1
|
Geeraerts SL, Heylen E, De Keersmaecker K, Kampen KR. The ins and outs of serine and glycine metabolism in cancer. Nat Metab 2021; 3:131-141. [PMID: 33510397 DOI: 10.1038/s42255-020-00329-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
Cancer cells reprogramme their metabolism to support unrestrained proliferation and survival in nutrient-poor conditions. Whereas non-transformed cells often have lower demands for serine and glycine, several cancer subtypes hyperactivate intracellular serine and glycine synthesis and become addicted to de novo production. Copy-number amplifications of serine- and glycine-synthesis genes and genetic alterations in common oncogenes and tumour-suppressor genes enhance serine and glycine synthesis, resulting in high production and secretion of these oncogenesis-supportive metabolites. In this Review, we discuss the contribution of serine and glycine synthesis to cancer progression. By relying on de novo synthesis pathways, cancer cells are able to enhance macromolecule synthesis, neutralize high levels of oxidative stress and regulate methylation and tRNA formylation. Furthermore, we discuss the immunosuppressive potential of serine and glycine, and the essentiality of both amino acids to promoting survival of non-transformed neighbouring cells. Finally, we point to the emerging data proposing moonlighting functions of serine- and glycine-synthesis enzymes and examine promising small molecules targeting serine and glycine synthesis.
Collapse
Affiliation(s)
- Shauni L Geeraerts
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Elien Heylen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| | - Kim R Kampen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
- Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Rani MH, Liu Q, Yu N, Zhang Y, Wang B, Cao Y, Zhang Y, Islam MA, Zegeye WA, Cao L, Cheng S. ES5 is involved in the regulation of phosphatidylserine synthesis and impacts on early senescence in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2020; 102:501-515. [PMID: 31919641 DOI: 10.1007/s11103-019-00961-964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/30/2019] [Indexed: 05/24/2023]
Abstract
Leaf senescence, which affects plant growth and yield in rice, is an ideal target for crop improvement and remarkable advances have been made to identify the mechanism underlying this process. We have characterized an early senile mutant es5 (early leaf senescence 5) in rice exhibiting leaf yellowing phenotype after the 4-leaf stage. This phenotype was confirmed by the higher accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the disintegration of chloroplasts, reduction in chlorophyll content and photosynthetic rate and up-regulation of senescence-associated genes (SAGs) like Osh36, OsI57, and OsI85. Positional cloning revealed that the es5 phenotype is the result of one base substitution in ES5, encoding phosphatidylserine synthase (PSS) family protein, which is involved in the base-exchange type reaction to synthesize the minor membrane phospholipid phosphatidylserine. Functional complementation of ES5 in the es5 plants completely restored the wild-type phenotype. Ultra-high-performance liquid chromatography (UHPLC) analysis showed that es5 plants had increased levels of phosphatidylserine (PS) and decreased level of phosphatidylcholine (PC). These results provide evidence about the role of PS in rice leaf senescence.
Collapse
Affiliation(s)
- Mohammad Hasanuzzaman Rani
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Bangladesh Institute of Nuclear Agriculture, Mymensingh, 2202, Bangladesh
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Beifang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yongrun Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Md Anowerul Islam
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Workie Anley Zegeye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Department of Plant Sciences, University of Gondar, Gondar, Ethiopia
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Rani MH, Liu Q, Yu N, Zhang Y, Wang B, Cao Y, Zhang Y, Islam MA, Zegeye WA, Cao L, Cheng S. ES5 is involved in the regulation of phosphatidylserine synthesis and impacts on early senescence in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2020; 102:501-515. [PMID: 31919641 PMCID: PMC7026238 DOI: 10.1007/s11103-019-00961-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
Leaf senescence, which affects plant growth and yield in rice, is an ideal target for crop improvement and remarkable advances have been made to identify the mechanism underlying this process. We have characterized an early senile mutant es5 (early leaf senescence 5) in rice exhibiting leaf yellowing phenotype after the 4-leaf stage. This phenotype was confirmed by the higher accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the disintegration of chloroplasts, reduction in chlorophyll content and photosynthetic rate and up-regulation of senescence-associated genes (SAGs) like Osh36, OsI57, and OsI85. Positional cloning revealed that the es5 phenotype is the result of one base substitution in ES5, encoding phosphatidylserine synthase (PSS) family protein, which is involved in the base-exchange type reaction to synthesize the minor membrane phospholipid phosphatidylserine. Functional complementation of ES5 in the es5 plants completely restored the wild-type phenotype. Ultra-high-performance liquid chromatography (UHPLC) analysis showed that es5 plants had increased levels of phosphatidylserine (PS) and decreased level of phosphatidylcholine (PC). These results provide evidence about the role of PS in rice leaf senescence.
