu
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zehao Zhang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fugeng Tang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huijuan Qian
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rui Chen
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bin Sun
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Du Guoying
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanna Kong
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Vítová M, Čížková M, Náhlík V, Řezanka T. Changes in glycosyl inositol phosphoceramides during the cell cycle of the red alga Galdieria sulphuraria. PHYTOCHEMISTRY 2022; 194:113025. [PMID: 34839129 DOI: 10.1016/j.phytochem.2021.113025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Sphingolipids are significant component of plant-cell plasma membranes, as well as algal membranes, and mediate various biological processes. One of these processes is the change in lipid content during the cell cycle. This change is key to understanding cell viability and proliferation. There are relatively few papers describing highly glycosylated glycosyl inositol phosphorylceramide (GIPC) due to problems associated with the extractability of GIPCs and their analysis, especially in algae. After alkaline hydrolysis of total lipids from the red alga Galdieria sulphuraria, GIPCs were measured by high-resolution tandem mass spectrometry and fragmentation of precursor ions in an Orbitrap mass spectrometer in order to elucidate the structures of molecular species. Fragmentation experiments such as tandem mass spectrometry in the negative ion mode were performed to determine both the ceramide group and polar head structures. Measurement of mass spectra in the negative regime was possible because the phosphate group stabilizes negative molecular ions [M-H]-. ANALYSIS: of GIPCs at various stages of the cell cycle provided information on their abundance. It was found that, depending on the phases of the cell cycle, in particular during division, the uptake of all three components of GIPC, i.e., long-chain amino alcohols, fatty acids, and polar heads, changes. Structural modifications of the polar headgroup significantly increased the number of molecular species. Analysis demonstrated a convex characteristic for molecular species with only one saccharide (hexose or hexuronic acid) as the polar head. For two carbohydrates, the course of Hex-HexA was linear, while for HexA-HexA it was concave. The same was true for GIPC with three and four monosaccharides.
Collapse
Affiliation(s)
- Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Vít Náhlík
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
9
|
Chen J, Hua X, Chen H, Qiu X, Xiao H, Ge S, Liang C, Zhou Q. PKMYT1, exacerbating the progression of clear cell renal cell carcinoma, is implied as a biomarker for the diagnosis and prognosis. Aging (Albany NY) 2021; 13:25778-25798. [PMID: 34959223 PMCID: PMC8751600 DOI: 10.18632/aging.203759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urological malignancies with high tumor heterogeneity, and reliable biomarkers are still needed for its diagnosis and prognosis. WEE family kinases function as key regulators of the G2/M transition, have essential roles in maintaining cellular genomic stability and have the potential to be promising therapeutic targets in various tumors. However, the roles of WEE family kinases in ccRCC remain undetermined. In the present study, we first explored multiple public datasets and found that PKMYT1 was up-regulated in both RCC tumors and cell lines. Expression levels of PKMYT1 were highly associated with pathological stage and grade. Kaplan-Meier curves showed that high PKMYT1 expression was associated with lower overall survival and disease-free survival. Receiver operating characteristic curves revealed that the expression of PKMYT1 could better distinguish ccRCC from normal samples. Functional enrichment analysis demonstrated that cell cycle- related pathways and epithelial to mesenchymal transition (EMT) might be potential mechanisms of PKMYT1 in ccRCC tumorigenesis. Moreover, knockdown of PKMYT1 in vitro attenuated the proliferation, migration and invasion of RCC cell lines, promoted cell apoptosis and prevented the EMT phenotype in vitro. In conclusion, our study demonstrated that PKMYT1 has the potential to act as a diagnostic and prognostic biomarker for RCC patients. Targeting PKMYT1 may be considered as a new potential therapeutic method and direction in RCCs.
Collapse
Affiliation(s)
- Juan Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Heying Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiangmin Qiu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Haibing Xiao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Qin Zhou
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Fujiwara T, Hirooka S, Miyagishima SY. A cotransformation system of the unicellular red alga Cyanidioschyzon merolae with blasticidin S deaminase and chloramphenicol acetyltransferase selectable markers. BMC PLANT BIOLOGY 2021; 21:573. [PMID: 34863100 PMCID: PMC8642924 DOI: 10.1186/s12870-021-03365-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/24/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND The unicellular red alga Cyanidioschyzon merolae exhibits a very simple cellular and genomic architecture. In addition, procedures for genetic modifications, such as gene targeting by homologous recombination and inducible/repressible gene expression, have been developed. However, only two markers for selecting transformants, uracil synthase (URA) and chloramphenicol acetyltransferase (CAT), are available in this alga. Therefore, manipulation of two or more different chromosomal loci in the same strain in C. merolae is limited. RESULTS This study developed a nuclear targeting and transformant selection system using an antibiotics blasticidin S (BS) and the BS deaminase (BSD) selectable marker by homologous recombination in C. merolae. In addition, this study has succeeded in simultaneously modifying two different chromosomal loci by a single-step cotransformation based on the combination of BSD and CAT selectable markers. A C. merolae strain that expresses mitochondrion-targeted mSCARLET (with the BSD marker) and mVENUS (with the CAT marker) from different chromosomal loci was generated with this procedure. CONCLUSIONS The newly developed BSD selectable marker enables an additional genetic modification to the already generated C. merolae transformants based on the URA or CAT system. Furthermore, the cotransformation system facilitates multiple genetic modifications. These methods and the simple nature of the C. merolae cellular and genomic architecture will facilitate studies on several phenomena common to photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
