1
|
Allen CJ, Lacey RF, Binder Bickford AB, Beshears CP, Gilmartin CJ, Binder BM. Cyanobacteria Respond to Low Levels of Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:950. [PMID: 31417582 PMCID: PMC6682694 DOI: 10.3389/fpls.2019.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 05/07/2023]
Abstract
Ethylene is a gas that has long been known to act as a plant hormone. We recently showed that a cyanobacterium, Synechocystis sp. PCC 6803 (Synechocystis) contains an ethylene receptor (SynEtr1) that regulates cell surface and extracellular components leading to altered phototaxis and biofilm formation. To determine whether other cyanobacteria respond to ethylene, we examined the effects of exogenous ethylene on phototaxis of the filamentous cyanobacterium, Geitlerinema sp. PCC 7105 (Geitlerinema). A search of the Geitlerinema genome suggests that two genes encode proteins that contain an ethylene binding domain and Geitlerinema cells have previously been shown to bind ethylene. We call these genes GeiEtr1 and GeiEtr2 and show that in air both are expressed. Treatment with ethylene decreases the abundance of GeiEtr1 transcripts. Treatment of Geitlerinema with 1000 nL L-1 ethylene affected the phototaxis response to white light as well as monochromatic red light, but not blue or green light. This is in contrast to Synechocystis where we previously found ethylene affected phototaxis to all three colors. We also demonstrate that application of ethylene down to 8 nL L-1 stimulates phototaxis of both cyanobacteria as well as biofilm formation of Synechocystis. We formerly demonstrated that the transcript levels of slr1214 and CsiR1 in Synechocystis are reduced by treatment with 1000 nL L-1 ethylene. Here we show that application of ethylene down to 1 nL L-1 causes a reduction in CsiR1 abundance. This is below the threshold for most ethylene responses documented in plants. By contrast, slr1214 is unaffected by this low level of ethylene and only shows a reduction in transcript abundance at the highest ethylene level used. Thus, cyanobacteria are very sensitive to ethylene. However, the dose-binding characteristics of ethylene binding to Geitlerinema and Synechocystis cells as well as to the ethylene binding domain of SynEtr1 heterologously expressed in yeast, are similar to what has been reported for plants and exogenously expressed ethylene receptors from plants. These data are consistent with a model where signal amplification is occurring at the level of the receptors.
Collapse
Affiliation(s)
- Cidney J. Allen
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Randy F. Lacey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - C. Payton Beshears
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Brad M. Binder,
| |
Collapse
|
2
|
Binder BM. Time-Lapse Imaging to Examine the Growth Kinetics of Arabidopsis Seedlings in Response to Ethylene. Methods Mol Biol 2017; 1573:211-222. [PMID: 28293848 DOI: 10.1007/978-1-4939-6854-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ethylene is well known to inhibit the growth of dark-grown eudicot seedlings. Most studies examine this inhibition after several days of exposure to ethylene. However, such end-point analysis misses transient responses and the dynamic nature of growth regulation. Here, high-resolution, time-lapse imaging is described as a method to gather data about ethylene growth kinetics and movement responses of the hypocotyls of dark-grown seedlings of Arabidopsis thaliana. These methods allow for the characterization of short-term kinetic responses and can be modified for the analysis of roots and seedlings from other species.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, M407 Walters Life Sciences, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Prescott AM, McCollough FW, Eldreth BL, Binder BM, Abel SM. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics. FRONTIERS IN PLANT SCIENCE 2016; 7:1308. [PMID: 27625669 PMCID: PMC5003821 DOI: 10.3389/fpls.2016.01308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 05/04/2023]
Abstract
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses.