Collapse
Affiliation(s)
- Mohammad Hasanuzzaman Rani
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Bangladesh Institute of Nuclear Agriculture, Mymensingh, 2202, Bangladesh
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Beifang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yongrun Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Md Anowerul Islam
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Workie Anley Zegeye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Department of Plant Sciences, University of Gondar, Gondar, Ethiopia
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
4
|
Abstract
One-carbon metabolism involving the folate and methionine cycles integrates nutritional status from amino acids, glucose and vitamins, and generates diverse outputs, such as the biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status and the substrates for methylation reactions. Long considered a 'housekeeping' process, this pathway has recently been shown to have additional complexity. Genetic and functional evidence suggests that hyperactivation of this pathway is a driver of oncogenesis and establishes a link to cellular epigenetic status. Given the wealth of clinically available agents that target one-carbon metabolism, these new findings could present opportunities for translation into precision cancer medicine.
Collapse
Affiliation(s)
- Jason W Locasale
- Field of Biochemistry and Molecular Cell Biology, Cornell University, Ithaca New York 14850, USA.
| |
Collapse
|
5
|
Sánchez-Nieto S, Enríquez-Arredondo C, Guzmán-Chávez F, Hernández-Muñoz R, Ramírez J, Gavilanes-Ruíz M. Kinetics of the H+-ATPase from dry and 5-hours-imbibed maize embryos in its native, solubilized, and reconstituted forms. MOLECULAR PLANT 2011; 4:505-515. [PMID: 21367847 DOI: 10.1093/mp/ssr010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Membranes undergo recovery upon rehydration in seed germination. Previous work has described that the plasma membrane H+-ATPase from maize embryos adopts two different forms at 0 and 5 h of imbibition. We investigated how the kinetics of these two forms could be affected by alterations in the plasma membrane (PM). In comparison to the 0-h, PMs from the 5-h imbibed embryos showed changes in glycerophospholipid composition, decrease in leakage, and increase in fluidity. Kinetics of the PM H+-ATPase from 0 and 5-h imbibed embryos showed negative cooperativity. With the removal of the membrane environment, the activity of the enzymes shifted to a more complex kinetics, displaying two enzyme components. Lipid reconstitution produced one component with positive cooperativity. In all cases, enzymes from 0 and 5-h imbibed embryos presented similar kinetics with some quantitative differences. These results indicate that the two enzyme forms have the potential ability to respond to changes in the membrane environment, but the fact that they do not show differences in the native membranes at 0 or 5 h implies that modifications in the membrane are not drastic enough to alter their kinetics, or that they are able to preserve their boundary lipids or associated proteins and thus retain the same kinetic behavior.
