1
|
Wang X, Choi YM, Jeon YA, Yi J, Shin MJ, Desta KT, Yoon H. Analysis of Genetic Diversity in Adzuki Beans ( Vigna angularis): Insights into Environmental Adaptation and Early Breeding Strategies for Yield Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:4154. [PMID: 38140482 PMCID: PMC10747723 DOI: 10.3390/plants12244154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (X.W.); (Y.-M.C.); (Y.-a.J.); (J.Y.); (M.-J.S.)
| |
Collapse
|
2
|
QTL Mapping of Resistance to Bacterial Wilt in Pepper Plants (Capsicum annuum) Using Genotyping-by-Sequencing (GBS). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial wilt (BW) disease, which is caused by Ralstonia solanacearum, is one globally prevalent plant disease leading to significant losses of crop production and yield with the involvement of a diverse variety of monocot and dicot host plants. In particular, the BW of the soil-borne disease seriously influences solanaceous crops, including peppers (sweet and chili peppers), paprika, tomatoes, potatoes, and eggplants. Recent studies have explored genetic regions that are associated with BW resistance for pepper crops. However, owing to the complexity of BW resistance, the identification of the genomic regions controlling BW resistance is poorly understood and still remains to be unraveled in the pepper cultivars. In this study, we performed the quantitative trait loci (QTL) analysis to identify genomic loci and alleles, which play a critical role in the resistance to BW in pepper plants. The disease symptoms and resistance levels for BW were assessed by inoculation with R. solanacearum. Genotyping-by-sequencing (GBS) was utilized in 94 F2 segregating populations originated from a cross between a resistant line, KC352, and a susceptible line, 14F6002-14. A total of 628,437 single-nucleotide polymorphism (SNP) was obtained, and a pepper genetic linkage map was constructed with putative 1550 SNP markers via the filtering criteria. The linkage map exhibited 16 linkage groups (LG) with a total linkage distance of 828.449 cM. Notably, QTL analysis with CIM (composite interval mapping) method uncovered pBWR-1 QTL underlying on chromosome 01 and explained 20.13 to 25.16% by R2 (proportion of explained phenotyphic variance by the QTL) values. These results will be valuable for developing SNP markers associated with BW-resistant QTLs as well as for developing elite BW-resistant cultivars in pepper breeding programs.
Collapse
|
3
|
Liu X, Liu H, He J, Zhang S, Han H, Wang Z, Liu WC, Liang YK, Gao Z. RIN13-mediated disease resistance depends on the SNC1-EDS1/PAD4 signaling pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7393-7404. [PMID: 32937656 DOI: 10.1093/jxb/eraa433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Plants have evolved an innate immune system to protect themselves from pathogen invasion with the help of intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, though the mechanisms remain largely undefined. RIN13 (RPM1-interacting protein 13) was previously reported to enhance disease resistance, and suppress RPM1 (a CNL-type NLR)-mediated hypersensitive response in Arabidopsis via an as yet unknown mechanism. Here, we show that RIN13 is a nuclear-localized protein, and functions therein. Overexpression of RIN13 leads to autoimmunity with high accumulation of salicylic acid (SA), constitutive expression of pathogenesis-related genes, enhanced resistance to a virulent pathogen, and dwarfism. In addition, genetic and transcriptome analyses show that SA-dependent and SA-independent pathways are both required for RIN13-mediated disease resistance, with the EDS1/PAD4 complex as an integration point. RIN13-induced dwarfism was rescued completely by either the pad4-1 or the eds1-2 mutant but partially by snc1-r1, a mutant of the TNL gene SNC1, suggesting the involvement of EDS1/PAD4 and SNC1 in RIN13 functioning. Furthermore, transient expression assays indicated that RIN13 promotes the nuclear accumulation of PAD4. Collectively, our study uncovered a signaling pathway whereby SNC1 and EDS1/PAD4 act together to modulate RIN13-triggered plant defense responses.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing He
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Siyuan Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Han
