1
|
Lerchl D, Hillmer S, Grotha R, Robinson DG. Ultrastructural Observations on CTC-Induced Callose Formation inRiella helicophylla. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1989.tb00068.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Sun Z, Henson C. EXTRACTION OF α-GLUCOSIDASE FROM GERMINATED BARLEY KERNELS. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1992.tb01110.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Dagley MJ, Gentle IE, Beilharz TH, Pettolino FA, Djordjevic JT, Lo TL, Uwamahoro N, Rupasinghe T, Tull DL, McConville M, Beaurepaire C, Nantel A, Lithgow T, Mitchell AP, Traven A. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol Microbiol 2010; 79:968-89. [PMID: 21299651 DOI: 10.1111/j.1365-2958.2010.07503.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cell wall is essential for viability of fungi and is an effective drug target in pathogens such as Candida albicans. The contribution of post-transcriptional gene regulators to cell wall integrity in C. albicans is unknown. We show that the C. albicans Ccr4-Pop2 mRNA deadenylase, a regulator of mRNA stability and translation, is required for cell wall integrity. The ccr4/pop2 mutants display reduced wall β-glucans and sensitivity to the echinocandin caspofungin. Moreover, the deadenylase mutants are compromised for filamentation and virulence. We demonstrate that defective cell walls in the ccr4/pop2 mutants are linked to dysfunctional mitochondria and phospholipid imbalance. To further understand mitochondrial function in cell wall integrity, we screened a Saccharomyces cerevisiae collection of mitochondrial mutants. We identify several mitochondrial proteins required for caspofungin tolerance and find a connection between mitochondrial phospholipid homeostasis and caspofungin sensitivity. We focus on the mitochondrial outer membrane SAM complex subunit Sam37, demonstrating that it is required for both trafficking of phospholipids between the ER and mitochondria and cell wall integrity. Moreover, in C. albicans also Sam37 is essential for caspofungin tolerance. Our study provides the basis for an integrative view of mitochondrial function in fungal cell wall biogenesis and resistance to echinocandin antifungal drugs.
Collapse
Affiliation(s)
- Michael J Dagley
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Greffe L, Bessueille L, Bulone V, Brumer H. Synthesis, preliminary characterization, and application of novel surfactants from highly branched xyloglucan oligosaccharides. Glycobiology 2004; 15:437-45. [PMID: 15537791 DOI: 10.1093/glycob/cwi013] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel class of nonionic, carbohydrate-based surfactants has been synthesized from the plant polysaccharide xyloglucan. Enzymatic hydrolysis of xyloglucan yielded a series of well-defined, highly branched oligosaccharides that, following reductive amination, were readily conjugated with fatty acids bearing C8 to C18 chains under mild conditions. The critical micelle concentration, determined by tensiometry and dye-inclusion measurements, showed a typical dependence on acyl chain length and was sensitive to the degree of galactosylation of the head group. Several compounds from this new group of surfactants, especially those with C14 and C16 chains, were useful for the extraction of membrane-bound enzyme markers from different plant cell compartments in catalytically active form.
Collapse
Affiliation(s)
- Lionel Greffe
- Department of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
5
|
Karnezis T, Fisher HC, Neumann GM, Stone BA, Stanisich VA. Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1-->3)-beta-D-glucan (curdlan). J Bacteriol 2002; 184:4114-23. [PMID: 12107128 PMCID: PMC135195 DOI: 10.1128/jb.184.15.4114-4123.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.
