1
|
Bian C, Marchetti A, Dias M, Perrin J, Cosson P. Short transmembrane domains target type II proteins to the Golgi apparatus and type I proteins to the endoplasmic reticulum. J Cell Sci 2024; 137:jcs261738. [PMID: 38973735 DOI: 10.1242/jcs.261738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Transmembrane domains (TMDs) contain information targeting membrane proteins to various compartments of the secretory pathway. In previous studies, short or hydrophilic TMDs have been shown to target membrane proteins either to the endoplasmic reticulum (ER) or to the Golgi apparatus. However, the basis for differential sorting to the ER and to the Golgi apparatus remained unclear. To clarify this point, we quantitatively analyzed the intracellular targeting of a collection of proteins exhibiting a single TMD. Our results reveal that membrane topology is a major targeting element in the early secretory pathway: type I proteins with a short TMD are targeted to the ER, and type II proteins to the Golgi apparatus. A combination of three features accounts for the sorting of simple membrane proteins in the secretory pathway: membrane topology, length and hydrophilicity of the TMD, and size of the cytosolic domain. By clarifying the rules governing sorting to the ER and to the Golgi apparatus, our study could revive the search for sorting mechanisms in the early secretory pathway.
Collapse
Affiliation(s)
- Claudie Bian
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
- Manufacturing Science and Technologies, Biotech Department, Merck, Z.I. de l'Ouriettaz 150, 1170 Aubonne, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Marco Dias
- Manufacturing Science and Technologies, Biotech Department, Merck, Z.I. de l'Ouriettaz 150, 1170 Aubonne, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. J Cell Sci 2024; 137:jcs262315. [PMID: 39056156 PMCID: PMC11361645 DOI: 10.1242/jcs.262315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sibaji K. Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Plant Genome Engineering, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538563. [PMID: 37162876 PMCID: PMC10168340 DOI: 10.1101/2023.04.27.538563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Small GTPases function by conformational switching ability between GDP- and GTP-bound states in rapid cell signaling events. The ADP-ribosylation factor (ARF) family is involved in vesicle trafficking. Though evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. Here, we characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5/HALLIMASCH/ARL2/ARLC1 (hereafter termed TTN5) from Arabidopsis thaliana. Two TTN5 variants were included in the study with point mutations at conserved residues, suspected to be functional for nucleotide exchange and GTP hydrolysis, TTN5T30N and TTN5Q70L. We found that TTN5 had a very rapid intrinsic nucleotide exchange capacity with a conserved nucleotide switching mechanism. TTN5 acted as a non-classical small GTPase with a remarkably low GTP hydrolysis activity, suggesting it is likely present in GTP-loaded active form in the cell. We analyzed signals from yellow fluorescent protein (YFP)-tagged TTN5 and from in situ immunolocalization of hemagglutine-tagged HA3-TTN5 in Arabidopsis seedlings and in a transient expression system. Together with colocalization using endomembrane markers and pharmacological treatments the microscopic analysis suggests that TTN5 can be present at the plasma membrane and dynamically associated with membranes of vesicles, Golgi stacks and multivesicular bodies. While the TTN5Q70L variant showed similar GTPase activities and localization behavior as wild-type TTN5, the TTN5T30N mutant differed in some aspects. Hence, the unusual capacity of rapid nucleotide exchange activity of TTN5 is linked with cell membrane dynamics, likely associated with vesicle transport pathways in the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sibaji K Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Hickey K, Nazarov T, Smertenko A. Organellomic gradients in the fourth dimension. PLANT PHYSIOLOGY 2023; 193:98-111. [PMID: 37243543 DOI: 10.1093/plphys/kiad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.
Collapse
Affiliation(s)
- Kathleen Hickey
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Taras Nazarov
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| |
Collapse
|
5
|
Alvim JC, Bolt RM, An J, Kamisugi Y, Cuming A, Silva-Alvim FAL, Concha JO, daSilva LLP, Hu M, Hirsz D, Denecke J. The K/HDEL receptor does not recycle but instead acts as a Golgi-gatekeeper. Nat Commun 2023; 14:1612. [PMID: 36959220 PMCID: PMC10036638 DOI: 10.1038/s41467-023-37056-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
Accurately measuring the ability of the K/HDEL receptor (ERD2) to retain the ER cargo Amy-HDEL has questioned earlier results on which the popular receptor recycling model is based upon. Here we demonstrate that ERD2 Golgi-retention, rather than fast ER export supports its function. Ligand-induced ERD2 redistribution is only observed when the C-terminus is masked or mutated, compromising the signal that prevents Golgi-to-ER transport of the receptor. Forcing COPI mediated retrograde transport destroys receptor function, but introducing ER-to-Golgi export or cis-Golgi retention signals re-activate ERD2 when its endogenous Golgi-retention signal is masked or deleted. We propose that ERD2 remains fixed as a Golgi gatekeeper, capturing K/HDEL proteins when they arrive and releasing them again into a subdomain for retrograde transport back to the ER. An in vivo ligand:receptor ratio far greater than 100 to 1 strongly supports this model, and the underlying mechanism appears to be extremely conserved across kingdoms.
Collapse
Affiliation(s)
- Jonas C Alvim
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Robert M Bolt
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing An
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yasuko Kamisugi
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew Cuming
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Fernanda A L Silva-Alvim
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Juan O Concha
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Meiyi Hu
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dominique Hirsz
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jurgen Denecke
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
6
|
Raorane ML, Manz C, Hildebrandt S, Mielke M, Thieme M, Keller J, Bunzel M, Nick P. Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. PROTOPLASMA 2023; 260:349-369. [PMID: 35697946 PMCID: PMC9931846 DOI: 10.1007/s00709-022-01781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the anticancer drugs vinblastine and vincristine, Catharanthus roseus has been intensively studied for biosynthesis of several terpene indole alkaloids (TIAs). Due to their low abundance in plant tissues at a simultaneously high demand, modes of production alternative to conventional extraction are mandatory. Plant cell fermentation might become one of these alternatives, yet decades of research have shown limited success to certain product classes, leading to the question: how to preserve the intrinsic ability to produce TIAs (metabolic competence) in cell culture? We used the strategy to use the developmental potency of mature embryos to generate such strains. Two cell strains (C1and C4) from seed embryos of Catharanthus roseus were found to differ not only morphologically, but also in their metabolic competence. This differential competence became manifest not only under phytohormone elicitation, but also upon feeding with alkaloid pathway precursors. The more active strain C4 formed larger cell aggregates and was endowed with longer mitochondria. These cellular features were accompanied by higher alkaloid accumulation in response to methyl jasmonate (MeJA) elicitation. The levels of catharanthine could be increased significantly, while the concurrent vindoline branch of the pathway was blocked, such that no bisindole alkaloids were detectable. By feeding vindoline to MeJA-elicited C4 cells, vincristine became detectable; however, only to marginal amounts. In conclusion, these results show that cultured cells are not "de-differentiated", but can differ in metabolic competence. In addition to elicitation and precursor feeding, the cellular properties of the "biomatter" are highly relevant for the success of plant cell fermentation.
