1
|
Abstract
Light reaction of photosynthesis is efficiently driven by protein complexes arranged in an orderly in the thylakoid membrane. As the 5th complex, NAD(P)H dehydrogenase complex (NDH-1) is involved in cyclic electron flow around photosystem I to protect plants against environmental stresses for efficient photosynthesis. In addition, two kinds of NDH-1 complexes participate in CO2 uptake for CO2 concentration in cyanobacteria. In recent years, great progress has been made in the understanding of the assembly and the structure of NDH-1. However, the regulatory mechanism of NDH-1 in photosynthesis remains largely unknown. Therefore, understanding the regulatory mechanism of NDH-1 is of great significance to reveal the mechanism of efficient photosynthesis. In this mini-review, the author introduces current progress in the research of cyanobacterial NDH-1. Finally, the author summarizes the possible regulatory mechanism of cyanobacterial NDH-1 in photosynthesis and discusses the research prospect.
Collapse
Affiliation(s)
- Mi Hualing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institutes of Plant Physiology and Ecology, Shanghai, China
| |
Collapse
|
2
|
Gao F, Zhao J, Chen L, Battchikova N, Ran Z, Aro EM, Ogawa T, Ma W. The NDH-1L-PSI Supercomplex Is Important for Efficient Cyclic Electron Transport in Cyanobacteria. PLANT PHYSIOLOGY 2016; 172:1451-1464. [PMID: 27621424 PMCID: PMC5100770 DOI: 10.1104/pp.16.00585] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/08/2016] [Indexed: 05/19/2023]
Abstract
Two mutants isolated from a tagging library of Synechocystis sp. strain PCC 6803 were sensitive to high light and had a tag in sll1471 encoding CpcG2, a linker protein for photosystem I (PSI)-specific antenna. Both mutants demonstrated strongly impaired NDH-1-dependent cyclic electron transport. Blue native-polyacrylamide gel electrophoresis followed by immunoblotting and mass spectrometry analyses of the wild type and a mutant containing CpcG2 fused with yellow fluorescent protein-histidine6 indicated the presence of a novel NDH-1L-CpcG2-PSI supercomplex, which was absent in the cpcG2 deletion mutant, the PSI-less mutant, and several other strains deficient in NDH-1L and/or NDH-1M. Coimmunoprecipitation and pull-down analyses on CpcG2-yellow fluorescent protein-histidine6, using antibody against green fluorescent protein and nickel column chromatography, confirmed the association of CpcG2 with the supercomplex. Conversely, the use of antibodies against NdhH or NdhK after blue native-polyacrylamide gel electrophoresis and in coimmunoprecipitation experiments verified the necessity of CpcG2 in stabilizing the supercomplex. Furthermore, deletion of CpcG2 destabilized NDH-1L as well as its degradation product NDH-1M and significantly decreased the number of functional PSI centers, consistent with the involvement of CpcG2 in NDH-1-dependent cyclic electron transport. The CpcG2 deletion, however, had no effect on respiration. Thus, we propose that the formation of an NDH-1L-CpcG2-PSI supercomplex in cyanobacteria facilitates PSI cyclic electron transport via NDH-1L.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Liping Chen
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Natalia Battchikova
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Zhaoxing Ran
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Eva-Mari Aro
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Teruo Ogawa
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.);
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| |
Collapse
|
3
|
McClure RS, Overall CC, McDermott JE, Hill EA, Markillie LM, McCue LA, Taylor RC, Ludwig M, Bryant DA, Beliaev AS. Network analysis of transcriptomics expands regulatory landscapes in Synechococcus sp. PCC 7002. Nucleic Acids Res 2016; 44:8810-8825. [PMID: 27568004 PMCID: PMC5062996 DOI: 10.1093/nar/gkw737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
Cyanobacterial regulation of gene expression must contend with a genome organization that lacks apparent functional context, as the majority of cellular processes and metabolic pathways are encoded by genes found at disparate locations across the genome and relatively few transcription factors exist. In this study, global transcript abundance data from the model cyanobacterium Synechococcus sp. PCC 7002 grown under 42 different conditions was analyzed using Context-Likelihood of Relatedness (CLR). The resulting network, organized into 11 modules, provided insight into transcriptional network topology as well as grouping genes by function and linking their response to specific environmental variables. When used in conjunction with genome sequences, the network allowed identification and expansion of novel potential targets of both DNA binding proteins and sRNA regulators. These results offer a new perspective into the multi-level regulation that governs cellular adaptations of the fast-growing physiologically robust cyanobacterium Synechococcus sp. PCC 7002 to changing environmental variables. It also provides a methodological high-throughput approach to studying multi-scale regulatory mechanisms that operate in cyanobacteria. Finally, it provides valuable context for integrating systems-level data to enhance gene grouping based on annotated function, especially in organisms where traditional context analyses cannot be implemented due to lack of operon-based functional organization.