Collapse
Affiliation(s)
- Tara Karnezis
- Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
6
|
Him JL, Pelosi L, Chanzy H, Putaux JL, Bulone V. Biosynthesis of (1-->3)-beta-D-glucan (callose) by detergent extracts of a microsomal fraction from Arabidopsis thaliana. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4628-38. [PMID: 11531999 DOI: 10.1046/j.1432-1327.2001.02382.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to develop a biochemical approach to study (1-->3)-beta-D-glucan (callose) biosynthesis using suspension cultures of Arabidopsis thaliana. Optimal conditions for in vitro synthesis of callose corresponded to an assay mixture containing 50 mM Mops buffer, pH 6.8, 1 mM UDP-glucose, 8 mM Ca2+ and 20 mM cellobiose. The enzyme was Ca2+-dependent, and addition of Mg2+ to the reaction mixture did not favour cellulose biosynthesis. Enzyme kinetics suggested the existence of positive homotropic cooperativity of (1-->3)-beta-D-glucan synthase for the substrate UDP-glucose, in agreement with the hypothesis that callose synthase consists of a multimeric complex containing several catalytic subunits. Detergents belonging to different families were tested for their ability to extract and preserve membrane-bound (1-->3)-beta-D-glucan synthase activity. Cryo-transmission electron microscopy experiments showed that n-octyl-beta-D-glucopyranoside allowed the production of micelle-like structures, whereas vesicles were obtained with Chaps and Zwittergent 3-12. The morphology and size of the (1-->3)-beta-D-glucans synthesized in vitro by fractions obtained with different detergents were affected by the nature of the detergent tested. These data suggest that the general organization of the glucan synthase complexes and the properties of the in vitro products are influenced by the detergent used for protein extraction. The reaction products synthesized by different detergent extracts were characterized by infrared spectroscopy, methylation analysis, 13C-NMR spectroscopy, electron microscopy and X-ray diffraction. These products were identified as linear (1-->3)-beta-D-glucans having a degree of polymerization higher than 100, a microfibrillar structure, and a low degree of crystallinity.
Collapse
Affiliation(s)
- J L Him
- Centre de Recherches sur les Macromolécules Végétales, CNRS-UPR 5301 affiliated with the Joseph Fourier University of Grenoble, France
| | | | | | | | | |
Collapse
|
7
|
Li H, Bacic A, Read SM. Activation of pollen tube callose synthase by detergents. Evidence for different mechanisms of action. PLANT PHYSIOLOGY 1997; 114:1255-65. [PMID: 9276948 PMCID: PMC158418 DOI: 10.1104/pp.114.4.1255] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In pollen tubes of Nicotiana alata, a membrane-bound, Ca(2+)-independent callose synthase (CalS) is responsible for the biosynthesis of the (1,3)-beta-glucan backbone of callose, the main cell wall component. Digitonin increases CalS activity 3- to 4-fold over a wide range of concentrations, increasing the maximum initial velocity without altering the Michaelis constant for UDP-glucose. The CalS activity that requires digitonin for assay (the latent CalS activity) is not inhibited by the membrane-impermeant, active site-directed reagent UDP-pyridoxal when the reaction is conducted in the absence of digitonin. This is consistent with digitonin increasing CalS activity by the permeabilization of membrane vesicles. A second group of detergents, including 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS), Zwittergent 3-16, and 1-alpha-lysolecithin, activate pollen tube CalS 10- to 15-fold, but only over a narrow range of concentrations just below their respective critical micellar concentrations. This activation could not be attributed to any particular chemical feature of these detergents. CHAPS increases maximum initial velocity and decreases the Michaelis constant for UDP-glucose and activates CalS even in the presence of permeabilizing concentrations of digitonin. Inhibition studies with UDP-pyridoxal indicate that activation by CHAPS occurs by recruitment of previously inactive CalS molecules to the pool of active enzyme. The activation of pollen tube CalS by these detergents therefore resembles activation of the enzyme by trypsin.
Collapse
Affiliation(s)
- H Li
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
8
|
Evenson KJ, Post-Beittenmiller D. Fatty Acid-Elongating Activity in Rapidly Expanding Leek Epidermis. PLANT PHYSIOLOGY 1995; 109:707-716. [PMID: 12228624 PMCID: PMC157639 DOI: 10.1104/pp.109.2.707] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A microsomal fatty acid elongase activity measured in epidermis of rapidly expanding leek (Allium porrum L.) was 10-fold higher in specific activity than preparations from store-bought leek. These preparations elongated acyl chains effectively using endogenous or supplied primers. Elongation of C20:0 was specifically inhibited by 2 [mu]M cerulenin, and labeling experiments with [3H]cerulenin labeled two polypeptides (65 and 88 kD). ATP was required for maximal elongase activity in expanding leaves but was lost in nonexpanding tissues. Both [14C]stearoyl-coenzyme A (CoA) and [14C]stearate were maximally elongated in the presence of ATP. Addition of fully reduced CoA, however, inhibited [14C]stearate elongation, suggesting that stearoyl-CoA synthesis was not a prerequisite for elongation. Furthermore, microsomes preincubated with [14C]stearoyl-CoA plus ATP resulted in loss of radiolabel from the acyl-CoA pool without a corresponding loss in elongating activity. The lack of correlation between elongating activity and the label retained in the putative acyl-CoA substrate pool suggests that acyl-CoAs may not be the immediate precursors for elongation and that ATP plays a critical, yet undefined, role in the elongation process. We propose that an ATP-dependent elongating activity may generate the long-chain fatty acids required for wax biosynthesis.