11
|
Tanaka N, Mogi Y, Fujiwara T, Yabe K, Toyama Y, Higashiyama T, Yoshida Y. CZON-cutter - a CRISPR-Cas9 system for multiplexed organelle imaging in a simple unicellular alga. J Cell Sci 2021; 134:jcs258948. [PMID: 34633046 DOI: 10.1242/jcs.258948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
The unicellular alga Cyanidioschyzon merolae has a simple cellular structure; each cell has one nucleus, one mitochondrion, one chloroplast and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Naoto Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kannosuke Yabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yukiho Toyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yamato Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Sumiya N. Cis-acting elements involved in the G2/M-phase-specific transcription of the cyclin B gene in the unicellular alga Cyanidioschyzon merolae. JOURNAL OF PLANT RESEARCH 2021; 134:1301-1310. [PMID: 34338916 DOI: 10.1007/s10265-021-01334-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
M-specific activator (MSA) cis-acting elements have been determined to be involved in the regulation of G2/M-phase-specific transcription in spermatophytes. In this study, the involvement of MSA-core elements in G2/M-phase-specific transcription was examined in the unicellular red alga Cyanidioschyzon merolae. In the C. merolae genome, MSA-core elements do not accumulate specifically in the upstream of mitosis-specific transcriptional genes. Mutations of the four MSA-core elements of the cyclin B gene, which encodes a central factor of the G2-to-M-phase transition, have resulted in the abolishment of transcription or permission of transcription even in the G1 phase. These results suggest that all four MSA-core elements located in the upstream region of cyclin B are involved in G2/M-phase-specific transcription in C. merolae; however, the nature of the involvement of MSA-core elements in G2/M-phase-specific transcription differed among the four elements. Thus, MSA-core-element-mediated G2/M-phase-specific transcription in C. merolae seems to be regulated by a complex mechanism.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
| |
Collapse
|
13
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
14
|
Jong LW, Fujiwara T, Hirooka S, Miyagishima SY. Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. PROTOPLASMA 2021; 258:1103-1118. [PMID: 33675395 DOI: 10.1007/s00709-021-01628-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Several eukaryotic cell lineages proliferate by multiple fission cell cycles, during which cells grow to manyfold of their original size, then undergo several rounds of cell division without intervening growth. A previous study on volvocine green algae, including both unicellular and multicellular (colonial) species, showed a correlation between the minimum number of successive cell divisions without intervening cellular growth, and the threshold cell size for commitment to the first round of successive cell divisions: two times the average newly born daughter cell volume for unicellular Chlamydomonas reinhardtii, four times for four-celled Tetrabaena socialis, in which each cell in the colony produces a daughter colony by two successive cell divisions, and eight times for the eight-celled Gonium pectorale, in which each cell produces a daughter colony by three successive cell divisions. To assess whether this phenomenon is also applicable to other lineages, we have characterized cyanidialean red algae, namely, Cyanidioschyzon merolae, which proliferates by binary fission, as well as Cyanidium caldarium and Galdieria sulphuraria, which form up to four and 32 daughter cells (autospores), respectively, in a mother cell before hatching out. The result shows that there is also a correlation between the number of successive cell divisions and the threshold cell size for cell division or the first round of the successive cell divisions. In both C. merolae and C. caldarium, the cell size checkpoint for cell division(s) exists in the G1-phase, as previously shown in volvocine green algae. When C. merolae cells were arrested in the G1-phase and abnormally enlarged by conditional depletion of CDKA, the cells underwent two or more successive cell divisions without intervening cellular growth after recovery of CDKA, similarly to C. caldarium and G. sulphuraria. These results suggest that the threshold size for cell division is a major factor in determining the number of successive cell divisions and that evolutionary changes in the mechanism of cell size monitoring resulted in a variation of multiple fission cell cycle in eukaryotic algae.
Collapse
Affiliation(s)
- Lin Wei Jong
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan.
| |
Collapse
|
15
|
Growth under Different Trophic Regimes and Synchronization of the Red Microalga Galdieria sulphuraria. Biomolecules 2021; 11:biom11070939. [PMID: 34202768 PMCID: PMC8301940 DOI: 10.3390/biom11070939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The extremophilic unicellular red microalga Galdieria sulphuraria (Cyanidiophyceae) is able to grow autotrophically, or mixo- and heterotrophically with 1% glycerol as a carbon source. The alga divides by multiple fission into more than two cells within one cell cycle. The optimal conditions of light, temperature and pH (500 µmol photons m-2 s-1, 40 °C, and pH 3; respectively) for the strain Galdieria sulphuraria (Galdieri) Merola 002 were determined as a basis for synchronization experiments. For synchronization, the specific light/dark cycle, 16/8 h was identified as the precondition for investigating the cell cycle. The alga was successfully synchronized and the cell cycle was evaluated. G. sulphuraria attained two commitment points with midpoints at 10 and 13 h of the cell cycle, leading to two nuclear divisions, followed subsequently by division into four daughter cells. The daughter cells stayed in the mother cell wall until the beginning of the next light phase, when they were released. Accumulation of glycogen throughout the cell cycle was also described. The findings presented here bring a new contribution to our general understanding of the cell cycle in cyanidialean red algae, and specifically of the biotechnologically important species G. sulphuraria.
Collapse
|