Collapse
Affiliation(s)
- Ryan S McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Christopher C Overall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
4
|
Ma W, Ogawa T. Oxygenic photosynthesis-specific subunits of cyanobacterial NADPH dehydrogenases. IUBMB Life 2015; 67:3-8. [DOI: 10.1002/iub.1341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Weimin Ma
- Department of Biology; College of Life and Environment Sciences; Shanghai Normal University; Shanghai China
| | - Teruo Ogawa
- Bioscience Center; Nagoya University; Chikusa Nagoya Japan
| |
Collapse
|
5
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Battchikova N, Eisenhut M, Aro EM. Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:935-44. [PMID: 21035426 DOI: 10.1016/j.bbabio.2010.10.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
Cyanobacterial NDH-1 complexes belong to a family of energy converting NAD(P)H:Quinone oxidoreductases that includes bacterial type-I NADH dehydrogenase and mitochondrial Complex I. Several distinct NDH-1 complexes may coexist in cyanobacterial cells and thus be responsible for a variety of functions including respiration, cyclic electron flow around PSI and CO(2) uptake. The present review is focused on specific features that allow to regard the cyanobacterial NDH-1 complexes, together with NDH complexes from chloroplasts, as a separate sub-class of the Complex I family of enzymes. Here, we summarize our current knowledge about structure of functionally different NDH-1 complexes in cyanobacteria and consider implications for a functional mechanism. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Natalia Battchikova
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | | | | |
Collapse
|
7
|
Ma W. Identification, regulation and physiological functions of multiple NADPH dehydrogenase complexes in cyanobacteria. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11515-009-0005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Battchikova N, Aro EM. Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. PHYSIOLOGIA PLANTARUM 2007; 131:22-32. [PMID: 18251921 DOI: 10.1111/j.1399-3054.2007.00929.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In cyanobacteria, the NAD(P)H:quinone oxidoreductase (NDH-1) is involved in a variety of functions like respiration, cyclic electron flow around PSI and CO(2) uptake. Several types of NDH-1 complexes, which differ in structure and are responsible for these functions, exist in cyanobacterial membranes. This minireview is based on data obtained by reverse genetics and proteomics studies and focuses on the structural and functional differences of the two types of cyanobacterial NDH-1 complexes: NDH-1L, important for respiration and PSI cyclic electron flow, and NDH-1MS, the low-CO(2) inducible complex participating in CO(2) uptake. The NDH-1 complexes in cyanobacteria share a common NDH-1M 'core' complex and differ in the composition of the distal membrane domain composed of specific NdhD and NdhF proteins, which in complexes involved in CO(2) uptake is further associated with the hydrophilic carbon uptake (CUP) domain. At present, however, very important questions concerning the nature of catalytically active subunits that constitute the electron input device (like NADH dehydrogenase module of the eubacterial 'model' NDH-1 analogs), the substrate specificity and reaction mechanisms of cyanobacterial complexes remain unanswered and are shortly discussed here.
Collapse
Affiliation(s)
- Natalia Battchikova
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20520 Turku, Finland.
| | | |
Collapse
|
9
|
Ogawa T, Mi H. Cyanobacterial NADPH dehydrogenase complexes. PHOTOSYNTHESIS RESEARCH 2007; 93:69-77. [PMID: 17279442 DOI: 10.1007/s11120-006-9128-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 12/18/2006] [Indexed: 05/08/2023]
Abstract
Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO(2) uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO(2) uptake. Other than CO(2) uptake, chloroplastic NDH-1 complex has a similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described for comparison.
Collapse
Affiliation(s)
- Teruo Ogawa
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | | |
Collapse
|
10
|
Zhang P, Sicora CI, Vorontsova N, Allahverdiyeva Y, Battchikova N, Nixon PJ, Aro EM. FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803. Mol Microbiol 2007; 65:728-40. [PMID: 17635189 DOI: 10.1111/j.1365-2958.2007.05822.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyanobacteria possess a complex CO(2)-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (DeltaSlr0228) and Deg-G (DeltaSlr1204/DeltaSll1679/DeltaSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO(2) and then shifted to low CO(2), followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO(2), whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO(2), indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO(2), possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO(2) conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO(2).
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, FI-20014, Finland
| | | | | | | | | | | | | |
Collapse
|
11
|
Battchikova N, Zhang P, Rudd S, Ogawa T, Aro EM. Identification of NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M complexes of Synechocystis sp. PCC 6803. J Biol Chem 2004; 280:2587-95. [PMID: 15548534 DOI: 10.1074/jbc.m410914200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subunit compositions of two types of NAD(P)H dehydrogenase complexes of Synechocystis sp. PCC 6803, NDH-1L and NDH-1M, were studied by two-dimensional blue-native/SDS-PAGE followed by electrospray tandem mass spectrometry. Fifteen proteins were observed in NDH-1L including hydrophilic subunits (NdhH, -K, -I, -J, -M, and -N) and hydrophobic subunits (NdhA, -B, -E, -G, -D1, and -F1). In addition, NdhL and a novel subunit, Ssl1690 (designated NdhO), were shown to be components of this complex. All subunits mentioned above were present in the NDH-1M complex except NdhD1 and NdhF1. NdhL and Ssl1690 (NdhO) were homologous to hypothetical proteins encoded by genomic DNA in higher plants, suggesting that chloroplast NDH-1 complexes contain related subunits. Diagnostic sequence motifs were found for both NdhL and NdhO homologous proteins. Analysis of ndhL deletion mutant (M9) revealed the presence of assembled NDH-1L and NDH-1M complexes, but these complexes appear to be functionally impaired in the absence of NdhL. Both NDH-1 complexes were absent in the ndhB deletion mutant (M55).