Collapse
Affiliation(s)
- Aaron M. Prescott
- Department of Chemical and Biomolecular Engineering, University of TennesseeKnoxville, TN, USA
| | - Forest W. McCollough
- Department of Biochemistry and Cellular and Molecular Biology, University of TennesseeKnoxville, TN, USA
| | - Bryan L. Eldreth
- Department of Chemical and Biomolecular Engineering, University of TennesseeKnoxville, TN, USA
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of TennesseeKnoxville, TN, USA
- *Correspondence: Brad M. Binder
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of TennesseeKnoxville, TN, USA
- National Institute for Mathematical and Biological Synthesis, University of TennesseeKnoxville, TN, USA
- Steven M. Abel
| |
Collapse
|
4
|
Kim J, Wilson RL, Case JB, Binder BM. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery. PLANT PHYSIOLOGY 2012; 160:1567-80. [PMID: 22977279 PMCID: PMC3490611 DOI: 10.1104/pp.112.205799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.
Collapse
|
5
|
Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. PLANT PHYSIOLOGY 2004; 136:2921-7. [PMID: 15466219 PMCID: PMC523354 DOI: 10.1104/pp.104.050393] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/30/2004] [Accepted: 08/31/2004] [Indexed: 05/20/2023]
Abstract
Kinetic studies indicate there are two phases to growth inhibition by ethylene for the hypocotyls of etiolated Arabidopsis seedlings. Phase I is transient, while phase II results in sustained growth inhibition. The EIN2 membrane protein is required for both the first and second phases of growth inhibition by ethylene, while the transcription factors EIN3 and EIL1 are required for the second phase but not the first phase. The first phase lasts no more than 2 h. It is less sensitive to the ethylene response inhibitor 1-methylcyclopropene and more sensitive to ethylene than the second phase. The first phase shows adaptation at low concentrations of ethylene (< or =0.01 microL L(-1)) with a relative refractory period of 5 h after ethylene is added. A modified signal transduction model is proposed that accounts for the two phases of growth inhibition.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
6
|
Binder BM, O'malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB. Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. PLANT PHYSIOLOGY 2004; 136:2913-2920. [PMID: 15466220 DOI: 10.1104/pp.104.050369.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Responses to the plant hormone ethylene are mediated by a family of five receptors in Arabidopsis that act in the absence of ethylene as negative regulators of response pathways. In this study, we examined the rapid kinetics of growth inhibition by ethylene and growth recovery after ethylene withdrawal in hypocotyls of etiolated seedlings of wild-type and ethylene receptor-deficient Arabidopsis lines. This analysis revealed that there are two phases to growth inhibition by ethylene in wild type: a rapid phase followed by a prolonged, slower phase. Full recovery of growth occurs approximately 90 min after ethylene removal. None of the receptor null mutations tested had a measurable effect on the two phases of growth inhibition. However, loss-of-function mutations in ETR1, ETR2, and EIN4 significantly prolonged the time for recovery of growth rate after ethylene was removed. Plants with an etr1-6;etr2-3;ein4-4 triple loss-of-function mutation took longer to recover than any of the single mutants, while the ers1;ers2 double mutant had no effect on recovery rate, suggesting that receiver domains play a role in recovery. Transformation of the ers1-2;etr1-7 double mutant with wild-type genomic ETR1 rescued the slow recovery phenotype, while a His kinase-inactivated ETR1 construct did not. To account for the rapid recovery from growth inhibition, a model in which clustered receptors act cooperatively is proposed.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Binder BM, O'malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB. Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. PLANT PHYSIOLOGY 2004; 136:2913-20. [PMID: 15466220 PMCID: PMC523353 DOI: 10.1104/pp.104.050369] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/30/2004] [Accepted: 08/31/2004] [Indexed: 05/19/2023]
Abstract