Collapse
Affiliation(s)
- Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd Universitaria, 04360 México, DF México
| | | | | | | | | | | |
Collapse
|
6
|
Rontein D, Wu WI, Voelker DR, Hanson AD. Mitochondrial phosphatidylserine decarboxylase from higher plants. Functional complementation in yeast, localization in plants, and overexpression in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:1678-87. [PMID: 12857846 PMCID: PMC167104 DOI: 10.1104/pp.103.023242] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2003] [Revised: 04/02/2003] [Accepted: 04/04/2003] [Indexed: 05/19/2023]
Abstract
Plants are known to synthesize ethanolamine (Etn) moieties by decarboxylation of free serine (Ser), but there is also some evidence for phosphatidyl-Ser (Ptd-Ser) decarboxylation. Database searches identified diverse plant cDNAs and an Arabidopsis gene encoding 50-kD proteins homologous to yeast (Saccharomyces cerevisiae) and mammalian mitochondrial Ptd-Ser decarboxylases (PSDs). Like the latter, the plant proteins have putative mitochondrial targeting and inner membrane sorting sequences and contain near the C terminus a Glycine-Serine-Threonine motif corresponding to the site of proteolysis and catalytic pyruvoyl residue formation. A truncated tomato (Lycopersicon esculentum) cDNA lacking the targeting sequence and a chimeric construct in which the targeting and sorting sequences were replaced by those from yeast PSD1 both complemented the Etn requirement of a yeast psd1 psd2 mutant, and PSD activity was detected in the mitochondria of the complemented cells. Immunoblot analysis of potato (Solanum tuberosum) mitochondria demonstrated that PSD is located in mitochondrial membranes, and mRNA analysis in Arabidopsis showed that the mitochondrial PSD gene is expressed at low levels throughout the plant. An Arabidopsis knockup mutant grew normally but had 6- to 13-fold more mitochondrial PSD mRNA and 9-fold more mitochondrial PSD activity. Total membrane PSD activity was, however, unchanged in the mutant, showing mitochondrial activity to be a minor part of the total. These results establish that plants can synthesize Etn moieties via a phospholipid pathway and have both mitochondrial and extramitochondrial PSDs. They also indicate that mitochondrial PSD is an important housekeeping enzyme whose expression is strongly regulated at the transcriptional level.
Collapse
Affiliation(s)
- Denis Rontein
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
7
|
Rontein D, Nishida I, Tashiro G, Yoshioka K, Wu WI, Voelker DR, Basset G, Hanson AD. Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem 2001; 276:35523-9. [PMID: 11461929 DOI: 10.1074/jbc.m106038200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The established pathways from serine to ethanolamine are indirect and involve decarboxylation of phosphatidylserine. Here we show that plants can decarboxylate serine directly. Using a radioassay based on ethanolamine (Etn) formation, pyridoxal 5'-phosphate-dependent l-serine decarboxylase (SDC) activity was readily detected in soluble extracts from leaves of diverse species, including spinach, Arabidopsis, and rapeseed. A putative Arabidopsis SDC cDNA was identified by searching GenBank for sequences homologous to other amino acid decarboxylases and shown by expression in Escherichia coli to encode a soluble protein with SDC activity. This cDNA was further authenticated by complementing the Etn requirement of a yeast psd1 psd2 mutant. In a parallel approach, a cDNA was isolated from a rapeseed library by its ability to complement the Etn requirement of a yeast cho1 mutant and shown by expression in E. coli to specify SDC. The deduced Arabidopsis and rapeseed SDC polypeptides are 90% identical, lack obvious targeting signals, and belong to amino acid decarboxylase group II. Recombinant Arabidopsis SDC was shown to exist as a tetramer and to contain pyridoxal 5'-phosphate. It does not attack d-serine, l-phosphoserine, other l-amino acids, or phosphatidylserine and is not inhibited by Etn, choline, or their phosphoesters. As a soluble, pyridoxal 5'-phosphate enzyme, SDC contrasts sharply with phosphatidylserine decarboxylases, which are membrane proteins that have a pyruvoyl cofactor.