Collapse
Affiliation(s)
- Natalia Battchikova
- Department of Biology, Plant Physiology and Molecular Biology, FIN-20014 University of Turku, Finland
| | | | | | | | | |
Collapse
|
12
|
Herranen M, Battchikova N, Zhang P, Graf A, Sirpiö S, Paakkarinen V, Aro EM. Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2004; 134:470-81. [PMID: 14730074 PMCID: PMC316326 DOI: 10.1104/pp.103.032326] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 09/17/2003] [Accepted: 10/14/2003] [Indexed: 05/19/2023]
Abstract
The composition and dynamics of membrane protein complexes were studied in the cyanobacterium Synechocystis sp. PCC 6803 by two-dimensional blue native/SDS-PAGE followed by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Approximately 20 distinct membrane protein complexes could be resolved from photoautotrophically grown wild-type cells. Besides the protein complexes involved in linear photosynthetic electron flow and ATP synthesis (photosystem [PS] I, PSII, cytochrome b6f, and ATP synthase), four distinct complexes containing type I NAD(P)H dehydrogenase (NDH-1) subunits were identified, as well as several novel, still uncharacterized protein complexes. The dynamics of the protein complexes was studied by culturing the wild type and several mutant strains under various growth modes (photoautotrophic, mixotrophic, or photoheterotrophic) or in the presence of different concentrations of CO2, iron, or salt. The most distinct modulation observed in PSs occurred in iron-depleted conditions, which induced an accumulation of CP43' protein associated with PSI trimers. The NDH-1 complexes, on the other hand, responded readily to changes in the CO2 concentration and the growth mode of the cells and represented an extremely dynamic group of membrane protein complexes. Our results give the first direct evidence, to our knowledge, that the NdhF3, NdhD3, and CupA proteins assemble together to form a small low CO2-induced protein complex and further demonstrate the presence of a fourth subunit, Sll1735, in this complex. The two bigger NDH-1 complexes contained a different set of NDH-1 polypeptides and are likely to function in respiratory and cyclic electron transfer. Pulse labeling experiments demonstrated the requirement of PSII activity for de novo synthesis of the NDH-1 complexes.
Collapse
Affiliation(s)
- Mirkka Herranen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
13
|
Deng Y, Ye J, Mi H, Shen Y. Response of NAD(P)H dehydrogenase complex to the alteration of CO2 concentration in the cyanobacterium Synechocystis PCC6803. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:967-970. [PMID: 12964873 DOI: 10.1078/0176-1617-01053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An NADPH-specific NDH-1 sub-complex was separated by native-polyacrylamide gel electrophoresis and detected by activity staining from the whole cell extracts of Synechocystis PCC6803. Low CO2 caused an increase in the activity of this sub-complex quickly, accompanied by an evident increase in the expression of NdhK and PSI-driven NADPH oxidation activity that can reflect the activity of NDH-1-mediated cyclic electron transport. During incubation with high CO2, the activities of NDH-1 sub-complex and PSI-driven NADPH oxidation as well as the protein level of NdhK slightly increased at the beginning, but decreased evidently in various degrees along with incubation time. These results suggest that CO2 concentration in vitro as a signal can control the activity of NDH-1 complex, and NDH-1 complex may in turn function in the regulation of CO2 uptake.
Collapse
Affiliation(s)
- Yong Deng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032, China
| | | | | | | |
Collapse
|
14
|
Deng Y, Ye J, Mi H. Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium synechocystis PCC6803. PLANT & CELL PHYSIOLOGY 2003; 44:534-40. [PMID: 12773640 DOI: 10.1093/pcp/pcg067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The expression and activity of type-1 NAD(P)H dehydrogenase (NDH-1) was compared between cells of Synechocystis PCC6803 grown in high (H-cells) and low (L-cells) CO(2) conditions. Western analysis indicated that L-cells contain higher amounts of the NDH-1 subunits, NdhH, NdhI and NdhK. An NADPH-specific subcomplex of NDH-1 showed higher NADPH-nitroblue tetrazolium oxidoreductase activity in L-cells. The activities of both NADPH-menadione oxidoreductase and light-dependent NADPH oxidation driven by photosystem I were much higher in L-cells than in H-cells. The initial rate of re-reduction of P700(+) following actinic light illumination in the presence of DCMU under background far-red light was enhanced in L-cells. In addition, rotenone, a specific inhibitor of NDH-1, suppressed the relative rate of post-illumination increase in Chl fluorescence of L-cells more than that of H-cells, suggesting that the involvement of NDH-1 in cyclic electron flow around photosystem I was enhanced by low CO(2). Taken together, these results suggest that NDH-1 complex and NDH-1-mediated cyclic electron transport are stimulated by low CO(2) and function in the acclimation of cyanobacteria to low CO(2).
Collapse
Affiliation(s)
- Yong Deng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
| | | | | |
Collapse
|
15
|
Ogawa T, Kaplan A. Inorganic carbon acquisition systems in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2003; 77:105-15. [PMID: 16228369 DOI: 10.1023/a:1025865500026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This minireview focuses on the mechanism of inorganic carbon uptake in cyanobacteria and in particular the two CO(2)-uptake systems and two bicarbonate transporters recently identified in Synechocycstis PCC 6803, and their presence in other cyanobacterial strains.