Responses to the plant hormone ethylene are mediated by a family of five receptors in Arabidopsis that act in the absence of ethylene as negative regulators of response pathways. In this study, we examined the rapid kinetics of growth inhibition by ethylene and growth recovery after ethylene withdrawal in hypocotyls of etiolated seedlings of wild-type and ethylene receptor-deficient Arabidopsis lines. This analysis revealed that there are two phases to growth inhibition by ethylene in wild type: a rapid phase followed by a prolonged, slower phase. Full recovery of growth occurs approximately 90 min after ethylene removal. None of the receptor null mutations tested had a measurable effect on the two phases of growth inhibition. However, loss-of-function mutations in ETR1, ETR2, and EIN4 significantly prolonged the time for recovery of growth rate after ethylene was removed. Plants with an etr1-6;etr2-3;ein4-4 triple loss-of-function mutation took longer to recover than any of the single mutants, while the ers1;ers2 double mutant had no effect on recovery rate, suggesting that receiver domains play a role in recovery. Transformation of the ers1-2;etr1-7 double mutant with wild-type genomic ETR1 rescued the slow recovery phenotype, while a His kinase-inactivated ETR1 construct did not. To account for the rapid recovery from growth inhibition, a model in which clustered receptors act cooperatively is proposed.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Buer CS, Wasteneys GO, Masle J. Ethylene modulates root-wave responses in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:1085-96. [PMID: 12805636 PMCID: PMC167046 DOI: 10.1104/pp.102.019182] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 02/21/2003] [Accepted: 03/11/2003] [Indexed: 05/17/2023]
Abstract
When stimulated to bend downward by being held at 45 degrees off vertical but unable to penetrate into agar-based media, Arabidopsis roots develop waving and looping growth patterns. Here, we demonstrate that ethylene modulates these responses. We determined that agar-containing plates sealed with low-porosity film generate abiotic ethylene concentrations of 0.1 to 0.3 microL L(-1), whereas in plates wrapped with porous tape, ethylene remains at trace levels. We demonstrate that exogenous ethylene at concentrations as low as a few nanoliters per liter modulates root waving, root growth direction, and looping but through partly different mechanisms. Nutrients and Suc modify the effects of ethylene on root waving. Thus, ethylene had little effect on temporal wave frequency when nutrients were omitted but reduced it significantly on nutrient-supplemented agar. Suc masked the ethylene response. Ethylene consistently suppressed the normal tendency for roots of Landsberg erecta to skew to the right as they grow against hard-agar surfaces and also generated righthanded petiole twisting. Furthermore, ethylene suppressed root looping, a gravity-dependent growth response that was enhanced by high nutrient and Suc availability. Our work demonstrates that cell file twisting is not essential for root waving or skewing to occur. Differential flank growth accounted for both the extreme root waving on zero-nutrient plates and for root skewing. Root twisting was nutrient-dependent and was thus strongly associated with the looping response. The possible role of auxin transport in these responses and the involvement of circadian rhythms are discussed.
Collapse
Affiliation(s)
- Charles S Buer
- Plant Cell Biology, The Institute of Advanced Studies, Research School of Biological Sciences, The Australian National University, G.P.O. Box 475, Canberra, Australian Capital Territory 2601, Australia
| | | | | |
Collapse
|
9
|
Cape JN. Effects of airborne volatile organic compounds on plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2003; 122:145-57. [PMID: 12535603 DOI: 10.1016/s0269-7491(02)00273-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of oxygenated hydrocarbons on plants. Plants are a significant emission source of short-chain alcohols, aldehydes and ketones. Peroxyacetyl nitrate (PAN) has a well-documented history as damaging to vegetation. There have been few long-term experimental studies despite the field evidence for damaging effects. Early studies in California have been followed by more recent data from east Asia, but there is still a dearth of information on the potential for effects of PAN and related peroxyacyl nitrates on vegetation typical of regions around tropical and sub-tropical cities where PAN pollution is increasingly important. The lack of long-term measurements, coupled with the available evidence that effects are not linearly related to 'dose' measured as the product of exposure concentration and time, means that the possibility of adverse effects of VOCs on vegetation cannot be safely rejected, particularly in urban and industrial areas. Although reproductive processes (flowering, seed production) appear to be most sensitive, there have been no experimental studies on subsequent seed viability and the consequences at the ecosystem level of changes to plant phenology. The potential for VOC metabolites to accumulate in plant tissue has been demonstrated, but any subsequent effects on herbivores and phytophagous insects have yet to be investigated.