Collapse
Affiliation(s)
- D Rontein
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
McNeil SD, Nuccio ML, Rhodes D, Shachar-Hill Y, Hanson AD. Radiotracer and computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco. PLANT PHYSIOLOGY 2000; 123:371-80. [PMID: 10806254 PMCID: PMC59011 DOI: 10.1104/pp.123.1.371] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Accepted: 02/03/2000] [Indexed: 05/21/2023]
Abstract
Among flowering plants, the synthesis of choline (Cho) from ethanolamine (EA) can potentially occur via three parallel, interconnected pathways involving methylation of free bases, phospho-bases, or phosphatidyl-bases. We investigated which pathways operate in tobacco (Nicotiana tabacum L.) because previous work has shown that the endogenous Cho supply limits accumulation of glycine betaine in transgenic tobacco plants engineered to convert Cho to glycine betaine. The kinetics of metabolite labeling were monitored in leaf discs supplied with [(33)P]phospho-EA, [(33)P]phospho-monomethylethanolamine, or [(14)C]formate, and the data were subjected to computer modeling. Because partial hydrolysis of phospho-bases occurred in the apoplast, modeling of phospho-base metabolism required consideration of the re-entry of [(33)P]phosphate into the network. Modeling of [(14)C]formate metabolism required consideration of the labeling of the EA and methyl moieties of Cho. Results supported the following conclusions: (a) The first methylation step occurs solely at the phospho-base level; (b) the second and third methylations occur mainly (83%-92% and 65%-85%, respectively) at the phospho-base level, with the remainder occurring at the phosphatidyl-base level; and (c) free Cho originates predominantly from phosphatidylcholine rather than from phospho-Cho. This study illustrates how computer modeling of radiotracer data, in conjunction with information on chemical pool sizes, can provide a coherent, quantitative picture of fluxes within a complex metabolic network.
Collapse
Affiliation(s)
- S D McNeil
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA
| | | | | | | | | |
Collapse
|
9
|
Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R, Rébeillé F. Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:197-205. [PMID: 10571879 DOI: 10.1046/j.1365-313x.1999.00591.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glycine and serine are two interconvertible amino acids that play an important role in C1 metabolism. Using 13C NMR and various 13C-labelled substrates, we studied the catabolism of each of these amino acids in non-photosynthetic sycamore cambial cells. On one hand, we observed a rapid glycine catabolism that involved glycine oxidation by the mitochondrial glycine decarboxylase (GDC) system. The methylenetetra- hydrofolate (CH2-THF) produced during this reaction did not equilibrate with the overall CH2-THF pool, but was almost totally recycled by the mitochondrial serine hydroxymethyltransferase (SHMT) for the synthesis of one serine from a second molecule of glycine. Glycine, in contrast to serine, was a poor source of C1 units for the synthesis of methionine. On the other hand, catabolism of serine was about three times lower than catabolism of glycine. Part of this catabolism presumably involved the glycolytic pathway. However, the largest part (about two-thirds) involved serine-to-glycine conversion by cytosolic SHMT, then glycine oxidation by GDC. The availability of cytosolic THF for the initial SHMT reaction is possibly the limiting factor of this catabolic pathway. These data support the view that serine catabolism in plants is essentially connected to C1 metabolism. The glycine formed during this process is rapidly oxidized by the mitochondrial GDC-SHMT enzymatic system, which is therefore required in all plant tissues.