Collapse
Affiliation(s)
- Teruo Ogawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan,
| | | |
Collapse
|
16
|
Van K, Wang Y, Nakamura Y, Spalding MH. Insertional mutants of Chlamydomonas reinhardtii that require elevated CO(2) for survival. PLANT PHYSIOLOGY 2001; 127:607-614. [PMID: 11598234 DOI: 10.1104/pp.010333] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Aquatic photosynthetic organisms live in quite variable conditions of CO(2) availability. To survive in limiting CO(2) conditions, Chlamydomonas reinhardtii and other microalgae show adaptive changes, such as induction of a CO(2)-concentrating mechanism, changes in cell organization, increased photorespiratory enzyme activity, induction of periplasmic carbonic anhydrase and specific polypeptides (mitochondrial carbonic anhydrases and putative chloroplast carrier proteins), and transient down-regulation in the synthesis of Rubisco. The signal for acclimation to limiting CO(2) in C. reinhardtii is unidentified, and it is not known how they sense a change of CO(2) level. The limiting CO(2) signals must be transduced into the changes in gene expression observed during acclimation, so mutational analyses should be helpful for investigating the signal transduction pathway for low CO(2) acclimation. Eight independently isolated mutants of C. reinhardtii that require high CO(2) for photoautotrophic growth were tested by complementation group analysis. These mutants are likely to be defective in some aspects of the acclimation to low CO(2) because they differ from wild type in their growth and in the expression patterns of five low CO(2)-inducible genes (Cah1, Mca1, Mca2, Ccp1, and Ccp2). Two of the new mutants formed a single complementation group along with the previously described mutant cia-5, which appears to be defective in the signal transduction pathway for low CO(2) acclimation. The other mutations represent six additional, independent complementation groups.
Collapse
Affiliation(s)
- K Van
- Interdepartmental Plant Physiology Major, 353 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
17
|
Van K, Wang Y, Nakamura Y, Spalding MH. Insertional mutants of Chlamydomonas reinhardtii that require elevated CO(2) for survival. PLANT PHYSIOLOGY 2001; 127:607-14. [PMID: 11598234 PMCID: PMC125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 06/04/2001] [Accepted: 07/02/2001] [Indexed: 03/16/2024]
Abstract
Aquatic photosynthetic organisms live in quite variable conditions of CO(2) availability. To survive in limiting CO(2) conditions, Chlamydomonas reinhardtii and other microalgae show adaptive changes, such as induction of a CO(2)-concentrating mechanism, changes in cell organization, increased photorespiratory enzyme activity, induction of periplasmic carbonic anhydrase and specific polypeptides (mitochondrial carbonic anhydrases and putative chloroplast carrier proteins), and transient down-regulation in the synthesis of Rubisco. The signal for acclimation to limiting CO(2) in C. reinhardtii is unidentified, and it is not known how they sense a change of CO(2) level. The limiting CO(2) signals must be transduced into the changes in gene expression observed during acclimation, so mutational analyses should be helpful for investigating the signal transduction pathway for low CO(2) acclimation. Eight independently isolated mutants of C. reinhardtii that require high CO(2) for photoautotrophic growth were tested by complementation group analysis. These mutants are likely to be defective in some aspects of the acclimation to low CO(2) because they differ from wild type in their growth and in the expression patterns of five low CO(2)-inducible genes (Cah1, Mca1, Mca2, Ccp1, and Ccp2). Two of the new mutants formed a single complementation group along with the previously described mutant cia-5, which appears to be defective in the signal transduction pathway for low CO(2) acclimation. The other mutations represent six additional, independent complementation groups.
Collapse
Affiliation(s)
- K Van
- Interdepartmental Plant Physiology Major, 353 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
18
|
Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T. Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci U S A 2001; 98:11789-94. [PMID: 11562454 PMCID: PMC58809 DOI: 10.1073/pnas.191258298] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria possess a CO(2)-concentrating mechanism that involves active CO(2) uptake and HCO(3)(-) transport. For CO(2) uptake, we have identified two systems in the cyanobacterium Synechocystis sp. strain PCC 6803, one induced at low CO(2) and one constitutive. The low CO(2)-induced system showed higher maximal activity and higher affinity for CO(2) than the constitutive system. On the basis of speculation that separate NAD(P)H dehydrogenase complexes were essential for each of these systems, we reasoned that inactivation of one system would allow selection of mutants defective in the other. Thus, mutants unable to grow at pH 7.0 in air were recovered after transformation of a DeltandhD3 mutant with a transposon-bearing library. Four of them had tags within slr1302 (designated cupB), a homologue of sll1734 (cupA), which is cotranscribed with ndhF3 and ndhD3. The DeltacupB, DeltandhD4, and DeltandhF4 mutants showed CO(2)-uptake characteristics of the low CO(2)induced system observed in wild type. In contrast, mutants DeltacupA, DeltandhD3, and DeltandhF3 showed characteristics of the constitutive CO(2)-uptake system. Double mutants impaired in one component of each of the systems were unable to take up CO(2) and required high CO(2) for growth. Phylogenetic analysis indicated that the ndhD3/ndhD4-, ndhF3/ndhF4-, and cupA/cupB-type genes are present only in cyanobacteria. Most of the cyanobacterial strains studied possess the ndhD3/ndhD4-, ndhF3/ndhF4-, and cupA/cupB-type genes in pairs. Thus, the two types of NAD(P)H dehydrogenase complexes essential for low CO(2)-induced and constitutive CO(2)-uptake systems associated with the NdhD3/NdhF3/CupA-homologues and NdhD4/NdhF4/CupB-homologues, respectively, appear to be present in these cyanobacterial strains but not in other organisms.