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhangying Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Cheng Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Sun Y, Zhu YX, Balint-Kurti PJ, Wang GF. Fine-Tuning Immunity: Players and Regulators for Plant NLRs. TRENDS IN PLANT SCIENCE 2020; 25:695-713. [PMID: 32526174 DOI: 10.1016/j.tplants.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated innate immune system to defend against pathogen infection, and intracellular nucleotide-binding, leucine-rich repeat (NLR or NB-LRR) immune receptors are one of the main components of this system. NLR activity is fine-tuned by intra- and intermolecular interactions. We survey what is known about the conservation and diversity of NLR-interacting proteins, and divide them into seven major categories. We discuss the molecular mechanisms by which NLR activities are regulated and how understanding this regulation has potential to facilitate the engineering of NLRs for crop improvement.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA; US Department of Agriculture Agricultural Research Service, Plant Science Research Unit, Raleigh, NC 27695, USA
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
5
|
Liu X, Liu H, Liu WC, Gao Z. The nuclear localized RIN13 induces cell death through interacting with ARF1. Biochem Biophys Res Commun 2020; 527:124-130. [PMID: 32446355 DOI: 10.1016/j.bbrc.2020.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Resistance to Pseudomonas syringae pv. Maculicola 1 (RPM1) is a crucial immune receptor conferring plant enhanced resistance to pathogenic bacteria. RPM1-interacting protein 13 (RIN13) enhances RPM1-mediated disease resistance through interacting with the central domain of RPM1 in Arabidopsis, while the underlying mechanism remains elusive. Here, we report the subcellular localization and function of RIN13 using the Nicotiana benthamiana (N. benthamiana) transient expression system. Our results showed that RIN13 is exclusively localized in the nucleus, and RIN13 (231-300) fragment is responsible for its nuclear localization. Transient expression of RIN13 in N. benthamiana leaves can accelerate leaf senescence and cell death, and affect the activities of ROS-scavenging enzymes, and the C-terminus of RIN13 is crucial for its function. Furthermore, we identified a RIN13-interacting protein, Auxin Response Factor 1 (ARF1), and found that similar to RIN13, ARF1 can also promote leaf senescence and cell death. In addition, expression of RIN13 in N. benthamiana leaves can facilitate the translocation of ARF1 into the nucleus. Collectively, our study revealed a possible mechanism of RIN13 in accelerating leaf senescence and cell death by changing the subcellular localization of ARF1.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Cheng Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Balint‐Kurti P. The plant hypersensitive response: concepts, control and consequences. MOLECULAR PLANT PATHOLOGY 2019; 20:1163-1178. [PMID: 31305008 PMCID: PMC6640183 DOI: 10.1111/mpp.12821] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.
Collapse
Affiliation(s)
- Peter Balint‐Kurti
- Plant Science Research UnitUSDA‐ARSRaleighNCUSA
- Department of Entomology and Plant PathologyNC State UniversityRaleighNC27695‐7613USA
| |
Collapse
|
7
|
Coolen S, Van Pelt JA, Van Wees SCM, Pieterse CMJ. Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses. PLANTA 2019; 249:1087-1105. [PMID: 30547240 DOI: 10.1007/s00425-018-3065-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
In this genome-wide association study, we obtained novel insights into the genetic basis of the effect of herbivory or drought stress on the level of resistance against the fungus Botrytis cinerea. In nature, plants function in complex environments where they encounter different biotic and abiotic stresses individually, sequentially or simultaneously. The adaptive response to a single stress does not always reflect how plants respond to such a stress in combination with other stresses. To identify genetic factors that contribute to the plant's ability to swiftly adapt to different stresses, we investigated the response of Arabidopsis thaliana to infection by the necrotrophic fungus B. cinerea when preceded by Pieris rapae herbivory or drought stress. Using 346 natural A. thaliana accessions, we found natural genetic variation in the level of resistance against single B. cinerea infection. When preceded by herbivory or drought stress, the level of B. cinerea resistance was differentially influenced in the 346 accessions. To study the genetic factors contributing to the differential adaptation of A. thaliana to B. cinerea infection under multi-stress conditions, we performed a genome-wide association study supported by quantitative trait loci mapping and fine mapping with full genome sequences of 164 accessions. This yielded several genes previously associated with defense to B. cinerea and additional candidate genes with putative roles in the plant's adaptive response to a combination of herbivory, drought and B. cinerea infection.