Collapse
|
10
|
Delhaize E, Hebb DM, Richards KD, Lin JM, Ryan PR, Gardner RC. Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA. Overexpression in plants alters the composition of phospholipids. J Biol Chem 1999; 274:7082-8. [PMID: 10066765 DOI: 10.1074/jbc.274.11.7082] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe the cloning of a wheat cDNA (TaPSS1) that encodes a phosphatidylserine synthase (PSS) and provides the first strong evidence for the existence of this enzyme in a higher eukaryotic cell. The cDNA was isolated on its ability to confer increased resistance to aluminum toxicity when expressed in yeast. The sequence of the predicted protein encoded by TaPSS1 shows homology to PSS from both yeast and bacteria but is distinct from the animal PSS enzymes that catalyze base-exchange reactions. In wheat, Southern blot analysis identified the presence of a small family of genes that cross-hybridized to TaPSS1, and Northern blots showed that aluminum induced TaPSS1 expression in root apices. Expression of TaPSS1 complemented the yeast cho1 mutant that lacks PSS activity and altered the phospholipid composition of wild type yeast, with the most marked effect being increased abundance of phosphatidylserine (PS). Arabidopsis thaliana leaves overexpressing TaPSS1 showed a marked enhancement in PSS activity, which was associated with increased biosynthesis of PS at the expense of both phosphatidylinositol and phosphatidylglycerol. Unlike mammalian cells where PS accumulation is tightly regulated even when the capacity for PS biosynthesis is increased, plant cells accumulated large amounts of PS when TaPSS1 was overexpressed. High levels of TaPSS1 expression in Arabidopsis and tobacco (Nicotiana tabacum) led to the appearance of necrotic lesions on leaves, which may have resulted from the excessive accumulation of PS. The cloning of TaPSS1 now provides evidence that the yeast pathway for PS synthesis exists in some plant tissues and provides a tool for understanding the pathways of phospholipid biosynthesis and their regulation in plants.
Collapse
Affiliation(s)
- E Delhaize
- Plant Industry, Commonwealth Scientific Industrial and Research Organisation, GPO Box 1600, Canberra Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Parkin ET, Rolph CE. Modulation of phosphatidylcholine biosynthesis in celery by exogenous fatty acids. PHYTOCHEMISTRY 1999; 50:47-51. [PMID: 9891932 DOI: 10.1016/s0031-9422(98)00488-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of C16 and C18 fatty acids on the synthesis of phosphatidylcholine were studied in Apium graveolens cell suspension cultures and postmitochondrial supernatants. When cells were exposed to exogenous oleic acid, the rate of phosphatidylcholine biosynthesis increased 1.4-fold within 5 min of the addition of the fatty acid to the culture medium. The sensitivity of microsomal CTP:cholinephosphate cytidylyltransferase (EC 2.7.7.15) to saturated and unsaturated fatty acids was monitored through the addition of unesterified fatty acids to postmitochondrial supernatants. The saturated fatty acids, palmitic and stearic, appeared to have little effect on CTP:cholinephosphate cytidylyltransferase activity, whereas exposure to oleic, linoleic and cis-vaccenic acids resulted in significant increases in enzyme activity. Optimal microsomal CTP:cholinephosphate cytidylyltransferase activities were achieved by the incubation of postmitochondrial supernatants with 500 microM oleate. The exogenous fatty acids were found to be incorporated into microsomal membranes in their unesterified form. Removal of unesterified fatty acids by incubation of microsomal membranes with defatted bovine serum albumin resulted in the reduction of microsomal CTP:cholinephosphate cytidylyltransferase activity; demonstrating that the enzyme requires unesterified unsaturated fatty acids.
Collapse
Affiliation(s)
- E T Parkin
- Department of Applied Biology, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
12
|
Nishida I, Swinhoe R, Slabas AR, Murata N. Cloning of Brassica napus CTP: phosphocholine cytidylyltransferase cDNAs by complementation in a yeast cct mutant. PLANT MOLECULAR BIOLOGY 1996; 31:205-211. [PMID: 8756587 DOI: 10.1007/bf00021784] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
CTP:phosphocholine cytidylyltransferase is a rate-limiting enzyme in biosynthesis of phosphatidylcholine in plant cells. We have isolated four cDNAs for the cytidylyltransferase from a root cDNA library of Brassica napus by complementation in a yeast cct mutant. The deduced amino-acid sequences of the B. napus enzymes resembled rat and yeast enzymes in the central domain. Although all cytidylyltransferases ever cloned from B. napus and other organisms were predicted to be structurally hydrophilic, the yeast cct mutant transformed with one of the B. napus cDNA clones restored the cytidylyltransferase activity in the microsomal fraction as well as in the soluble fraction. These results are consistent with a recent view that yeast cells contained a machinery for targeting the yeast cytidylyltransferase to membranes, and may indicate that the B. napus enzyme was compatible with the machinery.