Collapse
Affiliation(s)
- M Shibata
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Pieulle L, Guedeney G, Cassier-Chauvat C, Jeanjean R, Chauvat F, Peltier G. The gene encoding the NdhH subunit of type 1 NAD(P)H dehydrogenase is essential to survival of synechocystis PCC6803. FEBS Lett 2000; 487:272-6. [PMID: 11150523 DOI: 10.1016/s0014-5793(00)02369-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The physiological function of the type 1 NAD(P)H dehydrogenase (Ndh-1) of Synechocystis sp. PCC6803 has been investigated by inactivating the gene ndhH encoding a subunit of the complex. Molecular analysis of independent transformants revealed that all clones were heteroploid, containing both wild-type and mutant ndhH copies, whatever the metabolic conditions used during genome segregation, including high CO(2) concentration. By replacing the chromosomal copy of the ndhH gene by a plasmidial copy under the control of a temperature-controlled promoter, we induce a conditional phenotype, growth being only possible at high temperature. This clearly shows for the first time that an ndh gene is indispensable to the survival of Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- L Pieulle
- CEA/Cadarache, DSV-DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, Saint-Paul-lez-Durance, France
| | | | | | | | | | | |
Collapse
|
20
|
Ohkawa H, Pakrasi HB, Ogawa T. Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J Biol Chem 2000; 275:31630-4. [PMID: 10906128 DOI: 10.1074/jbc.m003706200] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ndhD gene encodes a membrane protein component of NAD(P)H dehydrogenase. The genome of Synechocystis sp. PCC6803 contains 6 ndhD genes. Three mutants were constructed by disrupting highly homologous ndhD genes in pairs. Only the DeltandhD1/DeltandhD2 (DeltandhD1/D2) mutant was unable to grow under photoheterotrophic conditions and exhibited low respiration rate, although the mutant grew normally under photoautotrophic conditions in air. The DeltandhD3/DeltandhD4 (DeltandhD3/D4) mutant grew very slowly in air and did not take up CO(2). The results demonstrated the presence of two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis PCC6803 cells. TheDeltandhD5/DeltandhD6 (DeltandhD5/D6) mutant grew like the wild-type strain. Under far-red light (>710 nm), the level of P700(+) was high in DeltandhD1/D2 and M55 (ndhB-less mutant) at low intensities. The capacity of Q(A) (tightly bound plastoquinone) reduction by plastoquinone pool, as measured by the fluorescence increase in darkness upon addition of KCN, was much less in DeltandhD1/D2 and M55 than in DeltandhD3/D4 and DeltandhD5/D6. We conclude that electrons from NADPH are transferred to the plastoquinone pool mainly by the NdhD1.NdhD2 type of NAD(P)H dehydrogenases.
Collapse
Affiliation(s)
- H Ohkawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan and Department of Biology, Washington University, St. Louis, Missouri 63130-4899, USA
| | | | | |
Collapse
|
21
|
Ohkawa H, Price GD, Badger MR, Ogawa T. Mutation of ndh genes leads to inhibition of CO(2) uptake rather than HCO(3)(-) uptake in Synechocystis sp. strain PCC 6803. J Bacteriol 2000; 182:2591-6. [PMID: 10762263 PMCID: PMC111325 DOI: 10.1128/jb.182.9.2591-2596.2000] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six mutants (B1 to B6) that grew poorly in air on BG11 agar plates buffered at pH 8.0 were rescued after mutations were introduced into ndhB of wild-type (WT) Synechocystis sp. strain PCC 6803. In these mutants and a mutant (M55) lacking ndhB, CO(2) uptake was much more strongly inhibited than HCO(3)(-) uptake, i.e., the activities of CO(2) and HCO(3)(-) uptake in B1 were 9 and 85% of those in the WT, respectively. Most of the mutants grew very slowly or did not grow at all at pH 6.5 or 7.0 in air, and their ability to grow under these conditions was correlated with CO(2) uptake capacity. Detailed studies of B1 and M55 indicated that the mutants grew as fast as the WT in liquid at pH 8.0 under air, although they grew poorly on agar plates. The contribution of CO(2) uptake appears to be larger on solid medium. Five mutants were constructed by inactivating each of the five ndhD genes in Synechocystis sp. strain PCC 6803. The mutant lacking ndhD3 grew much more slowly than the WT at pH 6.5 under 50 ppm CO(2), although other ndhD mutants grew like the WT under these conditions and showed low affinity for CO(2) uptake. These results indicated the presence of multiple NAD(P)H dehydrogenase type I complexes with specific roles.