Collapse
Affiliation(s)
- Silvia Coolen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Lukan T, Baebler Š, Pompe-Novak M, Guček K, Zagorščak M, Coll A, Gruden K. Cell Death Is Not Sufficient for the Restriction of Potato Virus Y Spread in Hypersensitive Response-Conferred Resistance in Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:168. [PMID: 29497431 PMCID: PMC5818463 DOI: 10.3389/fpls.2018.00168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/30/2018] [Indexed: 05/25/2023]
Abstract
Hypersensitive response (HR)-conferred resistance to viral infection restricts the virus spread and is accompanied by the induction of cell death, manifested as the formation of necrotic lesions. While it is known that salicylic acid is the key component in the orchestration of the events restricting viral spread in HR, the exact function of the cell death in resistance is still unknown. We show that potato virus Y (PVY) can be detected outside the cell death zone in Ny-1-mediated HR in potato plants (cv. Rywal), observed as individual infected cells or small clusters of infected cells outside the cell death zone. By exploiting the features of temperature dependent Ny-1-mediated resistance, we confirmed that the cells at the border of the cell death zone are alive and harbor viable PVY that is able to reinitiate infection. To get additional insights into this phenomenon we further studied the dynamics of both cell death zone expansion and occurrence of viral infected cell islands outside it. We compared the response of Rywal plants to their transgenic counterparts, impaired in SA accumulation (NahG-Rywal), where the lesions occur but the spread of the virus is not restricted. We show that the virus is detected outside the cell death zone in all lesion developmental stages of HR lesions. We also measured the dynamics of lesions expansion in both genotypes. We show that while rapid lesion expansion is observed in SA-depleted plants, virus spread is even faster. On the other hand the majority of analyzed lesions slowly expand also in HR-conferred resistance opening the possibility that the infected cells are eventually engulfed by cell death zone. Taken altogether, we suggest that the HR cell death is separated from the resistance mechanisms which lead to PVY restriction in Ny-1 genetic background. We propose that HR should be regarded as a process where the dynamics of events is crucial for effectiveness of viral arrest albeit the exact mechanism conferring this resistance remains unknown.
Collapse
Affiliation(s)
- Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Guček
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
9
|
Roy S, Nandi AK. Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. PLANT MOLECULAR BIOLOGY 2017; 93:109-120. [PMID: 27900506 DOI: 10.1007/s11103-016-0550-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) oxidize methionine to methionine sulfoxide (MetSO) and thereby inactivate proteins. Methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Our results show that Arabidopsis thaliana MSR enzyme coding gene MSRB8 is required for effector-triggered immunity and containment of stress-induced cell death in Arabidopsis. Plants activate pattern-triggered immunity (PTI), a basal defense, upon recognition of evolutionary conserved molecular patterns present in the pathogens. Pathogens release effector molecules to suppress PTI. Recognition of certain effector molecules activates a strong defense, known as effector-triggered immunity (ETI). ETI induces high-level accumulation of reactive oxygen species (ROS) and hypersensitive response (HR), a rapid programmed death of infected cells. ROS oxidize methionine to methionine sulfoxide (MetSO), rendering several proteins nonfunctional. The methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Though a few plant MSR genes are known to provide tolerance against oxidative stress, their role in plant-pathogen interaction is not known. We report here that activation of cell death by avirulent pathogen or UV treatment induces expression of MSRB7 and MSRB8 genes. The T-DNA insertion mutant of MSRB8 exaggerates HR-associated and UV-induced cell death and accumulates a higher level of ROS than wild-type plants. The negative regulatory role of MSRB8 in HR is further supported by amiRNA and overexpression lines. Mutants and overexpression lines of MSRB8 are susceptible and resistant respectively, compared to the wild-type plants, against avirulent strains of Pseudomonas syringae pv. tomato DC3000 (Pst) carrying AvrRpt2, AvrB, or AvrPphB genes. However, the MSRB8 gene does not influence resistance against virulent Pst or P. syringae pv. maculicola (Psm) pathogens. Our results altogether suggest that MSRB8 function is required for ETI and containment of stress-induced cell death in Arabidopsis.