Collapse
Affiliation(s)
- K. J. Evenson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402
| | | |
Collapse
|
9
|
Qi X, Tai CY, Wasserman BP. Plasma membrane intrinsic proteins of Beta vulgaris L. PLANT PHYSIOLOGY 1995; 108:387-92. [PMID: 7784509 PMCID: PMC157345 DOI: 10.1104/pp.108.1.387] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plasma membrane (PM) of higher plants contains numerous proteins; however, due to their low abundance, only a few have been identified and characterized by direct biochemical approaches. The major intrinsic protein (MIP) family is a class of highly hydrophobic integral membrane proteins thought to function as channels that facilitate the passage of water, small solutes, and possibly other moieties through the membrane. A family of PM intrinsic proteins was purified and characterized from PM vesicles derived from storage tissue of Beta vulgaris L. using the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate. This PM intrinsic protein-enriched fraction also contains high levels of UDP-glucose:(1,3)-beta-glucan (callose) synthase activity. Dithiothreitol is required to visualize the monomeric species of these highly hydrophobic integral membrane proteins. Sequence analysis of tryptic fragments derived from polypeptides of 31 and 27 kD revealed significant homologies to plant MIPs identified from cloned sequences. These MIPs include clone 7a from pea and RD28 from Arabidopsis, both of which are water-stress proteins, a tomato ripening-associated membrane protein, and PIP 2b, a PM-bound water channel protein from Arabidopsis. MIPs, therefore, represent abundantly occurring components of PMs derived from beet storage tissue.
Collapse
Affiliation(s)
- X Qi
- Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick 08903-0231, USA
| | | | | |
Collapse
|
10
|
Ko YT, Frost DJ, Ho CT, Ludescher RD, Wasserman BP. Inhibition of yeast (1,3)-beta-glucan synthase by phospholipase A2 and its reaction products. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1193:31-40. [PMID: 8038192 DOI: 10.1016/0005-2736(94)90329-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fungal (1,3)-beta-glucan synthases are sensitive to a wide range of lipophilic inhibitors and it has been proposed that enzyme activity is highly sensitive to perturbations of the membrane environment. Yeast membranes were exposed to phospholipases and various lipophilic compounds, and the resultant effects on glucan synthase activity were ascertained. Glucan synthase from Saccharomyces cerevisiae was rapidly inactivated by phospholipase A2 (PLA2), and to a lesser extent by phospholipase C. Inactivation was time and dose-dependent and was protected against by EDTA and fatty-acid binding proteins (bovine and human serum albumins). Albumins also partially protected against inhibition by papulacandin B. PLA2 reaction products were structurally characterized and it was shown that fatty acids and lysophospholipids were the inhibitory moieties, with no novel inhibitory compounds apparent. Glucan synthase was inhibited by a range of fatty acids, monoglycerides and lysophospholipids. Inhibition by fatty acids was non-competitive, and progressive binding of [14C]oleic acid correlated with activity loss. Fluorescence anisotropy studies using diphenylhexatriene (DPH) confirm that fatty acids increase membrane fluidity. These results are consistent with proposals suggesting that glucan synthase inhibition is due in part to non-specific detergent-like disruption of the membrane environment, in addition to direct interactions of lipophilic inhibitors with specific target sites on the enzyme complex.