Collapse
Affiliation(s)
- J N Cape
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK.
| |
Collapse
|
10
|
Madlung A, Behringer FJ, Lomax TL. Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato. PLANT PHYSIOLOGY 1999; 120:897-906. [PMID: 10398726 PMCID: PMC59329 DOI: 10.1104/pp.120.3.897] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/1998] [Accepted: 04/07/1999] [Indexed: 05/20/2023]
Abstract
Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005-0.001 microliter L-1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2 (lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth.
Collapse
Affiliation(s)
- A Madlung
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331-2902, USA
| | | | | |
Collapse
|
11
|
Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. THE PLANT CELL 1998; 10:1321-32. [PMID: 9707532 PMCID: PMC144061 DOI: 10.1105/tpc.10.8.1321] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis ethylene receptor gene ETR1 and two related genes, ERS1 and ETR2, were identified previously. These three genes encode proteins homologous to the two-component regulators that are widely used for environment sensing in bacteria. Mutations in these genes confer ethylene insensitivity to wild-type plants. Here, we identified two Arabidopsis genes, EIN4 and ERS2, by cross-hybridizing them with ETR2. Sequence analysis showed that they are more closely related to ETR2 than they are to ETR1 or ERS1. EIN4 previously was isolated as a dominant ethylene-insensitive mutant. ERS2 also conferred dominant ethylene insensitivity when certain mutations were introduced into it. Double mutant analysis indicated that ERS2, similar to ETR1, ETR2, ERS1, and EIN4, acts upstream of CTR1. Therefore, EIN4 and ERS2, along with ETR1, ETR2, and ERS1, are members of the ethylene receptor-related gene family of Arabidopsis. RNA expression patterns of members of this gene family suggest that they might have distinct as well as redundant functions in ethylene perception.
Collapse
Affiliation(s)
- J Hua
- Division of Biology, 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Berger S, Bell E, Mullet JE. Two Methyl Jasmonate-Insensitive Mutants Show Altered Expression of AtVsp in Response to Methyl Jasmonate and Wounding. PLANT PHYSIOLOGY 1996; 111:525-531. [PMID: 12226307 PMCID: PMC157863 DOI: 10.1104/pp.111.2.525] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Jasmonates are plant signal molecules that are derived from lipids through the action of lipoxygenase. Jasmonates regulate gene expression during plant development and in response to water deficit, wounding, and pathogen elicitors. The signal transduction chain that mediates jasmonate action was investigated by isolating and studying two methyl jasmonate (MeJA)-insensitive mutants of Arabidopsis thaliana. The recessive mutants, jin1 and jin4, are nonallelic and neither corresponds to coi1, a previously identified MeJA-insensitive mutant. Both mutants showed reduced sensitivity to MeJA-mediated root growth inhibition as well as reduced MeJA induction of AtVsp in leaves. Expression of AtVsp in flowers was not altered in the mutants. Furthermore, MeJA modulation of the jasmonate-responsive lipoxygenase and phenylalanine ammonia lyase genes was not altered in the mutants. jin4 plants exhibited increased sensitivity to abscisic acid in seed germination assays, whereas jin1 plants showed wild-type sensitivity. Neither mutant showed altered sensitivity to ethylene in hypocotyl growth inhibition assays. jin1 and jin4 identify genes that modulate the response of AtVsp to MeJA in leaves of A. thaliana.