Collapse
Affiliation(s)
- Manish L Raorane
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
- Institute of Pharmacy, Martin-Luther-University, Hoher Weg 8, 06120, Halle-WittenbergHalle (Saale), Germany.
| | - Christina Manz
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sarah Hildebrandt
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Marion Mielke
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Marc Thieme
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Judith Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
7
|
McGinness AJ, Schoberer J, Pain C, Brandizzi F, Kriechbaumer V. On the nature of the plant ER exit sites. FRONTIERS IN PLANT SCIENCE 2022; 13:1010569. [PMID: 36275575 PMCID: PMC9585722 DOI: 10.3389/fpls.2022.1010569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In plants, the endoplasmic reticulum (ER) and Golgi bodies are not only in close proximity, but are also physically linked. This unique organization raises questions about the nature of the transport vectors carrying cargo between the two organelles. Same as in metazoan and yeast cells, it was suggested that cargo is transported from the ER to Golgi cisternae via COPII-coated vesicles produced at ribosome-free ER exit sites (ERES). Recent developments in mammalian cell research suggest, though, that COPII helps to select secretory cargo, but does not coat the carriers leaving the ER. Furthermore, it was shown that mammalian ERES expand into a tubular network containing secretory cargo, but no COPII components. Because of the close association of the ER and Golgi bodies in plant cells, it was previously proposed that ERES and the Golgi comprise a secretory unit that travels over or with a motile ER membrane. In this study, we aimed to explore the nature of ERES in plant cells and took advantage of high-resolution confocal microscopy and imaged ERES labelled with canonical markers (Sar1a, Sec16, Sec24). We found that ERES are dynamically connected to Golgi bodies and most likely represent pre-cis-Golgi cisternae. Furthermore, we showed fine tubular connections from the ER to Golgi compartments (ERGo tubules) as well as fine protrusions from ERES/Golgi cisternae connecting with the ER. We suggest that these tubules observed between the ER and Golgi as well as between the ER and ERES are involved in stabilizing the physical connection between ER and ERES/Golgi cisternae, but may also be involved in cargo transport from the ER to Golgi bodies.
Collapse
Affiliation(s)
- Alastair J. McGinness
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Charlotte Pain
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
8
|
Herath V, Connolly K, Roach A, Ausekar A, Persky T, Verchot J. The plant endoplasmic reticulum UPRome: A repository and pathway browser for genes involved in signaling networks linked to the endoplasmic reticulum. PLANT DIRECT 2022; 6:e431. [PMID: 35875835 PMCID: PMC9300056 DOI: 10.1002/pld3.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The endoplasmic reticulum (ER) houses sensors that respond to environmental stress and underly plants' adaptative responses. These sensors transduce signals that lead to changes in nuclear gene expression. The ER to nuclear signaling pathways are primarily attributed to the unfolded protein response (UPR) and are also integrated with a wide range of development, hormone, immune, and stress signaling pathways. Understanding the role of the UPR in signaling network mechanisms that associate with particular phenotypes is crucially important. While UPR-associated genes are the subject of ongoing investigations in a few model plant systems, most remain poorly annotated, hindering the identification of candidates across plant species. This open-source curated database provides a centralized resource of peer reviewed knowledge of ER to nuclear signaling pathways for the plant community. We provide a UPRome interactive viewer for users to navigate through the pathways and to access annotated information. The plant ER UPRome website is located at http://uprome.tamu.edu. We welcome contributions from the researchers studying the ER UPR to incorporate additional genes into the database through the "contact us" page.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Department of Agriculture Biology, Faculty of AgricultureUniversity of PeridaniyaPeradeniyaSri Lanka
| | - Kaylee Connolly
- Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Anna Roach
- Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Ashish Ausekar
- Division of Information TechnologyTexas A&M UniversityCollege StationTexasUSA
| | - Tracy Persky
- Division of Information TechnologyTexas A&M UniversityCollege StationTexasUSA
| | - Jeanmarie Verchot
- Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
9
|
Wang F, Qiao K, Wang H, Wang H, Chai T. MTP8 from Triticum urartu Is Primarily Responsible for Manganese Tolerance. Int J Mol Sci 2022; 23:ijms23105683. [PMID: 35628492 PMCID: PMC9144917 DOI: 10.3390/ijms23105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Mineral nutrients, such as manganese (Mn) and iron (Fe), play essential roles in many biological processes in plants but their over-enrichment is harmful for the metabolism. Metal tolerance proteins (MTPs) are involved in cellular Mn and Fe homeostasis. However, the transporter responsible for the transport of Mn in wheat is unknown. In our study, TuMTP8, a Mn-CDF transporter from diploid wheat (Triticum urartu), was identified. Expression of TuMTP8 in yeast strains of Δccc1 and Δsmf1 and Arabidopsis conferred tolerance to elevated Mn and Fe, but not to other metals (zinc, cobalt, copper, nickel, or cadmium). Compared with TuVIT1 (vacuole Fe transporter), TuMTP8 shows a significantly higher proportion in Mn transport and a smaller proportion in Fe transport. The transient analysis in tobacco epidermal cells revealed that TuMTP8 localizes to vacuolar membrane. The highest transcript levels of TuMTP8 were in the sheath of the oldest leaf and the awn, suggesting that TuMTP8 sequesters excess Mn into the vacuole in these organs, away from more sensitive tissues. These findings indicate that TuMTP8, a tonoplast-localized Mn/Fe transporter, functions as a primary balancer to regulate Mn distribution in T. urartu under elevated Mn conditions and participates in the intracellular transport and storage of excess Mn as a detoxification mechanism, thereby conferring Mn tolerance.
Collapse
Affiliation(s)
- Fanhong Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Hong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- Correspondence: (H.W.); (T.C.); Tel./Fax: +86-10-88256343 (T.C.)
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.W.); (T.C.); Tel./Fax: +86-10-88256343 (T.C.)
| |
Collapse
|
10
|
Mathur J, Kroeker OF, Lobbezoo M, Mathur N. The ER Is a Common Mediator for the Behavior and Interactions of Other Organelles. FRONTIERS IN PLANT SCIENCE 2022; 13:846970. [PMID: 35401583 PMCID: PMC8990311 DOI: 10.3389/fpls.2022.846970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 05/29/2023]
Abstract
Optimal functioning of a plant cell depends upon the efficient exchange of genetic information, ions, proteins and metabolites between the different organelles. Intuitively, increased proximity between organelles would be expected to play an important role in facilitating exchanges between them. However, it remains to be seen whether under normal, relatively non-stressed conditions organelles maintain close proximity at all. Moreover, does interactivity involve direct and frequent physical contact between the different organelles? Further, many organelles transition between spherical and tubular forms or sporadically produce thin tubular extensions, but it remains unclear whether changes in organelle morphology play a role in increasing their interactivity. Here, using targeted multicolored fluorescent fusion proteins, we report observations on the spatiotemporal relationship between plastids, mitochondria, peroxisomes and the endoplasmic reticulum in living plant cells. Under normal conditions of growth, we observe that the smaller organelles do not establish direct, physical contacts with each other but, irrespective of their individual form they all maintain intimate connectivity with the ER. Proximity between organelles does increase in response to stress through concomitant alterations in ER dynamics. Significantly, even under increased proximity the ER still remains sandwiched between the different organelles. Our observations provide strong live-imaging-based evidence for the ER acting as a common mediator in interactions between other organelles.
Collapse
|
11
|
Maintaining the structural and functional homeostasis of the plant endoplasmic reticulum. Dev Cell 2021; 56:919-932. [PMID: 33662257 DOI: 10.1016/j.devcel.2021.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that is vital to the life of eukaryotic cells. It synthesizes essential lipids and proteins and initiates the glycosylation of intracellular and surface proteins. As such, the ER is necessary for cell growth and communication with the external environment. The ER is also a highly dynamic organelle, whose structure is continuously remodeled through an interaction with the cytoskeleton and the action of specialized ER shapers. Recent and significant advances in ER studies have brought to light conserved and unique features underlying the structure and function of this organelle in plant cells. In this review, exciting developments in the understanding of the mechanisms for plant ER structural and functional homeostasis, particularly those that underpin ER network architecture and ER degradation, are presented and discussed.