Collapse
Affiliation(s)
- Y T Ko
- Department of Food Science, Rutgers University, Cook College, New Jersey Agricultural Experiment Station, New Brunswick 08903-0231
| | | | | | | | | |
Collapse
|
11
|
Dhugga KS, Ray PM. Purification of 1,3-beta-D-glucan synthase activity from pea tissue. Two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:943-53. [PMID: 8143748 DOI: 10.1111/j.1432-1033.1994.tb18698.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
From pea plasma membranes isolated by aqueous polymer two-phase partitioning we have purified 1,3-beta-D-glucan synthase [glucan synthase-II (GS-II) or callose synthase], an enzyme that several reports have suggested consists of between six and nine different subunits. The procedure involves (a) preliminary removal of peripheral proteins by 0.1% digitonin; (b) solubilization of GS-II with 0.5% digitonin; (c) precipitation of activity-irrelevant proteins from the digitonin extract by Ca2+, spermine and cellobiose, which are GS-II effectors needed in step (d); (d) product entrapment by formation of 1,3-beta-D-glucan from UDP-Glc by GS-II in the presence of the mentioned effectors, followed by centrifugal sedimentation of product micelles and elution of proteins therefrom with buffer; (e) preparative isoelectric focusing (IEF) of product-entrapped proteins; and (f) glycerol gradient centrifugation of the fractions of peak GS-II activity from IEF. The procedure yields 300-fold enrichment of GS-II specific activity over that in isolated plasma membranes, and 5500-fold over that in the original homogenate. Out of approximately six principal polypeptides that occur after the product entrapment step, the glycerol gradient GS-II activity peak contains only two major polypeptides, one of 55 kDa and another of 70 kDa, plus minor amounts of one or two others whose distribution and occurrence indicate are not responsible for GS-II activity. Antisera against either the 55-kDa or the 70-kDa polypeptide adsorb more than 60% of the GS-II activity from a product-entrapped preparation. After native gel electrophoresis, GS-II activity is associated with a single protein band of very large molecular mass, whose principal components are the 55-kDa and 70-kDa polypeptides, accompanied by minor amounts of a few other polypeptides most of which do not occur in enzyme preparations purified by the previously described procedure. The 55-kDa but not the 70-kDa component can be labeled by ultraviolet irradiation of the plasma membranes in the presence of [alpha-32P]UDP-Glc under GS-II assay conditions. It seems likely, therefore, that the 55-kDa and 70-kDa polypeptides form a large catalytic complex of which the 55-kDa component is the UDP-Glc-binding subunit.
Collapse
Affiliation(s)
- K S Dhugga
- Department of Biological Sciences, Stanford University, CA 94305
| | | |
Collapse
|
12
|
Delmer DP, Ohana P, Gonen L, Benziman M. In Vitro Synthesis of Cellulose in Plants: Still a Long Way to Go! PLANT PHYSIOLOGY 1993; 103:307-308. [PMID: 12231937 PMCID: PMC158984 DOI: 10.1104/pp.103.2.307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- D. P. Delmer
- Departments of Botany (D.P.D, L.G.) and Biological Chemistry (P.O., M.B.), Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
13
|
Getz HP, Grosclaude J, Kurkdjian A, Lelievre F, Maretzki A, Guern J. Immunological Evidence for the Existence of a Carrier Protein for Sucrose Transport in Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Root Storage Tissue. PLANT PHYSIOLOGY 1993; 102:751-760. [PMID: 12231863 PMCID: PMC158844 DOI: 10.1104/pp.102.3.751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Monoclonal antibodies were raised in mice against a highly purified tonoplast fraction from isolated red beet (Beta vulgaris L. ssp. conditiva) root vacuoles. Positive hybridoma clones and sub-clones were identified by prescreening using an enzyme-linked immunosorbent assay (ELISA) and by postscreening using a functional assay. This functional assay consisted of testing the impact of hybridoma supernatants and antibody-containing ascites fluids on basal and ATP-stimulated sugar uptake in vacuoles, isolated from protoplasts, as well as in tonoplast vesicles, prepared from tissue homogenates of red beet roots. Antibodies from four clones were particularly positive in ELISAs and they inhibited sucrose uptake significantly. These antibodies were specific inhibitors of sucrose transport, but they exhibited relatively low membrane and species specificity since uptake into red beet root protoplasts and sugarcane tonoplast vesicles was inhibited as well. Fast protein liquid chromatography assisted size exclusion chromatography on Superose 6 columns yielded two major peaks in the 55 to 65-kD regions and in the 110- to 130-kD regions of solubilized proteins from red beet root tonoplasts, which reacted positively in immunoglobulin-M(IgM)-specific ELISAs with anti-sugarcane tonoplast monoclonal IgM antibodies. Only reconstituted proteoliposomes containing polypeptides from the 55- to 65-kD band took up [14C]-sucrose with linear rates for 2 min, suggesting that this fraction contains the tonoplast sucrose carrier.