Collapse
Affiliation(s)
- S. Berger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | | | | |
Collapse
|
13
|
Voesenek LACJ, Banga M, Rijnders JGHM, Visser EJW, Blom CWPM. Hormone sensitivity and plant adaptations to flooding. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf02803993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Chen QG, Bleecker AB. Analysis of ethylene signal-transduction kinetics associated with seedling-growth response and chitinase induction in wild-type and mutant arabidopsis. PLANT PHYSIOLOGY 1995; 108:597-607. [PMID: 7610160 PMCID: PMC157379 DOI: 10.1104/pp.108.2.597] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Kinetic aspects of ethylene-mediated signal transduction leading to seedling-growth inhibition and chitinase induction in Arabidopsis were investigated by the introduction of defined mutations in components of these pathways. Dose-response analysis of wild-type responses indicated that the rate-limiting steps for seedling responses and Arabidopsis basic-chitinase induction displayed Michaelis-Menten kinetics with apparent dissociation constants of the response (Kr) of 0.1 and 1.4 microL L-1 ethylene, respectively. In the ethylene-insensitive etr1-1 and ein2-32 mutant lines, both Arabidopsis basic-chitinase induction and seedling-growth responses were completely disrupted, whereas the weaker etr1-2 allele eliminated the chitinase-induction response but only partially disrupted the seedling responses. A heterologous reporter gene containing the chitinase promoter from bean (bean basic-chitinase-beta-glucuronidase) displayed subsensitive kinetics (Kr 120 microL L-1 ethylene) compared to the response of the endogenous basic-chitinase response (Kr 1.4 microL L-1 ethylene). A model for ethylene signal transduction that accounts for the observed variation in ethylene dose-response relationships is presented. The relationship between the model and the biochemical mechanisms of well-characterized signal-transduction systems in animals is discussed.
Collapse
Affiliation(s)
- Q G Chen
- Botany Department, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
15
|
Baskin TI, Cork A, Williamson RE, Gorst JR. STUNTED PLANT 1, A Gene Required for Expansion in Rapidly Elongating but Not in Dividing Cells and Mediating Root Growth Responses to Applied Cytokinin. PLANT PHYSIOLOGY 1995; 107:233-243. [PMID: 12228357 PMCID: PMC161192 DOI: 10.1104/pp.107.1.233] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To understand the control of spatial patterns of expansion, we have studied root growth in wild type and in the stunted plant 1 mutant, stp1, of Arabidopsis thaliana. We measured profiles of cell length and calculated the distribution of elongation rate. Slow growth of stp1 results both from a failure of dividing cell number to increase and from low elongation rates in the zone of rapid expansion. However, elongation of dividing cells was not greatly affected, and stp1 and wild-type callus grew at identical rates. Thus, rapid cellular expansion differs in mechanism from expansion in dividing cells and is facilitated by the STP1 gene. Additionally, there was no difference between stp1 and wild-type roots for elongation in response to abscisic acid, auxin, ethylene, or gibberellic acid or for radial expansion in response to ethylene; however, stp1 responded to cytokinin much less than wild type. In contrast, both genotypes responded comparably to hormones when explants were cultured; in particular, there was no difference between genotypes in shoot regeneration in response to cytokinin. Thus, effects on root expansion mediated by cytokinin, but not effects mediated by other hormones or effects on other cytokinin-mediated responses, require the STP1 locus.
Collapse
Affiliation(s)
- T. I. Baskin
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University Canberra, Australian Capital Territory 2601, Australia (T.I.B., A.C., R.E.W.)
| | | | | | | |
Collapse
|
16
|
Rodrigues-Pousada RA, De Rycke R, Dedonder A, Van Caeneghem W, Engler G, Van Montagu M, Van Der Straeten D. The Arabidopsis 1-Aminocyclopropane-1-Carboxylate Synthase Gene 1 Is Expressed during Early Development. THE PLANT CELL 1993; 5:897-911. [PMID: 12271088 PMCID: PMC160325 DOI: 10.1105/tpc.5.8.897] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The temporal and spatial expression of one member of the Arabidopsis 1-aminocyclopropane-1-carboxylate (ACC) synthase gene family (ACS1) was analyzed using a promoter-[beta]-glucuronidase fusion. The expression of ACS1 is under developmental control both in shoot and root. High expression was observed in young tissues and was switched off in mature tissues. ACS1 promoter activity was strongly correlated with lateral root formation. Dark-grown seedlings exhibited a different expression pattern from light-grown ones. The ACC content and the in vivo activity of ACC oxidase were determined. ACC content correlated with ACS1 gene activity. ACC oxidase activity was demonstrated in young Arabidopsis seedlings. Thus, the ACC formed can be converted into ethylene. In addition, ethylene production of immature leaves was fourfold higher compared to that of mature leaves. The possible involvement of ACS1 in influencing plant growth and development is discussed.