Collapse
|
12
|
Lazareva EA, Lezzhov AA, Chergintsev DA, Golyshev SA, Dolja VV, Morozov SY, Heinlein M, Solovyev AG. Reticulon-like properties of a plant virus-encoded movement protein. THE NEW PHYTOLOGIST 2021; 229:1052-1066. [PMID: 32866987 DOI: 10.1111/nph.16905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.
Collapse
Affiliation(s)
- Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Denis A Chergintsev
- Department of Plant Physiology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Sergei A Golyshev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Manfred Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, Strasbourg, 67000, France
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow, 127550, Russia
| |
Collapse
|
13
|
Vieira V, Pain C, Wojcik S, Spatola Rossi T, Denecke J, Osterrieder A, Hawes C, Kriechbaumer V. Living on the edge: the role of Atgolgin-84A at the plant ER-Golgi interface. J Microsc 2020; 280:158-173. [PMID: 32700322 DOI: 10.1111/jmi.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
The plant Golgi apparatus is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Golgi matrix components, such as golgins, have been identified and suggested to function as putative tethering factors to mediate the physical connections between Golgi bodies and the ER network. Golgins are proteins anchored to the Golgi membrane by the C-terminus either through transmembrane domains or interaction with small regulatory GTPases. The golgin N-terminus contains long coiled-coil domains, which consist of a number of α-helices wrapped around each other to form a structure similar to a rope being made from several strands, reaching into the cytoplasm. In animal cells, golgins are also implicated in specific recognition of cargo at the Golgi.Here, we investigate the plant golgin Atgolgin-84A for its subcellular localization and potential role as a tethering factor at the ER-Golgi interface. For this, fluorescent fusions of Atgolgin-84A and an Atgolgin-84A truncation lacking the coiled-coil domains (Atgolgin-84AΔ1-557) were transiently expressed in tobacco leaf epidermal cells and imaged using high-resolution confocal microscopy. We show that Atgolgin-84A localizes to a pre-cis-Golgi compartment that is also labelled by one of the COPII proteins as well as by the tether protein AtCASP. Upon overexpression of Atgolgin-84A or its deletion mutant, transport between the ER and Golgi bodies is impaired and cargo proteins are redirected to the vacuole. LAY DESCRIPTION: The Golgi apparatus is a specialised compartment found in mammalian and plant cells. It is the post office of the cell and packages proteins into small membrane boxes for transport to their destination in the cell. The plant Golgi apparatus consist of many separate Golgi bodies and is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Specialised proteins called golgins have been suggested to tether Golgi bodies and the ER. Here we investigate the plant golgin Atgolgin-84A for its exact within the Golgi body and its potential role as a tethering factor at the ER-Golgi interface. For this, we have fused Atgolgin-84A with a fluorescent protein from jellyfish and we are producing this combination in tobacco leaf cells. This allows us to see the protein using laser microscopy. We show that Atgolgin-84A localises to a compartment between the ER and Golgi that is also labelled by the tether protein AtCASP. When Atgolgin-84A is produced in high amounts in the cell, transport between the ER and Golgi bodies is inhibited and proteins are redirected to the vacuole.
Collapse
Affiliation(s)
- V Vieira
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, U.K
| | - C Pain
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - S Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - T Spatola Rossi
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - J Denecke
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, U.K
| | - A Osterrieder
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Bioethics and Engagement, Mahidol Oxford Tropical Medicine Research Unit (MORU), Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - C Hawes
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| |
Collapse
|
14
|
Takagi J, Kimori Y, Shimada T, Hara-Nishimura I. Dynamic Capture and Release of Endoplasmic Reticulum Exit Sites by Golgi Stacks in Arabidopsis. iScience 2020; 23:101265. [PMID: 32585594 PMCID: PMC7322076 DOI: 10.1016/j.isci.2020.101265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Protein transport from the endoplasmic reticulum (ER) to Golgi stacks is mediated by the coat protein complex COPII, which is assembled at an ER subdomain called ER exit site (ERES). However, the dynamic relationship between ERESs and Golgi stacks is unknown. Here, we propose a dynamic capture-and-release model of ERESs by Golgi stacks in Arabidopsis thaliana. Using variable-angle epifluorescence microscopy with high-temporal-resolution imaging, COPII-component-bound ERESs were detected as punctate structures with sizes of 300–500 nm. Some punctate ERESs are distributed on ER tubules and sheet rims, whereas others gather around a Golgi stack in an ER-network cavity to form a beaded-ring structure. Free ERESs that wander into an ER cavity are captured by a Golgi stack in a cytoskeleton-independent manner. Then, they are released by the Golgi stack for recycling. The dynamic ERES cycling might contribute to efficient transfer of de novo synthesized cargo proteins from the ER to Golgi stacks. VAEM images show dynamic behavior of minimal punctate ERESs Most of punctate ERESs are distributed on the ER network tubes Several punctate ERESs contact with a Golgi stack in an ER network cavity ERESs are dynamically captured and released by Golgi stacks
Collapse
Affiliation(s)
- Junpei Takagi
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Yoshitaka Kimori
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
15
|
ROBINSON DAVIDG. Plant Golgi ultrastructure. J Microsc 2020; 280:111-121. [DOI: 10.1111/jmi.12899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Affiliation(s)
- DAVID G. ROBINSON
- Centre for Organismal Studies University of Heidelberg Heidelberg Germany
| |
Collapse
|
16
|
Renna L, Brandizzi F. The mysterious life of the plant trans-Golgi network: advances and tools to understand it better. J Microsc 2020; 278:154-163. [PMID: 32115699 DOI: 10.1111/jmi.12881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022]
Abstract
By being at the interface of the exocytic and endocytic pathways, the plant trans-Golgi network (TGN) is a multitasking and highly diversified organelle. Despite governing vital cellular processes, the TGN remains one of the most uncharacterized organelle of plant cells. In this review, we highlight recent studies that have contributed new insights and to the generation of markers needed to answer several important questions on the plant TGN. Several drugs specifically affecting proteins critical for the TGN functions have been extremely useful for the identification of mutants of the TGN in the pursuit to understand how the morphology and the function of this organelle are controlled. In addition to these chemical tools, we review emerging microscopy techniques that help visualize the TGN at an unpreceded resolution and appreciate the heterogeneity and dynamics of this organelle in plant cells.
Collapse
Affiliation(s)
- L Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, U.S.A
| | - F Brandizzi
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
17
|
Shao W, Sharma R, Clausen MH, Scheller HV. Microscale thermophoresis as a powerful tool for screening glycosyltransferases involved in cell wall biosynthesis. PLANT METHODS 2020; 16:99. [PMID: 32742297 PMCID: PMC7389378 DOI: 10.1186/s13007-020-00641-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Identification and characterization of key enzymes associated with cell wall biosynthesis and modification is fundamental to gain insights into cell wall dynamics. However, it is a challenge that activity assays of glycosyltransferases are very low throughput and acceptor substrates are generally not available. RESULTS We optimized and validated microscale thermophoresis (MST) to achieve high throughput screening for glycosyltransferase substrates. MST is a powerful method for the quantitative analysis of protein-ligand interactions with low sample consumption. The technique is based on the motion of molecules along local temperature gradients, measured by fluorescence changes. We expressed glycosyltransferases as YFP-fusion proteins in tobacco and optimized the MST method to allow the determination of substrate binding affinity without purification of the target protein from the cell lysate. The application of this MST method to the β-1,4-galactosyltransferase AtGALS1 validated the capability to screen both nucleotide-sugar donor substrates and acceptor substrates. We also expanded the application to members of glycosyltransferase family GT61 in sorghum for substrate screening and function prediction. CONCLUSIONS This method is rapid and sensitive to allow determination of both donor and acceptor substrates of glycosyltransferases. MST enables high throughput screening of glycosyltransferases for likely substrates, which will narrow down their in vivo function and help to select candidates for further studies. Additionally, this method gives insight into biochemical mechanism of glycosyltransferase function.