Collapse
Affiliation(s)
- H. P. Getz
- Botanisches Institut der Universitat zu Koln, Lehrstuhl III Gyrhofstrasse 15, W-5000 Koln 41, Germany (H.P.G.)
| | | | | | | | | | | |
Collapse
|
14
|
Harriman RW, Shao AP, Wasserman BP. Inhibition and Ultraviolet-Induced Chemical Modification of UDP-Glucose:(1,3)-beta-Glucan (Callose) Synthase by Chlorpromazine : Mechanism of Chlorpromazine Binding to the Plant Plasma Membrane. PLANT PHYSIOLOGY 1992; 100:1927-33. [PMID: 16653219 PMCID: PMC1075886 DOI: 10.1104/pp.100.4.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
UDP-glucose:(1,3)-beta-glucan (callose) synthase (CS) from storage tissue of red beet (Beta vulgaris L.) was strongly inhibited by the phenothiazine drug chlorpromazine (CPZ). In the absence of ultraviolet irradiation, CPZ was a noncompetitive inhibitor with 50% inhibitory concentration values for plasma membrane and solubilized CS of 100 and 90 mum, respectively. Both the Ca(2+)- and Mg(2+)- stimulated components of CS activity were affected. CPZ inhibition was partially alleviated at saturating levels of Ca(2+), but not Mg(2+), suggesting that CPZ interferes with the Ca(2+)-binding site of CS. Binding experiments with [(14)C]CPZ, however, showed strong non-specific partitioning of CPZ into the plasma membrane, providing evidence that perturbation of the membrane environment is probably the predominant mode of inhibition. Ultraviolet irradiation at 254 nm markedly enhanced CPZ inhibition, with complete activity loss following exposure to 4 mum CPZ for 2 min. Inhibition followed a pseudo-first order mechanism with at least three CPZ binding sites per CS complex. Under these conditions, [(3)H]CPZ was covalently incorporated into plasma membrane preparations by a free radical mechanism; however, polypeptide labeling profiles showed labeling to be largely nonspecific, with many polypeptides labeled even at [(3)H]CPZ levels as low as 1 mum, and with boiled membranes. Although CPZ is one of the most potent known inhibitors of CS, its use as a photolabel will require a homogeneous CS complex or establishment of conditions that protect against the interaction of CPZ with specific binding sites located on various polypeptide components of the CS complex.
Collapse
Affiliation(s)
- R W Harriman
- Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231
| | | | | |
Collapse
|
15
|
Kamat U, Garg R, Sharma CB. Purification to homogeneity and characterization of a 1,3-beta-glucan (callose) synthase from germinating Arachis hypogaea cotyledons. Arch Biochem Biophys 1992; 298:731-9. [PMID: 1329666 DOI: 10.1016/0003-9861(92)90473-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 1,3-beta-D-glucan (callose) synthase (CS) from a plasma membrane fraction of germinating peanut (Arachis hypogaea L.) cotyledons has been purified to apparent homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), amino-terminal analysis, and the Western blots pattern. The purification protocol involved preparation of a high specific activity plasma membrane fraction, selective solubilization of the enzyme from the membrane with 0.5% digitonin at a protein-to-detergent ratio of 1:6, sucrose gradient centrifugation, and chromatography on hydroxylapatite and DEAE-Sephadex A-50. The purified CS shows a molecular mass of approximately 48,000 by SDS-PAGE, pH optimum of 7.4, leucine as the amino-terminal residue, Km for UDP-glucose of 0.67 mM, and Vmax of 6.25 mumol/min/mg protein. The enzyme is specific for UDP-glucose as the glucosyl donor and required Ca2+, at an optimum concentration of 2-5 mM, for activity. The enzyme activity was inhibited by nucleotides (ATP, GTP, CTP, UTP, UDP, and UMP). The enzyme activity was also inhibited by the addition of EDTA or EGTA to the enzyme, but this inhibition was fully reversible by the addition of Ca2+. The reaction product formed during incubation of UDP-[14C]glucose and cellobiose with purified enzymes was susceptible to digestion by exo-(1,3)-beta-glucanase, but was resistant to alpha- and beta-amylases and to periodate oxidation, indicating that the polymer formed was 1,3-beta-glucan, and beta-1,4 and beta-1,6 linkages were absent.