Collapse
Affiliation(s)
- R. A. Rodrigues-Pousada
- Laboratorium voor Genetica, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Lee KH, Larue TA. Exogenous Ethylene Inhibits Nodulation of Pisum sativum L. cv Sparkle. PLANT PHYSIOLOGY 1992; 100:1759-63. [PMID: 16653194 PMCID: PMC1075861 DOI: 10.1104/pp.100.4.1759] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exogenous ethylene inhibited nodulation on the primary and lateral roots of pea, Pisum sativum L. cv Sparkle. Ethylene was more inhibitory to nodule formation than to root growth; nodule number was reduced by half with only 0.07 muL/L ethylene applied continually to the roots for 3 weeks. The inhibition was overcome by treating roots with 1 mum Ag(+), an inhibitor of ethylene action. Exogenous ethylene also inhibited nodulation on sweet clover (Melilotus alba) and on pea mutants that are hypernodulating or have ineffective nodules. Exogenous ethylene did not decrease the number of infections per centimeter of lateral pea root, but nearly all of the infections were blocked when the infection thread was in the basal epidermal cell or in the outer cortical cells.
Collapse
Affiliation(s)
- K H Lee
- Department of Soils, Crops and Atmospheric Sciences, Cornell University, Ithaca, New York
| | | |
Collapse
|
18
|
Schwarzbach DA, Woltering EJ, Saltveit ME. Behavior of Etiolated Peas (Pisum sativum cv Alaska) When Obstructed by a Mechanical Barrier. PLANT PHYSIOLOGY 1992; 98:769-73. [PMID: 16668710 PMCID: PMC1080259 DOI: 10.1104/pp.98.2.769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Etiolated pea (Pisum sativum cv Alaska) seedlings growing against a horizontal barrier in the soil will assume a horizontal orientation and continue to grow for prolonged periods of time. With removal of the barrier or after seedlings grow out from underneath the obstruction, seedlings immediately return to normal vertical growth. Ethylene production increased several hours after the seedlings began to grow horizontally and not at the first contact with a barrier. Increases in ethylene production from horizontally growing seedlings were associated with decreased rates of elongation and increased stem diameter. The data suggest that increased ethylene production does not play a mediating role in the horizontal growth of pea seedlings when obstructed during emergence. We conclude that seedlings follow a path of least resistance when they grow against a barrier in the soil.
Collapse
Affiliation(s)
- D A Schwarzbach
- Department of Vegetable Crops, University of California, Davis, California 95616
| | | | | |
Collapse
|
19
|
Sarquis JI, Jordan WR, Morgan PW. Ethylene Evolution from Maize (Zea mays L.) Seedling Roots and Shoots in Response to Mechanical Impedance. PLANT PHYSIOLOGY 1991; 96:1171-7. [PMID: 16668316 PMCID: PMC1080911 DOI: 10.1104/pp.96.4.1171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effect of mechanical impedance on ethylene evolution and growth of preemergent maize (Zea mays L.) seedlings was investigated by pressurizing the growth medium in triaxial cells in a controlled environment. Pressure increased the bulk density of the medium and thus the resistance to growth. The elongation of maize primary roots and preemergent shoots was severely hindered by applied pressures as low as 10 kilopascals. Following a steep decline in elongation at low pressures, both shoots and roots responded to additional pressure in a linear manner, but shoots were more severely affected than roots at higher pressures. Radial expansion was promoted in both organs by mechanical impedance. Primary roots typically became thinner during the experimental period when grown unimpeded. In contrast, pressures as low as 25 kilopascals caused a 25% increase in root tip diameter. Shoots showed a slight enhancement of radial expansion; however, in contrast to roots, the shoots increased in diameter even when growing unimpeded. Such morphological changes were not evident until at least 3 hours after initiation of treatment. All levels of applied pressure promoted ethylene evolution as early as 1 hour after application of pressure. After 1 hour, ethylene evolution rates had increased 10, 32, 70, and 255% at 25, 50, 75, and 100 kilopascals respectively, and continued to increase linearly for at least 10 hours. When intact corn seedlings were subjected to a series of hourly cycles of pressure, followed by relaxation, ethylene production rates increased or decreased rapidly, illustrating tight coupling between mechanical impedance and tissue response. Seedlings exposed to 1 microliter of ethylene per liter showed symptoms similar to those shown by plants grown under mechanical impedance. Root diameter increased 5 times as much as the shoot diameter. Pretreatment with 10 micromolar aminoethoxyvinyl glycine plus 1 micromolar silver thiosulfate maintained ethylene production rates of impeded seedlings at basal levels and restored shoot and root extension to 84 and 90% of unimpeded values, respectively. Our results support the hypothesis that ethylene plays a pivotal role in the regulation of plant tissue response to mechanical impedance.