Collapse
Affiliation(s)
- H Ohkawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Many microorganisms possess inducible mechanisms that concentrate CO2 at the carboxylation site, compensating for the relatively low affinity of Rubisco for its substrate, and allowing acclimation to a wide range of CO2 concentrations. The organization of the carboxysomes in prokaryotes and of the pyrenoids in eukaryotes, and the presence of membrane mechanisms for inorganic carbon (Ci) transport, are central to the concentrating mechanism. The presence of multiple Ci transporting systems in cyanobacteria has been indicated. Certain genes involved in structural organization, Ci transport and the energization of the latter have been identified. Massive Ci fluxes associated with the CO2-concentrating mechanism have wide-reaching ecological and geochemical implications.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel; e-mail:
| | | |
Collapse
|
24
|
Bonfil DJ, Ronen-Tarazi M, Sültemeyer D, Lieman-Hurwitz J, Schatz D, Kaplan A. A putative HCO3- transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett 1998; 430:236-40. [PMID: 9688546 DOI: 10.1016/s0014-5793(98)00662-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyanobacteria possess an inducible mechanism which enables them to concentrate inorganic carbon (Ci) within the cells. An inactivation library was used to raise the high-CO2-requiring mutant of Synechococcus PCC 7942, IL-2, impaired in HCO3- transport. Analysis of the relevant genomic DNA detected several modifications, probably due to the single crossover recombination, leading to inactivation of ORF467 (designated ictB) in IL-2. IctB contains 10 trans-membrane regions and is homologous to several transport-related proteins from various organisms. Kinetic analyses of HCO3- uptake in the wild type and IL-2 suggested the presence of two or three HCO3- carriers exhibiting different affinities to HCO3-.
Collapse
Affiliation(s)
- D J Bonfil
- Department of Plant Sciences, the Moshe Shilo and the Avron-Evenari Minerva Centers, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
25
|
Ohkawa H, Sonoda M, Katoh H, Ogawa T. The use of mutants in the analysis of the CO2-concentrating mechanism in cyanobacteria. ACTA ACUST UNITED AC 1998. [DOI: 10.1139/b98-076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutants of cyanobacteria defective in parts of the CO2-concentrating mechanism are classified into three types. (i) Mutants defective in inorganic carbon transporters. One of these mutants was constructed by inactivating cmpA encoding 42 kDa protein in the cytoplasmic membrane. (ii) Mutants defective in NAD(P)H dehydrogenase(s). There are five ndhD genes in Synechocystis PCC6803, two of them expressed constitutively and three inducible by low CO2. Two kinds of NAD(P)H dehydrogenase appear to be involved in energizing and inducing the high affinity inorganic carbon transport system. (iii) Mutants defective in carboxysome with impaired ccm or icfA genes. New type of mutants with impaired cotA (renamed as pxcA) have also been isolated. These mutants did not show light-induced proton extrusion and were unable to grow at acidic pHs. A mutant constructed by inactivating cotA (pxcA) in the wild-type Synechocystis was unable to transport CO2 at pH 6.5. We concluded that cotA (pxcA) has a role in light-induced proton extrusion that is essential at acidic pHs to extrude protons produced during CO2 transport.Key words: CO2-concentrating mechanism (CCM), CO2 transport, NAD(P)H dehydrogenase, proton extrusion, carboxysome, mutant.
Collapse
|
26
|
Howitt CA, Whelan J, Price GD, Day DA. Cloning, analysis and inactivation of the ndhK gene encoding a subunit of NADH quinone oxidoreductase from Anabaena PCC 7120. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:173-80. [PMID: 8797851 DOI: 10.1111/j.1432-1033.1996.0173h.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The function of the type-1 pyridine nucleotide dehydrogenase (NDH-1) in the cyanobacterium Anabaena PCC 7120 was investigated. Immunological analysis with antibodies raised against NdhK from Synechocystis PCC 6803, a subunit of NDH-1, showed that NdhK in Anabaena PCC 7120 is only present on the plasma membrane, which confirms the results of previous studies [Howitt, C.A., Smith, G.D. & Day, D. A. (1993) Biochim. Biophys. Acta 114], 313-320]. Southern analysis with probes from the operon encoding ndhC-K-J from Synechocystis PCC 6803 showed that this operon is also conserved in Anabaena PCC 7120. Part of the operon was amplified using PCR with degenerate primers designed against two sequences encoding regions of NdhC and NdhJ that are conserved between cyanobacteria and chloroplasts. The nucleotide sequence of ndhK encodes a protein of 245 amino acids with a predicted molecular mass of 27.5 kDa. The coding regions of ndhC and ndhK overlap by 7 bp, as found in the chloroplasts of liverwort, maize, and rice. This is markedly different from the case in Synechocystis PCC 6803 where a 71-bp non-coding, intergenic spacer region lies between ndhC and ndhK. The ndhK clone was interrupted by the insertion of a kanamycin-resistance gene and used to transform Anabaena PCC 7120.20 unsegregated transformants were produced, all of which died during attempts to segregate them. This indicates that under the selection conditions used, ndhK is an essential gene in Anabaena PCC 7120.