Collapse
Affiliation(s)
- Wanchen Shao
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Rita Sharma
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mads H. Clausen
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
18
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
19
|
Salinas-Cornejo J, Madrid-Espinoza J, Ruiz-Lara S. Identification and transcriptional analysis of SNARE vesicle fusion regulators in tomato (Solanum lycopersicum) during plant development and a comparative analysis of the response to salt stress with wild relatives. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153018. [PMID: 31472447 DOI: 10.1016/j.jplph.2019.153018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Intracellular vesicular trafficking ensures the exchange of lipids and proteins between the membranous compartments. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) play a central role in membrane fusion and they are key factors for vesicular trafficking in plants, including crops economically important such as tomato (Solanum lycopersicum). Taking advantage of the complete genome sequence available of S. lycopersicum, we identified 63 genes that encode putative SNARE proteins. Then, phylogenetic analysis allowed the classification of SNAREs in five main groups and recognizing their possible functions. A structure analysis of the genes, their syntenic relationships and their location in the chromosomes were also carried out for their characterization. In addition, the expression profiles of SNARE genes in different tissues were investigated using microarray-based analysis. The results indicated that specific SNAREs had a higher induction in leaf, root, flower and mature green fruit. S. lycopersicum is characterized for being a crop sensitive to saline stress unlike its wild relatives, such as Solanum pennellii, Solanum pimpinellifolium, Solanum habrochaites or Solanum chilense, which are tolerant. In this context, we analyzed different microarrays and evaluated and validated the transcript levels through qRT-PCR experiments. The results showed that SlGOS12.2, SlVAMP727 and SlSYP51.2 could have a positive relationship with salt stress and probably an important role in their tolerance. All these data increase our knowledge and can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in tomato.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
20
|
Affiliation(s)
- ULLA NEUMANN
- Max Planck Institute for Plant Breeding ResearchCentral Microscopy Cologne Germany
| |
Collapse
|
21
|
Mookherjee D, Majumder P, Mukherjee R, Chatterjee D, Kaul Z, Das S, Sougrat R, Chakrabarti S, Chakrabarti O. Cytosolic aggregates in presence of non‐translocated proteins perturb endoplasmic reticulum structure and dynamics. Traffic 2019; 20:943-960. [DOI: 10.1111/tra.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Priyanka Majumder
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Life Sciences, School of Natural SciencesShiv Nadar University Dadri UP India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Buchmann Institute for Molecular Life Sciences Frankfurt Am Main Germany
| | - Debmita Chatterjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Zenia Kaul
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia School of Medicine Charlottesville Virginia
| | - Subhrangshu Das
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Rachid Sougrat
- Imaging and Characterization Lab4700 King Abdullah University of Science and Technology Thuwal Kingdom of Saudi Arabia
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
22
|
Zhu G, Liang E, Lan X, Li Q, Qian J, Tao H, Zhang M, Xiao N, Zuo S, Chen J, Gao Y. ZmPGIP3 Gene Encodes a Polygalacturonase-Inhibiting Protein that Enhances Resistance to Sheath Blight in Rice. PHYTOPATHOLOGY 2019; 109:1732-1740. [PMID: 31479403 DOI: 10.1094/phyto-01-19-0008-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant polygalacturonase-inhibiting protein (PGIP) is a structural protein that can specifically recognize and bind to fungal polygalacturonase (PG). PGIP plays an important role in plant antifungal activity. In this study, a maize PGIP gene, namely ZmPGIP3, was cloned and characterized. Agarose diffusion assay suggested that ZmPGIP3 could inhibit the activity of PG. ZmPGIP3 expression was significantly induced by wounding, Rhizoctonia solani infection, jasmonate, and salicylic acid. ZmPGIP3 might be related to disease resistance. The gene encoding ZmPGIP3 was posed under the control of the ubiquitin promoter and constitutively expressed in transgenic rice. In an R. solani infection assay, ZmPGIP3 transgenic rice was more resistant to sheath blight than the wild-type rice regardless of the inoculated plant part (leaves or sheaths). Digital gene expression analysis indicated that the expression of some rice PGIP genes significantly increased in ZmPGIP3 transgenic rice, suggesting that ZmPGIP3 might activate the expression of some rice PGIP genes to resist sheath blight. Our investigation of the agronomic traits of ZmPGIP3 transgenic rice showed that ZmPGIP3 overexpression in rice did not show any detrimental phenotypic or agronomic effect. ZmPGIP3 is a promising candidate gene in the transgenic breeding for sheath blight resistance and crop improvement.
Collapse
Affiliation(s)
- Guang Zhu
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Enxing Liang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Xiang Lan
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qian Li
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jingjie Qian
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Haixia Tao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Zhang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Ning Xiao
- Lixiahe Region Agricultural Scientific Research Institute of Jiangsu, Yangzhou 225009, Jiangsu, China
| | - Shimin Zuo
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Zhu M, van Grinsven IL, Kormelink R, Tao X. Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:41-62. [PMID: 30893008 DOI: 10.1146/annurev-phyto-082718-100309] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tospoviruses are among the most important plant pathogens and cause serious crop losses worldwide. Tospoviruses have evolved to smartly utilize the host cellular machinery to accomplish their life cycle. Plants mount two layers of defense to combat their invasion. The first one involves the activation of an antiviral RNA interference (RNAi) defense response. However, tospoviruses encode an RNA silencing suppressor that enables them to counteract antiviral RNAi. To further combat viral invasion, plants also employ intracellular innate immune receptors (e.g., Sw-5b and Tsw) to recognize different viral effectors (e.g., NSm and NSs). This leads to the triggering of a much more robust defense against tospoviruses called effector-triggered immunity (ETI). Tospoviruses have further evolved their effectors and can break Sw-5b-/Tsw-mediated resistance. The arms race between tospoviruses and both layers of innate immunity drives the coevolution of host defense and viral genes involved in counter defense. In this review, a state-of-the-art overview is presented on the tospoviral life cycle and the multilined interplays between tospoviruses and the distinct layers of defense.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
24
|
Schoberer J, König J, Veit C, Vavra U, Liebminger E, Botchway SW, Altmann F, Kriechbaumer V, Hawes C, Strasser R. A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nat Commun 2019; 10:3701. [PMID: 31420549 PMCID: PMC6697737 DOI: 10.1038/s41467-019-11686-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Julia König
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0QX, UK
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
25
|
Bapaume L, Laukamm S, Darbon G, Monney C, Meyenhofer F, Feddermann N, Chen M, Reinhardt D. VAPYRIN Marks an Endosomal Trafficking Compartment Involved in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2019; 10:666. [PMID: 31231402 PMCID: PMC6558636 DOI: 10.3389/fpls.2019.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) is a symbiosis between plants and AM fungi that requires the intracellular accommodation of the fungal partner in the host. For reciprocal nutrient exchange, AM fungi form intracellular arbuscules that are surrounded by the peri-arbuscular membrane. This membrane, together with the fungal plasma membrane, and the space in between, constitute the symbiotic interface, over which nutrients are exchanged. Intracellular establishment of AM fungi requires the VAPYRIN protein which is induced in colonized cells, and which localizes to numerous small mobile structures of unknown identity (Vapyrin-bodies). In order to characterize the identity and function of the Vapyrin-bodies we pursued a dual strategy. First, we co-expressed fluorescently tagged VAPYRIN with a range of subcellular marker proteins, and secondly, we employed biochemical tools to identify interacting partner proteins of VAPYRIN. As an important tool for the quantitative analysis of confocal microscopic data sets from co-expression of fluorescent proteins, we developed a semi-automated image analysis pipeline that allows for precise spatio-temporal quantification of protein co-localization and of the dynamics of organelle association from movies. Taken together, these experiments revealed that Vapyrin-bodies have an endosomal identity with trans-Golgi features, and that VAPYRIN interacts with a symbiotic R-SNARE of the VAMP721 family, that localizes to the same compartment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