Collapse
Affiliation(s)
- I Nishida
- National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
13
|
Robson GD, Wiebe MG, Cunliffe B, Trinci APJ. Choline- and acetylcholine-induced changes in the morphology of Fusarium graminearum: evidence for the involvement of the choline transport system and acetylcholinesterase. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 6):1309-1314. [PMID: 7670634 DOI: 10.1099/13500872-141-6-1309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The response of Fusarium graminearum to choline, acetylcholine and a number of related analogues was investigated and their ability to induce a morphological response quantified. A number of mutants resistant to the alkylating agent nitrogen mustard (nim strains) were generated and found to have lost the ability to transport choline. These mutants were found to be insensitive to choline and acetylcholine but not to betaine, ethanolamine and other analogues. In addition, the non-competitive inhibitor hemicholinium-3 was also found to reduce the morphological effect of choline, proving that transport of choline into the hypha is essential for the morphological response. Acetylcholinesterase inhibitors blocked the morphological response to acetylcholine but had no effect on the response to choline, suggesting the presence of a membrane- or wall-bound acetylcholinesterase that hydrolyses acetylcholine to choline which subsequently induces the morphological response. Studies on the in vivo chitin synthase activity revealed that addition of choline caused a transient 75% increase in chitin synthase activity within 30 s, the rate rapidly returning to that observed before the addition of choline. No such effect was observed with the nim mutants.
Collapse
Affiliation(s)
- Geoffrey D Robson
- *Microbiology Research Group, 1.800 Stopford Building, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Marilyn G Wiebe
- *Microbiology Research Group, 1.800 Stopford Building, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Bryan Cunliffe
- *Microbiology Research Group, 1.800 Stopford Building, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Anthony P J Trinci
- *Microbiology Research Group, 1.800 Stopford Building, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
14
|
Prud'homme MP, Moore TS. Phosphatidylcholine synthesis in castor bean endosperm : free bases as intermediates. PLANT PHYSIOLOGY 1992; 100:1527-35. [PMID: 16653153 PMCID: PMC1075815 DOI: 10.1104/pp.100.3.1527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The methylation steps in the biosynthesis of phosphatidylcholine by castor bean (Ricinus communis L.) endosperm have been studied by pulse-chase labeling. Endosperm halves were incubated with [methyl-(14)C]S-adenosyl-l-methionine, [2-(14)C]ethanolamine, [(14)C]ethanolamine phosphate, or [(14)C]serine phosphate. The kinetics of appearance were followed in the free, phospho-, and phosphatidyl-bases. The initial methylation utilized ethanolamine as a substrate to form methylethanolamine, which was then converted to dimethylethanolamine, choline, and phosphomethylethanolamine. Subsequent methylations occurred at the phospho-base and, to a lesser extent, the phosphatidyl-base levels, after which the radioactivity either remained constant or decreased in these compounds and accumulated in phosphatidylcholine. Although the precursors tested did support the synthesis of choline, the kinetics of the labeling make them unlikely to be the major sources of free choline to be utilized for the nucleotide pathway. A model with two pools of choline is proposed, and the implications of these results for the pathways leading to phosphatidylcholine biosynthesis are discussed.