Collapse
Affiliation(s)
- Shweta Roy
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Guy E, Lautier M, Chabannes M, Roux B, Lauber E, Arlat M, Noël LD. xopAC-triggered immunity against Xanthomonas depends on Arabidopsis receptor-like cytoplasmic kinase genes PBL2 and RIPK. PLoS One 2013; 8:e73469. [PMID: 23951354 PMCID: PMC3739749 DOI: 10.1371/journal.pone.0073469] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/23/2013] [Indexed: 12/22/2022] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) colonizes the vascular system of Brassicaceae and ultimately causes black rot. In susceptible Arabidopsis plants, XopAC type III effector inhibits by uridylylation positive regulators of the PAMP-triggered immunity such as the receptor-like cytoplasmic kinases (RLCK) BIK1 and PBL1. In the resistant ecotype Col-0, xopAC is a major avirulence gene of Xcc. In this study, we show that both the RLCK interaction domain and the uridylyl transferase domain of XopAC are required for avirulence. Furthermore, xopAC can also confer avirulence to both the vascular pathogen Ralstonia solanacearum and the mesophyll-colonizing pathogen Pseudomonas syringae indicating that xopAC-specified effector-triggered immunity is not specific to the vascular system. In planta, XopAC-YFP fusions are localized at the plasma membrane suggesting that XopAC might interact with membrane-localized proteins. Eight RLCK of subfamily VII predicted to be localized at the plasma membrane and interacting with XopAC in yeast two-hybrid assays have been isolated. Within this subfamily, PBL2 and RIPK RLCK genes but not BIK1 are important for xopAC-specified effector-triggered immunity and Arabidopsis resistance to Xcc.
Collapse
Affiliation(s)
- Endrick Guy
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Castanet-Tolosan, France
| | - Martine Lautier
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Matthieu Chabannes
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Castanet-Tolosan, France
| | - Brice Roux
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Castanet-Tolosan, France
| | - Matthieu Arlat
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Laurent D. Noël
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
11
|
Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang JF, Balint-Kurti P, Shyu CR. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. PLANT METHODS 2012; 8:45. [PMID: 23131141 PMCID: PMC3546069 DOI: 10.1186/1746-4811-8-45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/31/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Accurate characterization of complex plant phenotypes is critical to assigning biological functions to genes through forward or reverse genetics. It can also be vital in determining the effect of a treatment, genotype, or environmental condition on plant growth or susceptibility to insects or pathogens. Although techniques for characterizing complex phenotypes have been developed, most are not cost effective or are too imprecise or subjective to reliably differentiate subtler differences in complex traits like growth, color change, or disease resistance. RESULTS We designed an inexpensive imaging protocol that facilitates automatic quantification of two-dimensional visual phenotypes using computer vision and image processing algorithms applied to standard digital images. The protocol allows for non-destructive imaging of plants in the laboratory and field and can be used in suboptimal imaging conditions due to automated color and scale normalization. We designed the web-based tool PhenoPhyte for processing images adhering to this protocol and demonstrate its ability to measure a variety of two-dimensional traits (such as growth, leaf area, and herbivory) using images from several species (Arabidopsis thaliana and Brassica rapa). We then provide a more complicated example for measuring disease resistance of Zea mays to Southern Leaf Blight. CONCLUSIONS PhenoPhyte is a new cost-effective web-application for semi-automated quantification of two-dimensional traits from digital imagery using an easy imaging protocol. This tool's usefulness is demonstrated for a variety of traits in multiple species. We show that digital phenotyping can reduce human subjectivity in trait quantification, thereby increasing accuracy and improving precision, which are crucial for differentiating and quantifying subtle phenotypic variation and understanding gene function and/or treatment effects.
Collapse
Affiliation(s)
- Jason M Green
- Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Heidi Appel
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
- 371 Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Erin MacNeal Rehrig
- Biology/Chemistry Department, Fitchburg State University, Fitchburg, MA, 01420, USA
| | | | - Jia-Fu Chang
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Peter Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chi-Ren Shyu
- Informatics Institute & Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
12
|
Lukasik-Shreepaathy E, Vossen JH, Tameling WIL, de Vroomen MJ, Cornelissen BJC, Takken FLW. Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3047-60. [PMID: 22345637 PMCID: PMC3350919 DOI: 10.1093/jxb/ers021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 05/25/2023]
Abstract
Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum f. sp. lycopersici resistance protein of the CC-NB-LRR family, were identified. Sequence analysis revealed that I2I-1 belongs to the Formin gene family (SlFormin) whereas I2I-2 has homology to translin-associated protein X (SlTrax). SlFormin required only the N-terminal CC I-2 domain for binding, whereas SlTrax required both I-2 CC and part of the NB-ARC domain. Tomato plants stably silenced for these interactors were not compromised in I-2-mediated disease resistance. When extended or mutated forms of I-2 were used as baits, distinct and often opposite, interaction patterns with the two interactors were observed. These interaction patterns correlated with the proposed activation state of I-2 implying that active and inactive R proteins adopt distinct conformations. It is concluded that the yeast two hybrid system can be used as a proxy to monitor these different conformational states.