26
|
Zhao Y, Wu G, Shi H, Tang D. RECEPTOR-LIKE KINASE 902 Associates with and Phosphorylates BRASSINOSTEROID-SIGNALING KINASE1 to Regulate Plant Immunity. MOLECULAR PLANT 2019; 12:59-70. [PMID: 30408577 DOI: 10.1016/j.molp.2018.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 05/03/2023]
Abstract
Plants employ receptor-like kinases (RLKs) and receptor-like proteins for rapid recognition of invading pathogens, and RLKs then transmit signals to receptor-like cytoplasmic kinases (RLCKs) to activate immune responses. RLKs are under fine regulation mediated by subcellular trafficking, which contributes to proper activation of plant immunity. In this study, we show that Arabidopsis thaliana RECEPTOR-LIKE KINASE 902 (RLK902) plays important roles in resistance to the bacterial pathogen Pseudomonas syringae, but not to the fungal powdery mildew pathogen Golovinomyces cichoracearum. RLK902 localizes at the plasma membrane and associates with ENHANCED DISEASE RESISTANCE 4 (EDR4), a protein involved in clathrin-mediated trafficking pathways. EDR4 and CLATHRIN HEAVY CHAIN 2 (CHC2) regulate the subcellular trafficking and accumulation of RLK902 protein. Furthermore, we found that RLK902 directly associates with the RLCK BRASSINOSTEROID-SIGNALING KINASE1 (BSK1), a key component of plant immunity, but not with other members of the FLAGELLIN SENSING 2 immune complex. RLK902 phosphorylates BSK1, and its Ser-230 is a key phosphorylation site critical for RLK902-mediated defense signaling. Taken together, our data indicate that EDR4 regulates plant immunity by modulating the subcellular trafficking and protein accumulation of RLK902, and that RLK902 transmits immune signals by phosphorylating BSK1.
Collapse
Affiliation(s)
- Yaofei Zhao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100039, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangheng Wu
- Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, Fujian 354300, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Key Laboratory of Crop by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
27
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018. [PMID: 30552321 DOI: 10.1038/s41467-018-07662-7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
28
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018; 9:5313. [PMID: 30552321 PMCID: PMC6294250 DOI: 10.1038/s41467-018-07662-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Perico C, Sparkes I. Plant organelle dynamics: cytoskeletal control and membrane contact sites. THE NEW PHYTOLOGIST 2018; 220:381-394. [PMID: 30078196 DOI: 10.1111/nph.15365] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/10/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 381 I. Introduction 381 II. Basic movement characteristics 382 III. Actin and associated motors, myosins, play a primary role in plant organelle movement and positioning 382 IV. Mechanisms of myosin recruitment: a tightly regulated system? 384 V. Microtubules, associated motors and interplay with actin 386 VI. Role of organelle interactions: tales of tethers 387 VII. Summary model to describe organelle movement in higher plants 390 VIII. Why is organelle movement important? 390 IX. Conclusions and future perspectives 391 Acknowledgements 391 References 391 SUMMARY: Organelle movement and positioning are correlated with plant growth and development. Movement characteristics are seemingly erratic yet respond to external stimuli including pathogens and light. Given these clear correlations, we still do not understand the specific roles that movement plays in these processes. There are few exceptions including organelle inheritance during cell division and photorelocation of chloroplasts to prevent photodamage. The molecular and biophysical components that drive movement can be broken down into cytoskeletal components, motor proteins and tethers, which allow organelles to physically interact with one another. Our understanding of these components and concepts has exploded over the past decade, with recent technological advances allowing an even more in-depth profiling. Here, we provide an overview of the cytoskeletal and tethering components and discuss the mechanisms behind organelle movement in higher plants.
Collapse
Affiliation(s)
- Chiara Perico
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
30
|
Jeremias G, Barbosa J, Marques SM, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Gonçalves FJM, Pereira JL, Asselman J. Transgenerational Inheritance of DNA Hypomethylation in Daphnia magna in Response to Salinity Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10114-10123. [PMID: 30113818 DOI: 10.1021/acs.est.8b03225] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Epigenetic mechanisms have been found to play important roles in environmental stress response and regulation. These can, theoretically, be transmitted to future unexposed generations, yet few studies have shown persisting stress-induced transgenerational effects, particularly in invertebrates. Here, we focus on the aquatic microcrustacean Daphnia, a parthenogenetic model species, and its response to salinity stress. Salinity is a serious threat to freshwater ecosystems and a relevant form of environmental perturbation affecting freshwater ecosystems. We exposed one generation of D. magna to high levels of salinity (F0) and found that the exposure provoked specific methylation patterns that were transferred to the three consequent nonexposed generations (F1, F2, and F3). This was the case for the hypomethylation of six protein-coding genes with important roles in the organisms' response to environmental change: DNA damage repair, cytoskeleton organization, and protein synthesis. This suggests that epigenetic changes in Daphnia are particularly targeted to genes involved in coping with general cellular stress responses. Our results highlight that epigenetic marks are affected by environmental stressors and can be transferred to subsequent unexposed generations. Epigenetic marks could therefore prove to be useful indicators of past or historic pollution in this parthenogenetic model system. Furthermore, no life history costs seem to be associated with the maintenance of hypomethylation across unexposed generations in Daphnia following a single stress exposure.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - João Barbosa
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Sérgio M Marques
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
- CESAM (Centre for Environmental and Marine Studies) , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Karel A C De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab) , Ghent University , 9000 , Ghent , Belgium
| | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology , Ghent University , 9000 , Ghent , Belgium
| | - Fernando J M Gonçalves
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
- CESAM (Centre for Environmental and Marine Studies) , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Joana Luísa Pereira
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
- CESAM (Centre for Environmental and Marine Studies) , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab) , Ghent University , 9000 , Ghent , Belgium
| |
Collapse
|
31
|
Silva-Alvim FAL, An J, Alvim JC, Foresti O, Grippa A, Pelgrom A, Adams TL, Hawes C, Denecke J. Predominant Golgi Residency of the Plant K/HDEL Receptor Is Essential for Its Function in Mediating ER Retention. THE PLANT CELL 2018; 30:2174-2196. [PMID: 30072420 PMCID: PMC6181015 DOI: 10.1105/tpc.18.00426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 05/08/2023]
Abstract
Accumulation of soluble proteins in the endoplasmic reticulum (ER) of plants is mediated by a receptor termed ER RETENTION DEFECTIVE2 (ERD2) or K/HDEL receptor. Using two gain-of-function assays and by complementing loss of function in Nicotiana benthamiana, we discovered that compromising the lumenal N terminus or the cytosolic C terminus with fluorescent fusions abolishes its biological function and profoundly affects its subcellular localization. Based on the confirmed asymmetrical topology of ERD2, we engineered a new fluorescent ERD2 fusion protein that retains biological activity. Using this fusion, we show that ERD2 is exclusively detected at the Golgi apparatus, unlike nonfunctional C-terminal fusions, which also label the ER. Moreover, ERD2 is confined to early Golgi compartments and does not show ligand-induced redistribution to the ER. We show that the cytosolic C terminus of ERD2 plays a crucial role in its function. Two conserved leucine residues that do not correspond to any known targeting motifs for ER-Golgi trafficking were shown to be essential for both ERD2 Golgi residency and its ability to mediate ER retention of soluble ligands. The results suggest that anterograde ER to Golgi transport of ERD2 is either extremely fast, well in excess of the bulk flow rate, or that ERD2 does not recycle in the way originally proposed.