Collapse
Affiliation(s)
- M P Prud'homme
- Department of Botany, Louisiana State University, Baton Rouge, Louisiana 70803-1705
| | | |
Collapse
|
15
|
Prud'homme MP, Moore TS. Phosphatidylcholine Synthesis in Castor Bean Endosperm : Occurrence of an S-Adenosyl-l-Methionine:Ethanolamine N-Methyltransferase. PLANT PHYSIOLOGY 1992; 100:1536-40. [PMID: 16653154 PMCID: PMC1075816 DOI: 10.1104/pp.100.3.1536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Methylethanolamine synthesis by S-adenosyl-l-methionine:ethanolamine N-methyltransferase from an extract of castor bean (Ricinus communis L. var Hale) endosperm was characterized. The apparent Michaelis-Menten constants of the enzyme for ethanolamine and S-adenosyl-l-methionine were estimated to be 6.7 and 1.4 mum, respectively, although the K(m) for ethanolamine is imprecise because of strong substrate inhibition. The pH optimum was 8.0, and a divalent cation was required for activity, with Mg(2+) giving the greatest stimulation at 5 mm. The enzyme was inhibited by calcium in the micromolar range and relatively high concentrations of ethanolamine (above about 7 mum). The activity was found in the 119,000g supernatant fraction and, therefore, appears to be cytoplasmic. The potential roles of S-adenosyl-l-methionine:ethanolamine N-methyltransferase in choline and phosphatidylcholine synthesis are discussed.
Collapse
Affiliation(s)
- M P Prud'homme
- Department of Botany, Louisiana State University, Baton Rouge, Louisiana 70803-1705
| | | |
Collapse
|
16
|
Robson G, Best L, Wiebe M, Trinci A. Choline transport in Fusarium graminearumA 3 5. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05269.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Wang X, Moore T. Phosphatidylethanolamine synthesis by castor bean endosperm. Intracellular distribution and characteristics of CTP:ethanolaminephosphate cytidylyltransferase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54880-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Shin S, Moore TS. Phosphatidylethanolamine synthesis by castor bean endosperm : a base exchange reaction. PLANT PHYSIOLOGY 1990; 93:148-53. [PMID: 16667427 PMCID: PMC1062481 DOI: 10.1104/pp.93.1.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A base exchange reaction for synthesis of phosphatidylethanolamine by the endoplasmic reticulum of castor bean (Ricinus comminus L. var Hale) endosperm has been examined. The calculated Michaelis-Menten constant of the enzyme for ethanolamine was 5 micromolar and the optimal pH was 7.8 in the presence of 2 millimolar CaCl(2). l-Serine, N-methylethanolamine and N,N-dimethylethanolamine all reduced ethanolamine incorporation, while d-serine and myo-inositol had little effect. These inhibitions of ethanolamine incorporation were found to be noncompetitive and ethanolamine also noncompetitively inhibited l-serine incorporation by exchange. The activity of the ethanolamine base exchange enzyme was affected by several detergents, with the best activity being obtained with the zwitterionic defjtergent 3-3-cholamidopropyl) dimethylammonio-2-hydroxyl-1-propanesulfonate.
Collapse
Affiliation(s)
- S Shin
- Department of Botany, Louisiana State University, Baton Rouge, Louisiana 70803-1705
| | | |
Collapse
|
19
|
Enzymes of Phospholipid Synthesis. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/b978-0-12-461013-2.50020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
20
|
Mudd SH, Datko AH. Synthesis of Ethanolamine and Its Regulation in Lemna paucicostata. PLANT PHYSIOLOGY 1989; 91:587-97. [PMID: 16667073 PMCID: PMC1062041 DOI: 10.1104/pp.91.2.587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The metabolism of ethanolamine and its derivatives in Lemna paucicostata has been investigated, with emphasis on the path-way for synthesis of phosphoethanolamine, a precursor of phosphatidylcholine in higher plants. In experiments involving labeling of intact plants with radioactive serine, ambiguities of interpretation due to entry of radioactivity into methyl groups of methylated ethanolamine derivatives were mitigated by pregrowth of plants with methionine. Difficulties due to labeling of diacylglyceryl moieties of phospholipids were avoided by acid hydrolysis of crucial samples and determination of radioactivity in isolated serine or ethanolamine moieties. The results obtained from such experiments are most readily reconciled with the biosynthetic sequence: serine --> ethanolamine --> phosphoethanolamine --> phosphatidylethanolamine. A possible alternative is: serine --> phosphatidylserine --> phosphatidylethanolamine --> ethanolamine --> phosphoethanolamine. Cell-free extracts of L. paucicostata were shown to produce CO(2) from the carbon originating as C-1 of serine at a rate sufficient to satisfy the demand for ethanolamine moieties. A number of experiments produced no support for a hypothetical role for phosphoserine in phosphoethanolamine formation. Uptake of exogenous ethanolamine commensurately down-regulates the synthesis of ethanolamine moieties (considered as a whole, and regardless of their state of derivatization at the time of their formation). In agreement with previous observations, uptake of exogenous choline down-regulates the methylation of phosphoethanolamine, without being accompanied by secondary accumulation of a marked excess of ethanolamine derivatives.