Collapse
Affiliation(s)
- J I Sarquis
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77840
| | | | | |
Collapse
|
20
|
Sanders IO, Smith AR, Hall MA. Ethylene binding in epicotyls of Pisum sativum L. cv. Alaska. PLANTA 1991; 183:209-217. [PMID: 24193622 DOI: 10.1007/bf00197790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/1990] [Indexed: 06/02/2023]
Abstract
Using in-vivo assays at least two classes of ethylene-binding site are shown to exist in pea epicotyls. These classes appear to have identical affinities for ethylene with a KD of 6 · 10(-11)-8 · 10(-11) M; the fast associating class has high and appropriate affinities for physiologically active analogues of ethylene, and CO2 is without effect upon bfinding. Experiments involving suppression of endogenous ethylene production demonstrate that previous work may have underestimated both the amount of binding sites present and the affinity of such sites for ethylene. The apparent inhibition of binding by silver appears to be the consequence of a stimulation of endogenous ethylene production. The possible role of the sites as ethylene receptors is discussed.
Collapse
Affiliation(s)
- I O Sanders
- Department of Biological Sciences, University College of Wales, SY23 3DA, Aberystwyth, Dyfed, UK
| | | | | |
Collapse
|
21
|
Eliasson L, Bertell G, Bolander E. Inhibitory action of auxin on root elongation not mediated by ethylene. PLANT PHYSIOLOGY 1989; 91:310-4. [PMID: 16667017 PMCID: PMC1061992 DOI: 10.1104/pp.91.1.310] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The inhibitory effects of indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) on elongation growth of pea (Pisum sativum L.) seedling roots were investigated in relation to the effects of these compounds on ethylene production by the root tips. When added to the growth solution both compounds caused a progressively increasing inhibition of growth within the concentration range of 0.01 to 1 micromolar. However, only ACC increased ethylene production in root tips excised from the treated seedlings after 24 hours. High auxin concentrations caused a transitory increase of ethylene production during a few hours in the beginning of the treatment period, but even in 1 micromolar IAA this increase was too low to have any appreciable effect on growth. ACC, but not IAA, caused growth curvatures, typical of ethylene treatment, in the root tips. IAA caused conspicuous swelling of the root tips while ACC did not. Cobalt and silver ions reversed the growth inhibitory effects induced by ACC but did not counteract the inhibition of elongation or swelling caused by IAA. The growth effects caused by the ACC treatments were obviously due to ethylene production. We found no evidence to indicate that the growth inhibition or swelling caused by IAA is mediated by ethylene. It is concluded that the inhibitory action of IAA on root growth is caused by this auxin per se.