Collapse
Affiliation(s)
- U Kamat
- Department of Biosciences and Biotechnology, University of Roorkee, India
| | | | | |
Collapse
|
16
|
Meikle P, Ng K, Johnson E, Hoogenraad N, Stone B. The beta-glucan synthase from Lolium multiflorum. Detergent solubilization, purification using monoclonal antibodies, and photoaffinity labeling with a novel photoreactive pyrimidine analogue of uridine 5'-diphosphoglucose. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54610-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Wu A, Harriman RW, Frost DJ, Read SM, Wasserman BP. Rapid Enrichment of CHAPS-Solubilized UDP-Glucose: (1,3)-beta-Glucan (Callose) Synthase from Beta vulgaris L. by Product Entrapment : Entrapment Mechanisms and Polypeptide Characterization. PLANT PHYSIOLOGY 1991; 97:684-92. [PMID: 16668453 PMCID: PMC1081061 DOI: 10.1104/pp.97.2.684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rapid enrichment of CHAPS-solubilized UDP-glucose:(1,3)-beta-glucan (callose) synthase from storage tissue of red beet (Beta vulgaris L.) is obtained when the preparation is incubated with an enzyme assay mixture, then centrifuged and the enzyme released from the callose pellet with a buffer containing EDTA and CHAPS (20-fold purification relative to microsomes). When centrifuged at high speed (80,000g), the enzyme can also be pelleted in the absence of substrate (UDP-Glc) or synthesis of callose, due to nonspecific aggregation of proteins caused by excess cations and insufficient detergent in the assay buffer. True time-dependent and substrate-dependent product-entrapment of callose synthase is obtained by low-speed centrifugation (7,000-11,000g) of enzyme incubated in reaction mixtures containing low levels of cations (0.5 millimolar Mg(2+), 1 millimolar Ca(2+)) and sufficient detergent (0.02% digitonin, 0.12% CHAPS), together with cellobiose, buffer, and UDP-Glc. Entrapment conditions, therefore, are a compromise between preventing nonspecific precipitation of proteins and permitting sufficient enzyme activity for callose synthesis. Further enrichment of the enzyme released from the callose pellet was not obtained by rate-zonal glycerol gradient centrifugation, although its sedimentation rate was greatly enhanced by inclusion of divalent cations in the gradient. Preparations were markedly cleaner when product-entrapment was conducted on enzyme solubilized from plasma membranes isolated by aqueous two-phase partitioning rather than by gradient centrifugation. Product-entrapped preparations consistently contained polypeptides or groups of closely-migrating polypeptides at molecular masses of 92, 83, 70, 57, 43, 35, 31/29, and 27 kilodaltons. This polypeptide profile is in accordance with the findings of other callose synthase enrichment studies using a variety of tissue sources, and is consistent with the existence of a multi-subunit enzyme complex.