Collapse
|
13
|
Geng X, Mackey D. Dose-response to and systemic movement of dexamethasone in the GVG-inducible transgene system in Arabidopsis. Methods Mol Biol 2011; 712:59-68. [PMID: 21359800 DOI: 10.1007/978-1-61737-998-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Construction of transgenic plants is central to modern plant molecular genetics. Inducible systems permit spatial and temporal control of transgene expression. One commonly used inducible system relies on the use of dexamethasone to activate an endogenously expressed hybrid transcription factor, which positively regulates the expression of the gene of interest (Aoyama and Chua, Plant J 11:605-612, 1997). We have developed Arabidopsis plants using this inducible system to drive expression of a bacterial type III effector protein. The effector, AvrRpm1, elicits either strong cell death or weak cell death and chlorosis depending on the genetic background of the plant. Using these reagents, we examine several properties of the inducible system in Arabidopsis, including the timing of induction, the ability to tune the level of transgene expression by altering the concentration of applied dexamethasone, and the movement of dexamethasone within the plant.
Collapse
Affiliation(s)
- Xueqing Geng
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
14
|
Kawano Y, Akamatsu A, Hayashi K, Housen Y, Okuda J, Yao A, Nakashima A, Takahashi H, Yoshida H, Wong HL, Kawasaki T, Shimamoto K. Activation of a Rac GTPase by the NLR Family Disease Resistance Protein Pit Plays a Critical Role in Rice Innate Immunity. Cell Host Microbe 2010; 7:362-75. [DOI: 10.1016/j.chom.2010.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 02/01/2010] [Accepted: 04/22/2010] [Indexed: 12/21/2022]
|
15
|
Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E. The hypersensitive response; the centenary is upon us but how much do we know? JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:501-20. [PMID: 18079135 DOI: 10.1093/jxb/erm239] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
With the centenary of the first descriptions of 'hypersensitiveness' following pathogenic challenge upon us, it is appropriate to assess our current understanding of the hypersensitive response (HR) form of cell death. In recent decades our understanding of the initiation, associated signalling, and some important proteolytic events linked to the HR has dramatically increased. Genetic approaches are increasingly elucidating the function of the HR initiating resistance genes and there have been extensive analyses of death-associated signals, calcium, reactive oxygen species (ROS), nitric oxide, salicylic acid, and now sphingolipids. At the same time, attempts to draw parallels between mammalian apoptosis and the HR have been largely unsuccessful and it may be better to consider the HR to be a distinctive form of plant cell death. We will consider if the HR form of cell death may occur through metabolic dysfunction in which malfunctioning organelles may play a major role. This review will highlight that although our knowledge of parts of the HR is excellent, a comprehensive molecular model is still to be attained.
Collapse
Affiliation(s)
- Luis A J Mur
- University of Wales Aberystwyth, Institute of Biological Sciences, Aberystwyth, Ceredigion SY23 2DA, UK.