Collapse
Affiliation(s)
- Fernanda A L Silva-Alvim
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jing An
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jonas C Alvim
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ombretta Foresti
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alexandra Grippa
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alexandra Pelgrom
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Thomas L Adams
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0AZ, United Kingdom
| | - Jurgen Denecke
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
32
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
33
|
Abstract
The availability of more specific dyes for a subset of endomembrane compartments, combined with the development of genetically encoded probes and advanced microscopy technologies, makes live cell imaging an approach that goes beyond the microscopically observation of cell structure. Here we describe the latest improved techniques to investigate protein-protein interaction, protein topology, and protein dynamics.Furthermore, we depict new technical approaches to identify mutants for chloroplast morphology and distribution through the tracking of chlorophyll fluorescence, as well as mutants for chloroplast movement.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
34
|
Stefano G, Brandizzi F. Advances in Plant ER Architecture and Dynamics. PLANT PHYSIOLOGY 2018; 176:178-186. [PMID: 28986423 PMCID: PMC5761816 DOI: 10.1104/pp.17.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/01/2017] [Indexed: 05/18/2023]
Abstract
Recent advances highlight mechanisms that enable the morphological integrity of the plant ER in relation to the other organelles and the cytoskeleton.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
35
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
36
|
Kwaaitaal M, Nielsen ME, Böhlenius H, Thordal-Christensen H. The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5731-5743. [PMID: 29237056 PMCID: PMC5854130 DOI: 10.1093/jxb/erx403] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/26/2017] [Indexed: 05/18/2023]
Abstract
Many filamentous plant pathogens place specialized feeding structures, called haustoria, inside living host cells. As haustoria grow, they are believed to manipulate plant cells to generate a specialized, still enigmatic extrahaustorial membrane (EHM) around them. Here, we focused on revealing properties of the EHM. With the help of membrane-specific dyes and transient expression of membrane-associated proteins fused to fluorescent tags, we studied the nature of the EHM generated by barley leaf epidermal cells around powdery mildew haustoria. Observations suggesting that endoplasmic reticulum (ER) membrane-specific dyes labelled the EHM led us to find that Sar1 and RabD2a GTPases bind this membrane. These proteins are usually associated with the ER and the ER/cis-Golgi membrane, respectively. In contrast, transmembrane and luminal ER and Golgi markers failed to label the EHM, suggesting that it is not a continuum of the ER. Furthermore, GDP-locked Sar1 and a nucleotide-free RabD2a, which block ER to Golgi exit, did not hamper haustorium formation. These results indicated that the EHM shares features with the plant ER membrane, but that the EHM membrane is not dependent on conventional secretion. This raises the prospect that an unconventional secretory pathway from the ER may provide this membrane's material. Understanding these processes will assist future approaches to providing resistance by preventing EHM generation.
Collapse
Affiliation(s)
- Mark Kwaaitaal
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
| | - Mads Eggert Nielsen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
| | - Henrik Böhlenius
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
| | - Hans Thordal-Christensen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
37
|
Nazri AZ, Griffin JH, Peaston KA, Alexander‐Webber DG, Williams LE. F-group bZIPs in barley-a role in Zn deficiency. PLANT, CELL & ENVIRONMENT 2017; 40:2754-2770. [PMID: 28763829 PMCID: PMC5656896 DOI: 10.1111/pce.13045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 07/09/2017] [Indexed: 05/13/2023]
Abstract
Zinc (Zn) deficiency negatively impacts the development and health of plants and affects crop yield. When experiencing low Zn, plants undergo an adaptive response to maintain Zn homeostasis. We provide further evidence for the role of F-group transcription factors, AtbZIP19 and AtbZIP23, in responding to Zn deficiency in Arabidopsis and demonstrate the sensitivity and specificity of this response. Despite their economic importance, the role of F-group bZIPs in cereal crops is largely unknown. Here, we provide new insights by functionally characterizing these in barley (Hordeum vulgare), demonstrating an expanded number of F-group bZIPs (seven) compared to Arabidopsis. The F-group barley bZIPs, HvbZIP56 and HvbZIP62, partially rescue the Zn-dependent growth phenotype and ZIP-transporter gene regulation of an Arabidopsis bzip19-4 bzip23-2 mutant. This supports a conserved mechanism of action in adapting to Zn deficiency. HvbZIP56 localizes to the cytoplasm and nucleus when expressed in Arabidopsis and tobacco. Promoter analysis demonstrates that the barley ZIP transporters that are upregulated under Zn deficiency contain cis Zn-deficiency response elements (ZDREs). ZDREs are also found in particular barley bZIP promoters. This study represents a significant step forward in understanding the mechanisms controlling Zn responses in cereal crops, and will aid in developing strategies for crop improvement.
Collapse
Affiliation(s)
| | | | - Kerry A. Peaston
- Biological SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | | | | |
Collapse
|
38
|
Cheng G, Dong M, Xu Q, Peng L, Yang Z, Wei T, Xu J. Dissecting the Molecular Mechanism of the Subcellular Localization and Cell-to-cell Movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep 2017; 7:9868. [PMID: 28852157 PMCID: PMC5575073 DOI: 10.1038/s41598-017-10497-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/09/2017] [Indexed: 02/02/2023] Open
Abstract
The coding sequence of P3N-PIPO was cloned by fusion PCR from Sugarcane mosaic virus (SCMV), a main causal agent of sugarcane (Saccharum spp. hybrid) mosaic disease. SCMV P3N-PIPO preferentially localized to the plasma membrane (PM) compared with the plasmodesmata (PD), as demonstrated by transient expression and plasmolysis assays in the leaf epidermal cells of Nicotiana benthamiana. The subcellular localization of the P3N-PIPO mutants P3N-PIPOT1 and P3N-PIPOT2 with 29 and 63 amino acids deleted from the C-terminus of PIPO, respectively, revealed that the 19 amino acids at the N-terminus of PIPO contributed to the PD localization. Interaction assays showed that the 63 amino acids at the C-terminus of PIPO determined the P3N-PIPO interaction with PM-associated Ca2+-binding protein 1, ScPCaP1, which was isolated from the SCMV-susceptible sugarcane cultivar Badila. Like wild-type P3N-PIPO, P3N-PIPOT1 and P3N-PIPOT2 could translocate to neighbouring cells and recruit the SCMV cylindrical inclusion protein to the PM. Thus, interactions with ScPCaP1 may contribute to, but not determine, SCMV Pm3N-PIPO’s localization to the PM or PD. These results also imply the existence of truncated P3N-PIPO in nature.