Collapse
Affiliation(s)
- A Wu
- Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231
| | | | | | | | | |
Collapse
|
18
|
Hanna R, Brummell DA, Camirand A, Hensel A, Russell EF, Maclachlan GA. Solubilization and properties of GDP-fucose: xyloglucan 1,2-alpha-L-fucosyltransferase from pea epicotyl membranes. Arch Biochem Biophys 1991; 290:7-13. [PMID: 1898102 DOI: 10.1016/0003-9861(91)90584-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GDP-fucose:xyloglucan 1,2-alpha-L-fucosyltransferase from pea (Pisum sativum) epicotyl microsomal membranes was readily solubilized by extraction with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps). When using GDP-[14C]fucose as fucosyl donor and tamarind xyloglucan (XG) as acceptor, maximum activation was observed at 0.3% (w/v) Chaps and the highest yield of solubilized activity at 0.4%. The reaction product was hydrolyzed by Trichoderma cellulase to yield labeled oligosaccharides that peaked on gel permeation chromatography at the same elution volume as pea XG nona- and decasaccharide subunits. The apparent Km for fucosyl transfer to tamarind XG by the membrane-bound or solubilized enzyme was about 80 microM GDP-fucose. This was 10 times the apparent Km for fucosyl transfer to endogenous pea nascent XG. Optimum activity was between pH 6 and 7, and the isoelectric point was close to pH 4.8. The solubilized enzyme showed no requirement for, or stimulation by, added cations or phospholipids, and was stable for several months at -70 degrees C. Solubilization and gel permeation chromatography on columns of Sepharose CL-6B enriched the specific activity of the enzyme by about 20-fold relative to microsomes. Activity fractionated on columns of CL-6B with an apparent molecular weight of 150 kDa. The solubilized fucosyltransferase was electrophoresed on nondenaturing polyacrylamide slab gels containing 0.02% (w/v) tamarind XG, and its activity located by incubation in GDP-[14C]fucose, washing, and autoradiographing the gel. A single band of labeled reaction product appeared with an apparent molecular weight of 150 kDa.
Collapse
Affiliation(s)
- R Hanna
- Biology Department, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Ma S, Gross KC, Wasserman BP. Developmental Regulation of the (1,3)-beta-Glucan (Callose) Synthase from Tomato : Possible Role of Endogenous Phospholipases. PLANT PHYSIOLOGY 1991; 96:664-7. [PMID: 16668238 PMCID: PMC1080823 DOI: 10.1104/pp.96.2.664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Activity levels of UDP-glucose: (1,3)-beta-glucan (callose) synthase in microsomal membranes of pericarp tissue from tomato fruit (Lycoperisicon esculentum Mill, cv Rutgers) were determined during development and ripening. Addition of the phospholipase inhibitors O-phosphorylcholine and glycerol-1-phosphate to homogenization buffers was necessary to preserve enzyme activity during homogenization and membrane isolation. Enzyme activity declined 90% from the immature green to the red ripe stage. The polypeptide composition of the membranes did not change significantly during ripening. The enzyme from immature fruit was inactivated by exogenously added phospholipases A(2), C, and D. These results suggest that the decline in callose synthase activity during ontogeny may be a secondary effect of endogenous lipase action.
Collapse
Affiliation(s)
- S Ma
- Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231
| | | | | |
Collapse
|
20
|
Identification of the UDP-glucose-binding polypeptide of callose synthase from Beta vulgaris L. by photoaffinity labeling with 5-azido-UDP-glucose. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39955-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Ury A, Benveniste P, Bouvier-Navé P. Phospholipid-Dependence of Plant UDP-Glucose Sterol beta-d-Glucosyl Transferase : IV. Reconstitution into Small Unilamellar Vesicles. PLANT PHYSIOLOGY 1989; 91:567-73. [PMID: 16667070 PMCID: PMC1062038 DOI: 10.1104/pp.91.2.567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The phospholipid dependence of the UDP-glucose sterol glucosyl transferase (UDPG-SGTase) from maize coleoptiles was previously demonstrated using the partially purified and highly delipidated enzyme, in the presence of the detergent Triton X-100 (P Ullmann, P Bouvier-Navé, P Benveniste [1987] Plant Physiol 85: 51-55). We now report the reconstitution of the enzyme activity into unilamellar lipid vesicles. This was achieved by adding phospholipids, sterols and beta-octylglucoside to the solubilized enzyme and passing the mixture through Sephadex G-50. The treatment led to almost complete removal of the detergents. The incorporation of UDPG-SGTase in the lipid vesicles was demonstrated by (a) coelution of the enzyme activity with the labeled lipid vesicles (average diameter: 260A) on a Sephacryl S-1000 column and (b) flotation experiments on metrizamide density gradients. Release of dithiobis-(2-nitro-benzoic acid) (DTNB) from DTNB-preloaded vesicles was very slow, indicating good membrane integrity of the vesicles. Treatment of the intact vesicles with the nonpermeant reagent p-chloro-mercuribenzene sulfonate led to more than 95% inactivation of the total enzyme activity, i.e. the activity measured in the presence of Triton X-100 at permeabilizing concentration. This suggests an outward orientation for the active site of the enzyme. Finally, the enzyme was incorporated into vesicles of various phospholipid compositions and the kinetic parameters of the reactions were determined. Our results clearly show that the reconstituted UDPG-SGTase activity is stimulated to a large extent by negatively charged phospholipids.