Collapse
Affiliation(s)
- S H Mudd
- Laboratory of General and Comparative Biochemistry, National Institute of Mental Health, Bethesda, Maryland 20892
| | | |
Collapse
|
21
|
Brunk DG, Rhodes D. Amino Acid Metabolism of Lemna minor L. : III. Responses to Aminooxyacetate. PLANT PHYSIOLOGY 1988; 87:447-53. [PMID: 16666162 PMCID: PMC1054772 DOI: 10.1104/pp.87.2.447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aminooxyacetate, a known inhibitor of transaminase reactions and glycine decarboxylase, promotes rapid depletion of the free pools of serine and aspartate in nitrate grown Lemna minor L. This compound markedly inhibits the methionine sulfoximine-induced accumulation of free ammonium ions and greatly restricts the methionine sulfoximine-induced depletion of amino acids such as glutamate, alanine, and asparagine. These results suggest that glutamate, alanine, and asparagine are normally catabolized to ammonia by transaminase-dependent pathways rather than via dehydrogenase or amidohydrolase reactions. Aminooxyacetate does not inhibit the methionine sulfoximine-induced irreversible deactivation of glutamine synthetase in vivo, indicating that these effects cannot be simply ascribed to inhibition of methionine sulfoximine uptake by amino-oxyacetate. This transaminase inhibitor promotes extensive accumulation of several amino acids including valine, leucine, isoleucine, alanine, glycine, threonine, proline, phenylalanine, lysine, and tyrosine. Since the aminooxyacetate induced accumulations of valine, leucine, and isoleucine are not inhibited by the branched-chain amino acid biosynthesis inhibitor, chlorsulfuron, these amino acid accumulations most probably involve protein turnover. Depletions of soluble protein bound amino acids are shown to be approximately stoichiometric with the free amino acid pool accumulations induced by aminooxyacetate. Aminooxyacetate is demonstrated to inhibit the chlorsulfuron-induced accumulation of alpha-amino-n-butyrate in L. minor, supporting the notion that this amino acid is derived from transamination of 2-oxobutyrate.
Collapse
Affiliation(s)
- D G Brunk
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
22
|
Kinney AJ, Moore TS. Phosphatidylcholine synthesis in castor bean endosperm: characteristics and reversibility of the choline kinase reaction. Arch Biochem Biophys 1988; 260:102-8. [PMID: 2829723 DOI: 10.1016/0003-9861(88)90429-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Choline kinase (EC 2.7.1.32) was measured in concentrated 100,000gav supernatants from castor bean endosperm (Ricinus communis L. var. Hale). Initial velocity analysis, along with competitive inhibitor (hemicholinium-3) and product inhibition (ADPMg2+) studies suggested that the forward reaction followed a sequentially ordered mechanism with ATPMg2+ binding to the enzyme first, followed by choline and then activation of the ternary complex by free Mg2+. The kinetic constants of the forward reaction are reported. A reverse reaction was measured which had a pH optimum of 6.5 and produced 1 mol of ATP for every mole of choline phosphate. The estimated maximum possible Keq at 7.25 was 5 X 10(-3) which suggested that this reaction is highly reversible in this tissue. The possible physiological significance of this is discussed.
Collapse
Affiliation(s)
- A J Kinney
- Department of Botany, Louisiana State University, Baton Rouge 70803-1705
| | | |
Collapse
|