| | | | | | | | | |
Collapse
|
16
|
Schmidt SA, Williams SJ, Wang CIA, Sornaraj P, James B, Kobe B, Dodds PN, Ellis JG, Anderson PA. Purification of the M flax-rust resistance protein expressed in Pichia pastoris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1107-17. [PMID: 17461785 DOI: 10.1111/j.1365-313x.2007.03104.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The M flax-rust resistance (R) gene is predicted to encode a 150-kDa protein of the Toll-interleukin-like receptor-nucleotide binding site-leucine rich repeat (TIR-NBS-LRR) class of plant disease resistance proteins and provides resistance against the Melampsora lini (flax rust) fungus carrying the AvrM avirulence gene. The extremely low level of this class of R proteins found in plant tissue has precluded their biochemical and structural analysis, and the study of these proteins has been largely restricted to genetic analyses and in vivo investigations. Here we report the production and purification of the M protein in the methalotrophic yeast, Pichia pastoris. Expression trials with five different constructs reveals optimum levels of soluble native M protein can be obtained as an N-terminally 9x His-tagged protein, in which the first 21 amino acids of the predicted wild-type protein are deleted. Expression was achieved using a high cell density fed-batch bioreactor culture at low temperature. M protein was purified to near homogeneity from whole-cell lysates using cation exchange, immobilised metal ion affinity chromatography and gel filtration with a final yield of approximately 3 mg of protein/1000 g wet weight of yeast cells lysed. The successful expression and purification of soluble M protein opens the way for biochemical and structural analysis of this class of important plant proteins.
Collapse
Affiliation(s)
- Simon A Schmidt
- The School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ahn IP, Kim S, Lee YH, Suh SC. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:838-48. [PMID: 17158583 PMCID: PMC1803731 DOI: 10.1104/pp.106.092627] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Thiamine confers systemic acquired resistance (SAR) on susceptible plants through priming, leading to rapid counterattack against pathogen invasion and perturbation of disease progress. Priming reduces the metabolic cost required for constitutive expression of acquired resistance. To investigate the effects of priming by thiamine on defense-related responses, Arabidopsis (Arabidopsis thaliana) was treated with thiamine and effects of pathogen challenge on the production of active oxygen species, callose deposition, hypersensitive cell death, and pathogenesis-related 1 (PR1)/Phe ammonia-lyase 1 (PAL1) gene expression was analyzed. Thiamine did not induce cellular and molecular defense responses except for transient expression of PR1 per se; however, subsequent Pseudomonas syringae pv tomato challenge triggered pronounced cellular defense responses and advanced activation of PR1/PAL1 gene transcription. Thiamine treatment and subsequent pathogen invasion triggered hydrogen peroxide accumulation, callose induction, and PR1/PAL1 transcription activation in Arabidopsis mutants insensitive to jasmonic acid (jar1), ethylene (etr1), or abscisic acid (abi3-3), but not in plants expressing bacterial NahG and lacking regulation of SAR (npr1 [nonexpressor of PR genes 1]). Moreover, removal of hydrogen peroxide by catalase almost completely nullified cellular and molecular defense responses as well as SAR abolishing bacterial propagation within plants. Our results indicated that priming is an important cellular mechanism in SAR by thiamine and requires hydrogen peroxide and intact NPR1.
Collapse
Affiliation(s)
- Il-Pyung Ahn
- National Institute of Agricultural Biotechnology, Suwon 441-100, Korea.
| | | | | | | |
Collapse
|
18
|
Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci U S A 2007; 104:1075-80. [PMID: 17215350 PMCID: PMC1783366 DOI: 10.1073/pnas.0605423104] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Indexed: 12/22/2022] Open
Abstract
In the absence of adaptive immunity displayed by animals, plants respond locally to biotic challenge via inducible basal defense networks activated through recognition and response to conserved pathogen-associated molecular patterns. In addition, immunity can be induced in tissues remote from infection sites by systemic acquired resistance (SAR), initiated after gene-for-gene recognition between plant resistance proteins and microbial effectors. The nature of the mobile signal and remotely activated networks responsible for establishing SAR remain unclear. Salicylic acid (SA) participates in the local and systemic response, but SAR does not require long-distance translocation of SA. Here, we show that, despite the absence of pathogen-associated molecular pattern contact, systemically responding leaves rapidly activate a SAR transcriptional signature with strong similarity to local basal defense. We present several lines of evidence that suggest jasmonates are central to systemic defense, possibly acting as the initiating signal for classic SAR. Jasmonic acid (JA), but not SA, rapidly accumulates in phloem exudates of leaves challenged with an avirulent strain of Pseudomonas syringae. In systemically responding leaves, transcripts associated with jasmonate biosynthesis are up-regulated within 4 h, and JA increases transiently. SAR can be mimicked by foliar JA application and is abrogated in mutants impaired in jasmonate synthesis or response. We conclude that jasmonate signaling appears to mediate long-distance information transmission. Moreover, the systemic transcriptional response shares extraordinary overlap with local herbivory and wounding responses, indicating that jasmonates may be pivotal to an evolutionarily conserved signaling network that decodes multiple abiotic and biotic stress signals.