Collapse
Affiliation(s)
- A Ury
- Laboratoire de Biochimie Végétale, URA CNRS 104, Institut de Botanique, Université Louis Pasteur, 28, rue Goethe, 67083, Strasbourg Cédex, France
| | | | | |
Collapse
|
22
|
|
23
|
|
24
|
Hrmova M, Taft CS, Selitrennikoff CP. 1,3-β-d-Glucan synthase ofNeurospora crassa: Partial purification and characterization of solubilized enzyme activity. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0147-5975(89)90018-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Lawson SG, Mason TL, Sabin RD, Sloan ME, Drake RR, Haley BE, Wasserman BP. UDP-Glucose: (1,3)-beta-Glucan Synthase from Daucus carota L. : Characterization, Photoaffinity Labeling, and Solubilization. PLANT PHYSIOLOGY 1989; 90:101-8. [PMID: 16666718 PMCID: PMC1061683 DOI: 10.1104/pp.90.1.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The membrane-bound UDP-glucose-beta-(1,3)-glucan synthase from Daucus carota L. was characterized and a solubilization procedure was developed. The enzyme exhibited maximal activity in the presence of 0.75 millimolar Ca(2+), 0.5 millimolar EGTA, and 5 millimolar cellobiose at pH 7.5 and 30 degrees C at 1 millimolar UDPG. Reaction products were confirmed to be (1,3)-linked glucan. Polypeptides of 150, 57, and 43 kilodaltons were labeled with the photoactivatible affinity label 5-azido-uridine 5'-beta-[(32)P] diphosphateglucose. Labeling of the 150 and 57 kilodalton polypeptides was completely protected against by 1 millimolar non-radioactive UDPG suggesting that one or both of these polypeptides may represent the UDPG binding subunit of glucan synthase. Carrot glucan synthase was solubilized with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) in the absence of divalent cations and chelators; however, the percentage of enzyme which could be solubilized showed variability with membrane source. With microsomal membranes, up to 80% of the enzyme was released with 0.7% CHAPS. Solubilized enzyme was stable for at least 9 hours at 4 degrees C. When more highly purified membrane fractions were isolated from sucrose step gradients a slightly different picture emerged. Activity from the 20/30% interface (Golgi and tonoplast enriched) was readily solubilized and expressed. Activity from the 30/40% interface (plasma membrane enriched) was also solubilized; however, it was necessary to add heat inactivated microsomes to assay mixtures for full activity to be expressed. A requirement for endogenous activators is suggested.
Collapse
Affiliation(s)
- S G Lawson
- Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, New Jersey 08903
| | | | | | | | | | | | | |
Collapse
|
26
|
Sloan ME, Wasserman BP. Susceptibility of UDP-Glucose:(1,3)-beta-Glucan Synthase to Inactivation by Phospholipases and Trypsin. PLANT PHYSIOLOGY 1989; 89:1341-4. [PMID: 16666707 PMCID: PMC1056019 DOI: 10.1104/pp.89.4.1341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
UDP-glucose:(1,3)-beta-glucan synthase from Beta vulgaris L. was rapidly inactivated by treatment with phospholipases C, D, and A(2). Enzyme activity could not be restored to the phospholipase-treated enzyme by the addition of phosphatidylethanolamine or other phospholipids. Membrane-bound and solubilized glucan synthase were also trypsin-labile with inactivation rates equal in the presence or absence of divalent cations or chelators. Gradual activity declines were observed in membranes incubated with divalent cations, but not with chelators.
Collapse
Affiliation(s)
- M E Sloan
- Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, New Jersey 08903
| | | |
Collapse
|