Collapse
Affiliation(s)
- Guangyuan Cheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Meng Dong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qian Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lei Peng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zongtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Jingsheng Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
39
|
Brandizzi F. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin Cell Dev Biol 2017; 80:94-105. [PMID: 28688928 DOI: 10.1016/j.semcdb.2017.06.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The biogenesis of about one third of the cellular proteome is initiated in the endoplasmic reticulum (ER), which exports proteins to the Golgi apparatus for sorting to their final destination. Notwithstanding the close proximity of the ER with other secretory membranes (e.g., endosomes, plasma membrane), the ER is also important for the homeostasis of non-secretory organelles such as mitochondria, peroxisomes, and chloroplasts. While how the plant ER interacts with most of the non-secretory membranes is largely unknown, the knowledge on the mechanisms for ER-to-Golgi transport is relatively more advanced. Indeed, over the last fifteen years or so, a large number of exciting results have contributed to draw parallels with non-plant species but also to highlight the complexity of the plant ER-Golgi interface, which bears unique features. This review reports and discusses results on plant ER-to-Golgi traffic, focusing mainly on research on COPII-mediated transport in the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
40
|
Park HY, Lee KC, Jang YH, Kim SK, Thu MP, Lee JH, Kim JK. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. PLANT CELL REPORTS 2017; 36:1113-1123. [PMID: 28432478 DOI: 10.1007/s00299-017-2142-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 05/07/2023]
Abstract
The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. These proteins also move rapidly and continuously in the nuclei, and their movements are affected by ATP depletion. The U2AF65 proteins are splicing factors that interact with SF1 and U2AF35 proteins to promote U2snRNP for the recognition of the pre-mRNA 3' splice site during early spliceosome assembly. We have determined the subcellular localization and movement of these proteins' Arabidopsis homologs. It was found that Arabidopsis U2AF65 homologs, AtU2AF65a, and AtU2AF65b proteins interact with AtU2AF35a and AtU2AF35b, which are Arabidopsis U2AF35 homologs. We have examined the mobility of these proteins including AtSF1 using fluorescence recovery after photobleaching and fluorescence loss in photobleaching analyses. These proteins displayed dynamic movements in nuclei and their movements were affected by ATP depletion. We have also demonstrated that these proteins shuttle between nuclei and cytoplasms, suggesting that they may also function in cytoplasm. These results indicate that such splicing factors show very similar characteristics to their human counterparts, suggesting evolutionary conservation.
Collapse
Affiliation(s)
- Hyo-Young Park
- Department of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Keh Chien Lee
- Department of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yun Hee Jang
- Department of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - May Phyo Thu
- Department of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Hwan Lee
- Department of Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-Si, Jeollabuk-do, 54896, Republic of Korea.
| | - Jeong-Kook Kim
- Department of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
41
|
Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3339-3350. [PMID: 28605454 PMCID: PMC5853478 DOI: 10.1093/jxb/erx167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
The plant Golgi apparatus modifies and sorts incoming proteins from the endoplasmic reticulum (ER) and synthesizes cell wall matrix material. Plant cells possess numerous motile Golgi bodies, which are connected to the ER by yet to be identified tethering factors. Previous studies indicated a role for cis-Golgi plant golgins, which are long coiled-coil domain proteins anchored to Golgi membranes, in Golgi biogenesis. Here we show a tethering role for the golgin AtCASP at the ER-Golgi interface. Using live-cell imaging, Golgi body dynamics were compared in Arabidopsis thaliana leaf epidermal cells expressing fluorescently tagged AtCASP, a truncated AtCASP-ΔCC lacking the coiled-coil domains, and the Golgi marker STtmd. Golgi body speed and displacement were significantly reduced in AtCASP-ΔCC lines. Using a dual-colour optical trapping system and a TIRF-tweezer system, individual Golgi bodies were captured in planta. Golgi bodies in AtCASP-ΔCC lines were easier to trap and the ER-Golgi connection was more easily disrupted. Occasionally, the ER tubule followed a trapped Golgi body with a gap, indicating the presence of other tethering factors. Our work confirms that the intimate ER-Golgi association can be disrupted or weakened by expression of truncated AtCASP-ΔCC and suggests that this connection is most likely maintained by a golgin-mediated tethering complex.
Collapse
Affiliation(s)
- Anne Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Imogen A Sparkes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Stan W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Andy Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Norbert de Ruijter
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| |
Collapse
|
42
|
Navarre C, Smargiasso N, Duvivier L, Nader J, Far J, De Pauw E, Boutry M. N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase. Transgenic Res 2017; 26:375-384. [PMID: 28332009 DOI: 10.1007/s11248-017-0013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.
Collapse
Affiliation(s)
- Catherine Navarre
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.
| | | | - Laurent Duvivier
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Joseph Nader
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liege, 4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liege, 4000, Liège, Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
43
|
Gao H, Zhang Y, Wang W, Zhao K, Liu C, Bai L, Li R, Guo Y. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development. PLANT PHYSIOLOGY 2017; 173:219-239. [PMID: 27872247 PMCID: PMC5210706 DOI: 10.1104/pp.16.01719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/20/2016] [Indexed: 05/23/2023]
Abstract
Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39 Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39 A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Yinghui Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Keke Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Chunmei Liu
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Lin Bai
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| |
Collapse
|
44
|
Abstract
The delivery of proteins to the apoplast or protein secretion is an essential process in plant cells. Proteins are secreted to perform various biological functions such as cell wall modification and defense response. Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways have been demonstrated in plants. In the conventional protein secretion pathway, secretory proteins with an N-terminal signal peptide are transported to the extracellular region via the endoplasmic reticulum-Golgi apparatus and the subsequent endomembrane system. By contrast, multiple unconventional protein secretion pathways are proposed to mediate the secretion of the leaderless secretory proteins. In this review, we summarize the recent findings and provide a comprehensive overview of protein secretion pathways in plant cells.
Collapse
Affiliation(s)
- Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Yonglun Zeng
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
45
|
Cao P, Renna L, Stefano G, Brandizzi F. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis. Curr Biol 2016; 26:3245-3254. [DOI: 10.1016/j.cub.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|
46
|
Wang Y, Liu F, Ren Y, Wang Y, Liu X, Long W, Wang D, Zhu J, Zhu X, Jing R, Wu M, Hao Y, Jiang L, Wang C, Wang H, Bao Y, Wan J. GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells. THE PLANT CELL 2016; 28:2850-2865. [PMID: 27803308 PMCID: PMC5155349 DOI: 10.1105/tpc.16.00717] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 05/04/2023]
Abstract
Coat protein complex II (COPII) mediates the first step of anterograde transport of newly synthesized proteins from the endoplasmic reticulum (ER) to other endomembrane compartments in eukaryotes. A group of evolutionarily conserved proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) constitutes the basic COPII coat machinery; however, the details of how the COPII coat assembly is regulated remain unclear. Here, we report a protein transport mutant of rice (Oryza sativa), named glutelin precursor accumulation4 (gpa4), which accumulates 57-kD glutelin precursors and forms two types of ER-derived abnormal structures. GPA4 encodes the evolutionarily conserved membrane protein GOT1B (also known as GLUP2), homologous to the Saccharomyces cerevisiae GOT1p. The rice GOT1B protein colocalizes with Arabidopsis thaliana Sar1b at Golgi-associated ER exit sites (ERESs) when they are coexpressed in Nicotiana benthamiana Moreover, GOT1B physically interacts with rice Sec23, and both proteins are present in the same complex(es) with rice Sar1b. The distribution of rice Sar1 in the endomembrane system, its association with rice Sec23c, and the ERES organization pattern are significantly altered in the gpa4 mutant. Taken together, our results suggest that GOT1B plays an important role in mediating COPII vesicle formation at ERESs, thus facilitating anterograde transport of secretory proteins in plant cells.