Collapse
Affiliation(s)
- C A Howitt
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
27
|
Ogawa T, Marco E, Orus MI. A gene (ccmA) required for carboxysome formation in the cyanobacterium Synechocystis sp. strain PCC6803. J Bacteriol 1994; 176:2374-8. [PMID: 8157606 PMCID: PMC205361 DOI: 10.1128/jb.176.8.2374-2378.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A high-CO2-requiring mutant, G7, of Synechocystis sp. strain PCC6803 capable of inorganic carbon transport but unable to utilize the intracellular inorganic carbon pool for photosynthesis was isolated. Transmission electron micrographs of the mutant indicated that the mutant does not have any carboxysomes. A clone (pHPG7) with a 7.5-kbp DNA insert that transforms the G7 mutant to the wild-type phenotype was isolated from a genomic library of wild-type Synechocystis sp. strain PCC6803. Complementation tests with subclones identified the mutation site in G7 within 208 bp. Sequencing of nucleotides in this region elucidated an open reading frame, designated ccmA, encoding a protein of 302 amino acids. Cloning and sequence analysis of the respective G7 gene revealed an A-to-G substitution that results in an Asp-to-Gly substitution in the deduced amino acid. The result indicated that the ccmA gene encodes a protein essential for the formation of carboxysomes. An open reading frame encoding a proline-rich protein of 271 amino acids was found downstream of the ccmA gene, but no ccm-like genes or rbc operon was found in this region.
Collapse
Affiliation(s)
- T Ogawa
- Solar Energy Research Group, Institute of Physical and Chemical Research (Riken), Saitama, Japan
| | | | | |
Collapse
|
28
|
Ogawa T, Amichay D, Gurevitz M. Isolation and characterization of the ccmM gene required by the cyanobacterium Synechocystis PCC6803 for inorganic carbon utilization. PHOTOSYNTHESIS RESEARCH 1994; 39:183-190. [PMID: 24311070 DOI: 10.1007/bf00029385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/1993] [Accepted: 10/10/1993] [Indexed: 06/02/2023]
Abstract
A high CO2-requiring mutant of Synechocystis PCC6803 (G3) capable of Ci transport but unable to utilize the intracellular Ci pool for photosynthesis was constructed. A DNA clone of 6.1 kbp that transforms the G3 mutant to the wild-type phenotype was isolated from a Synechocystis PCC6803 genomic library. Complementation test with subclones allocated the mutation site within a DNA fragment of 674 bp nucleotides. Sequencing analysis of the mutation region elucidated an open reading frame encoding a 534 amino-acid protein with a significant sequence homology to the protein coded by the ccmN gene of Synechococcus PCC7942. The ccmM-like gene product of Synechocystis PCC6803 contains four internal repeats with a week similarity to the rbcS gene product. An open reading frame homologous to the ccmN gene of Synechococcus PCC7942 was found downstream to the ccmM-like gene. As opposed to the Synechococcus PCC7942 ccmM and ccmN genes located 2 kbp upstream to, and oriented in the same direction as, the rbc operon, the ccm-like genes in Synechocystis PCC6803 are not located within 22 kbp upstream to the rbcL gene of the Rubisco operon. Thus, despite the resemblance in clustering of the ccmM and ccmN genes in both cyanobacterial species, the difference in their genomic location relative to the rbc genes demonstrates variability in structural organization of the genes involved in inorganic carbon acquisition.
Collapse
Affiliation(s)
- T Ogawa
- Solar Energy Research Group, The Institute of Physical and Chemical Research (RIKEN), 351-01, Wako, Saitama, Japan
| | | | | |
Collapse
|
29
|
Badger MR, Schreiber U. Effects of inorganic carbon accumulation on photosynthetic oxygen reduction and cyclic electron flow in the cyanobacterium Synechococcus PCC7942. PHOTOSYNTHESIS RESEARCH 1993; 37:177-91. [PMID: 24317799 DOI: 10.1007/bf00032822] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/1992] [Accepted: 05/25/1993] [Indexed: 05/24/2023]
Abstract
This paper examines the effect of inorganic carbon transport and accumulation in Synechococcus PCC7942 on fluorescence quenching, photosynthetic oxygen reduction and both linear and cyclic electron flow. The data presented support the previous findings of Miller et al. (1991) that the accumulation of Ci by the CO2 concentrating mechanism is able to stimulate oxygen photoreduction, particularly so when CO2 fixation is inhibited by PCR cycle inhibitors such as glycolaldehyde. This effect is found with both high and low-Ci grown cells, but the potential for oxygen photoreduction is about two-fold higher in low-Ci grown cells. This greater potential for O2 photoreduction is also correlated with a higher ability of low-Ci cells to photoreduce H2O2. Experiments with a mutant which transports Ci but does not accumulate it internally, indicates that the stimulation of O2 photoreduction appears to be a direct effect of the internal accumulation of Ci rather than from its participation in the transport process. In the absence of Ci, no specific partial reactions of photosynthetic electron transport appear to be inhibited, and the PS 1 acceptors PNDA and MV as well as the PS 2 acceptor DMQ can all run electron transport at levels approaching those during active CO2 fixation. Measurements of P700(+) show that when the cells are depleted of Ci during photosynthesis, P700 becomes more oxidised. This indicates that the resupply of electrons from the intersystem chain is relatively more restricted under conditions of Ci limitation than is the availability of PS 1 electron acceptors. It is proposed that the accumulated Ci pool can directly stimulate the ability of O2 to act as a PS 1 acceptor and that the ability of PS 1 acceptors, such as O2, to relieve restrictions on intersystem electron transfer is perhaps a result of a reduction in cyclic electron flow and a subsequent increase in the oxidation state of the plastoquinone pool.