Collapse
Affiliation(s)
- L Eliasson
- Department of Botany, University of Stockholm, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Abdel-Rahman AM, Cline MG. Timing of growth inhibition following shoot inversion in Pharbitis nil. PLANT PHYSIOLOGY 1989; 91:464-465. [PMID: 11537459 PMCID: PMC1062020 DOI: 10.1104/pp.91.2.464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Shoot inversion in Pharbitis nil results in the enhancement of ethylene production and in the inhibition of elongation in the growth zone of the inverted shoot. The initial increase in ethylene production previously was detected within 2 to 2.75 hours after inversion. In the present study, the initial inhibition of shoot elongation was detected within 1.5 to 4 hours with a weighted mean of 2.4 hours. Ethylene treatment of upright shoots inhibited elongation in 1.5 hours. A cause and effect relationship between shoot inversion-enhanced ethylene production and inhibition of elongation cannot be excluded.
Collapse
Affiliation(s)
- A M Abdel-Rahman
- Botany Department, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
23
|
Bufler G. Ethylene-promoted conversion of 1-aminocyclopropane-1-carboxylic Acid to ethylene in peel of apple at various stages of fruit development. PLANT PHYSIOLOGY 1986; 80:539-43. [PMID: 16664658 PMCID: PMC1075151 DOI: 10.1104/pp.80.2.539] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Internal ethylene concentration, ability to convert 1-amino-cyclopropane-1-carboxylic acid (ACC) to ethylene (ethylene-forming enzyme [EFE] activity) and ACC content in the peel of apples (Malus domestica Borkh., cv Golden Delicious) increased only slightly during fruit maturation on the tree. Treatment of immature apples with 100 microliters ethylene per liter for 24 hours increased EFE activity in the peel tissue, but did not induce an increase in ethylene production. This ability of apple peel tissue to respond to ethylene with elevated EFE activity increased exponentially during maturation on the tree. After harvest of mature preclimacteric apples previously treated with aminoethoxyvinyl-glycine, 0.05 microliter per liter ethylene did not immediately cause a rapid increase of development in EFE activity in peel tissue. However, 0.5 microliter per liter ethylene and higher concentrations did. The ethylene concentration for half-maximal promotion of EFE development was estimated to be approximately 0.9 microliter per liter. CO(2) partially inhibited the rapid increase of ethylene-promoted development of EFE activity. It is suggested that ethylene-promoted CO(2) production is involved in the regulation of autocatalytic ethylene production in apples.
Collapse
Affiliation(s)
- G Bufler
- Institut für Obst-, Gemüse-, und Weinbau (370), Universität Hohenheim, 7000 Stuttgart 70, Federal Republic of Germany
| |
Collapse
|
24
|
|
25
|
Marynick MC. Patterns of Ethylene and Carbon Dioxide Evolution during Cotton Explant Abscission. PLANT PHYSIOLOGY 1977; 59:484-9. [PMID: 16659877 PMCID: PMC542428 DOI: 10.1104/pp.59.3.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The relationship between abscission and the evolution of ethylene and CO(2) was examined in explants and explant segments of cotton seedlings (Gossypium hirsutum L. cv. Acala SJ-1) under both static and flow system conditions, and in the presence and absence of mercuric perchlorate. Explant excision was immediately followed by increased ethylene evolution (wound ethylene); senescence was also accompanied by increased ethylene evolution (senescence ethylene). One or two ethylene peaks were found to interrupt the low background rate of ethylene evolution during the period between excision and senescence. The first intermediate ethylene peak coincided with a rise in CO(2) evolution; however, precedence could not be established. No statistical correlations were discovered between either intermediate ethylene peak and abscission. The best statistical correlation was found between wound ethylene and abscission at 12 hr after excision. No positive correlations were found between senescence ethylene and abscission. Implications of these results for the understanding of the role of ethylene in explant abscission are discussed.Relationships between a number of different explant treatments and ethylene evolution were also examined. Ethylene production in response to indoleacetic acid applications, abscisic acid applications, and different types of wounding is summarized. It was concluded that the results of the standard abscission bioassay (conducted in Petri dishes) have not been influenced by unnatural ethylene accumulations.
Collapse
Affiliation(s)
- M C Marynick
- Department of Botany, University of California, Davis, California 95616
| |
Collapse
|