Collapse
Affiliation(s)
- Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
47
|
Zhao B, Shi H, Wang W, Liu X, Gao H, Wang X, Zhang Y, Yang M, Li R, Guo Y. Secretory COPII Protein SEC31B Is Required for Pollen Wall Development. PLANT PHYSIOLOGY 2016; 172:1625-1642. [PMID: 27634427 PMCID: PMC5100771 DOI: 10.1104/pp.16.00967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/13/2016] [Indexed: 05/03/2023]
Abstract
The pollen wall protects pollen grains from abiotic and biotic stresses. During pollen wall development, tapetal cells play a vital role by secreting proteins, signals, and pollen wall material to ensure microspore development. But the regulatory mechanism underlying the secretory pathway of the tapetum is largely unknown. Here, we characterize the essential role of the Arabidopsis (Arabidopsis thaliana) COPII protein SECRETORY31B (SEC31B) in pollen wall development and the secretory activity of tapetal cells. The sporophyte-controlled atsec31b mutant exhibits severe pollen and seed abortion. Transmission electron microscopy observation indicates that pollen exine formation in the atsec31b mutant is disrupted significantly. AtSEC31B is a functional COPII protein revealed by endoplasmic reticulum (ER) exit site localization, interaction with AtSEC13A, and retarded ER-Golgi protein trafficking in the atsec31b mutant. A genetic tapetum-specific rescue assay indicates that AtSEC31B functions primarily in the tapetum. Moreover, deletion of AtSEC31B interrupted the formation of the ER-derived tapetosome and altered the location of the ATP-BINDING CASSETTE TRANSPORTER9 protein in the tapetum. Therefore, this work demonstrates that AtSEC31B plays a vital role in pollen wall development by regulating the secretory pathway of the tapetal cells.
Collapse
Affiliation(s)
- Bingchun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Haidan Shi
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Hui Gao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Xiaoxiao Wang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Yinghui Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Meidi Yang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| |
Collapse
|
48
|
Tan X, Cao K, Liu F, Li Y, Li P, Gao C, Ding Y, Lan Z, Shi Z, Rui Q, Feng Y, Liu Y, Zhao Y, Wu C, Zhang Q, Li Y, Jiang L, Bao Y. Arabidopsis COG Complex Subunits COG3 and COG8 Modulate Golgi Morphology, Vesicle Trafficking Homeostasis and Are Essential for Pollen Tube Growth. PLoS Genet 2016; 12:e1006140. [PMID: 27448097 PMCID: PMC4957783 DOI: 10.1371/journal.pgen.1006140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
Spatially and temporally regulated membrane trafficking events incorporate membrane and cell wall materials into the pollen tube apex and are believed to underlie the rapid pollen tube growth. In plants, the molecular mechanisms and physiological functions of intra-Golgi transport and Golgi integrity maintenance remain largely unclear. The conserved oligomeric Golgi (COG) complex has been implicated in tethering of retrograde intra-Golgi vesicles in yeast and mammalian cells. Using genetic and cytologic approaches, we demonstrate that T-DNA insertions in Arabidopsis COG complex subunits, COG3 and COG8, cause an absolute, male-specific transmission defect that can be complemented by expression of COG3 and COG8 from the LAT52 pollen promoter, respectively. No obvious abnormalities in the microgametogenesis of the two mutants are observed, but in vitro and in vivo pollen tube growth are defective. COG3 or COG8 proteins fused to green fluorescent protein (GFP) label the Golgi apparatus. In pollen of both mutants, Golgi bodies exhibit altered morphology. Moreover, γ-COP and EMP12 proteins lose their tight association with the Golgi. These defects lead to the incorrect deposition of cell wall components and proteins during pollen tube growth. COG3 and COG8 interact directly with each other, and a structural model of the Arabidopsis COG complex is proposed. We believe that the COG complex helps to modulate Golgi morphology and vesicle trafficking homeostasis during pollen tube tip growth.
Collapse
Affiliation(s)
- Xiaoyun Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Kun Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yingxin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Pengxiang Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiyi Lan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhixuan Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qingchen Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yihong Feng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yulong Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yanxue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Chengyun Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qian Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yan Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
- * E-mail:
| |
Collapse
|
49
|
Kim SJ, Brandizzi F. The plant secretory pathway for the trafficking of cell wall polysaccharides and glycoproteins. Glycobiology 2016; 26:940-949. [PMID: 27072815 DOI: 10.1093/glycob/cww044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/03/2016] [Indexed: 01/22/2023] Open
Abstract
Plant endomembranes are required for the biosynthesis and secretion of complex cell wall matrix polysaccharides, glycoproteins and proteoglycans. To define the biochemical roadmap that guides the synthesis and deposition of these cell wall components it is first necessary to outline the localization of the biosynthetic and modifying enzymes involved, as well as the distribution of the intermediate and final constituents of the cell wall. Thus far, a comprehensive understanding of cell wall matrix components has been hampered by the multiplicity of trafficking routes in the secretory pathway, and the diverse biosynthetic roles of the endomembrane organelles, which may exhibit tissue and development specific features. However, the recent identification of protein complexes producing matrix polysaccharides, and those supporting the synthesis and distribution of a grass-specific hemicellulose are advancing our understanding of the functional contribution of the plant secretory pathway in cell wall biosynthesis. In this review, we provide an overview of the plant membrane trafficking routes and report on recent exciting accomplishments in the understanding of the mechanisms underlying secretion with focus on cell wall synthesis in plants.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center Michigan State University-DOE Plant Research Laboratory
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center Michigan State University-DOE Plant Research Laboratory Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
50
|
de Marcos Lousa C, Soubeyrand E, Bolognese P, Wattelet-Boyer V, Bouyssou G, Marais C, Boutté Y, Filippini F, Moreau P. Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2627-2639. [PMID: 26962210 PMCID: PMC4861013 DOI: 10.1093/jxb/erw094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SNARE proteins are central elements of the machinery involved in membrane fusion of eukaryotic cells. In animals and plants, SNAREs have diversified to sustain a variety of specific functions. In animals, R-SNARE proteins called brevins have diversified; in contrast, in plants, the R-SNARE proteins named longins have diversified. Recently, a new subfamily of four longins named 'phytolongins' (Phyl) was discovered. One intriguing aspect of Phyl proteins is the lack of the typical SNARE motif, which is replaced by another domain termed the 'Phyl domain'. Phytolongins have a rather ubiquitous tissue expression in Arabidopsis but still await intracellular characterization. In this study, we found that the four phytolongins are distributed along the secretory pathway. While Phyl2.1 and Phyl2.2 are strictly located at the endoplasmic reticulum network, Phyl1.2 associates with the Golgi bodies, and Phyl1.1 locates mainly at the plasma membrane and partially in the Golgi bodies and post-Golgi compartments. Our results show that export of Phyl1.1 from the endoplasmic reticulum depends on the GTPase Sar1, the Sar1 guanine nucleotide exchange factor Sec12, and the SNAREs Sec22 and Memb11. In addition, we have identified the Y48F49 motif as being critical for the exit of Phyl1.1 from the endoplasmic reticulum. Our results provide the first characterization of the subcellular localization of the phytolongins, and we discuss their potential role in regulating the secretory pathway.
Collapse
Affiliation(s)
- Carine de Marcos Lousa
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Faculty of Clinical and Applied Sciences, School of Biomedical Sciences, Leeds Beckett University, Portland Building 611, Leeds Beckett University City Campus, LS1 3HE, Leeds, UK
| | - Eric Soubeyrand
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Paolo Bolognese
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Valerie Wattelet-Boyer
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Guillaume Bouyssou
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Claireline Marais
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Yohann Boutté
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Francesco Filippini
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Patrick Moreau
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|