Collapse
Affiliation(s)
- M R Badger
- Lehrstuhl für Botanik I, der Universität Würzburg, Mittlerer Dallenbergweg 64, D-8700, Wurzburg, Germany
| | | |
Collapse
|
30
|
Berger S, Ellersiek U, Kinzelt D, Steinmüller K. Immunopurification of a subcomplex of the NAD(P)H-plastoquinone-oxidoreductase from the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 1993; 326:246-50. [PMID: 8325373 DOI: 10.1016/0014-5793(93)81800-f] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An antibody against the NDH-K subunit of the NAD(P)H-dehydrogenase from the cyanobacterium Synechocystis sp. PCC6803 was used to isolate a subcomplex of the enzyme from Triton X-100 solubilized total membranes by immunoaffinity chromatography. The isolated subcomplex consisted of seven major polypeptides with molecular masses of 43, 27, 24, 21, 18, 14 and 7 kDa. The amino-terminal amino acid sequences of the polypeptides were determined. By comparing the sequences with the amino acid sequences deduced from DNA, three proteins were identified as NDH-H (43 kDa), NDH-K (27 kDa) and NDH-I (24 kDa). A fourth subunit (NDH-J, 21 kDa) was identified by Western blot analysis with an NDH-J antibody.
Collapse
Affiliation(s)
- S Berger
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Germany
| | | | | | | |
Collapse
|
31
|
Tandeau de Marsac N, Houmard J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb05866.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
32
|
Ogawa T. Identification and Characterization of the ictA/ndhL Gene Product Essential to Inorganic Carbon Transport of Synechocystis PCC6803. PLANT PHYSIOLOGY 1992; 99:1604-8. [PMID: 16669080 PMCID: PMC1080670 DOI: 10.1104/pp.99.4.1604] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ictA gene, renamed ndhL in this paper, essential to inorganic carbon transport of Synechocystis PCC6803, was expressed in Eschericia coli as a fusion protein with glutathione S-transferase. An antibody was raised against this fusion protein. Western analysis of the thylakoid membrane of wild-type (WT) Synechocystis revealed that a protein with an apparent molecular mass of 6.7 kilodaltons cross-reacted with this antibody. No immunoreactive protein was present in the thylakoid membranes of the Synechocystis mutants, RKb and M9, which have defects in the ictA/ndhL gene, or in the cytoplasmic membranes of the WT and mutant cells. Thus, the protein reacted with the antibody is the ictA gene product (IctA) and is localized in the thylakoid membrane of WT cells. IctA was absent in the thylakoid membranes of the M55 mutant, in which the ndhB gene is inactivated, and was poorly immunostained in the membranes of the mutants (M-ndhC and M-ndhK) constructed by inactivating the ndhC and ndhK genes of WT Synechocystis, respectively. The carbon dioxide uptake activity was nearly zero in M-ndhK and was about 40% of the activity of WT cells in M-ndhC. The RKb, M-ndhC, and M-ndhK mutants were unable to grow or grew very slowly under photoheterotrophic conditions. These results indicated that NADH dehydrogenase is essential to inorganic carbon transport and photoheterotrophic growth of Synechocystis and that IctA is one of the subunits of this enzyme.
Collapse
Affiliation(s)
- T Ogawa
- Solar Energy Research Group, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan
| |
Collapse
|
33
|
Fukuzawa H, Suzuki E, Komukai Y, Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci U S A 1992; 89:4437-41. [PMID: 1584776 PMCID: PMC49097 DOI: 10.1073/pnas.89.10.4437] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To understand the CO2-concentrating mechanism in cyanobacteria, a genomic DNA fragment that complements a temperature-sensitive high-CO2 (5%)-requiring mutant of Synechococcus PCC7942 has been isolated. An open reading frame (ORF272) encoding a polypeptide of 272 amino acids (Mr, 30,184) was found within the genomic region located 20 kilobases downstream from the genes for ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcLS). Insertion of a kanamycin-resistance gene cartridge within the ORF272 in wild-type cells led to a high-CO2-requiring phenotype. Strains carrying a gene disabled by insertional mutagenesis accumulated inorganic carbon in the cells, but they could not fix it efficiently, even though ribulose-1,5-bisphosphate carboxylase activity was comparable to that of the wild-type strain. Therefore, the ORF272 was designated as a gene icfA, which is essential to inorganic carbon fixation. Furthermore, the predicted icfA gene product shared significant sequence similarities with plant chloroplast carbonic anhydrases (CAs) from pea (22%) and spinach (22%) and also with the Escherichia coli cynT gene product (31%), which was recently identified to be E. coli CA. These results indicate that the putative CA encoded by icfA is essential to photosynthetic carbon dioxide fixation in cyanobacteria and that plant chloroplast CAs may have evolved from a common ancestor of the prokaryotic CAs, which are distinct from mammalian CAs and Chlamydomonas periplasmic CAs.
Collapse
Affiliation(s)
- H Fukuzawa
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | |
Collapse
|