Collapse
Affiliation(s)
- William Truman
- *School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Division of Biology, Imperial College London, Wye Campus, Wye TN25 5AH, United Kingdom; and
| | - Mark H. Bennett
- Division of Biology, Imperial College London, Wye Campus, Wye TN25 5AH, United Kingdom; and
| | - Ines Kubigsteltig
- Lehrstuhl für Pflanzenphysiologie der Ruhr-Universität, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Colin Turnbull
- Division of Biology, Imperial College London, Wye Campus, Wye TN25 5AH, United Kingdom; and
| | - Murray Grant
- *School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Division of Biology, Imperial College London, Wye Campus, Wye TN25 5AH, United Kingdom; and
| |
Collapse
|
19
|
Chaerle L, Leinonen I, Jones HG, Van Der Straeten D. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:773-84. [PMID: 17189594 DOI: 10.1093/jxb/erl257] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Thermal and chlorophyll fluorescence imaging are powerful tools for the study of spatial and temporal heterogeneity of leaf transpiration and photosynthetic performance. The relative advantages and disadvantages of these techniques are discussed. When combined, they can highlight pre-symptomatic responses not yet apparent in visual spectrum images and provide specific signatures for diagnosis of distinct diseases and abiotic stresses. In addition, their use for diagnosis and for selection for stomatal or photosynthetic mutants, these techniques can be applied for stress tolerance screening. For example, rapid screening for stomatal responses can be achieved by thermal imaging, while, combined with fluorescence imaging to study photosynthesis, they can potentially be used to derive leaf water use efficiency as a screening parameter. A particular advantage of imaging is that it allows continuous automated monitoring of dynamic spatial variation. Examples of applications include the study of growth and development of plant lines differing in stress resistance, yield, circadian clock-controlled responses, and the possible interactions between these parameters. In the future, such dual-imaging systems could be extended with complementary techniques such as hyperspectral and blue-green fluorescence imaging. This would result in an increased number of quantified parameters which will increase the power of stress diagnosis and the potential for screening of stress-tolerant genotypes.
Collapse
Affiliation(s)
- Laury Chaerle
- Unit of Plant Hormone Signalling and Bio-imaging, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | |
Collapse
|
20
|
Kawasaki T, Nam J, Boyes DC, Holt BF, Hubert DA, Wiig A, Dangl JL. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:258-70. [PMID: 16212605 DOI: 10.1111/j.1365-313x.2005.02525.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis RPM1 protein confers resistance to disease caused by Pseudomonas syringae strains delivering either the AvrRpm1 or AvrB type III effector proteins into host cells. We characterized two closely related RPM1-interacting proteins, RIN2 and RIN3. RIN2 and RIN3 encode RING-finger type ubiquitin ligases with six apparent transmembrane domains and an ubiquitin-binding CUE domain. RIN2 and RIN3 are orthologs of the mammalian autocrine motility factor receptor, a cytokine receptor localized in both plasma membrane caveolae and the endoplasmic reticulum. RIN2 is predominantly localized to the plasma membrane, as are RPM1 and RPS2. The C-terminal regions of RIN2 and RIN3, including the CUE domain, interact strongly with an RPM1 N-terminal fragment and weakly with a similar domain from the Arabidopsis RPS2 protein. RIN2 and RIN3 can dimerize through their C-terminal regions. The RING-finger domains of RIN2 and RIN3 encode ubiquitin ligases. Inoculation with P. syringae DC3000(avrRpm1) or P. syringae DC3000(avrRpt2) induces differential decreases of RIN2 mobility in SDS-PAGE and disappearance of the majority of RIN2. A rin2 rin3 double mutant expresses diminished RPM1- and RPS2-dependent hypersensitive response (HR), but no alteration of pathogen growth. Thus, the RIN2/RIN3 RING E3 ligases apparently act on a substrate that regulates RPM1- and RPS2-dependent HR.
Collapse
Affiliation(s)
- Tsutomu Kawasaki
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Mansfield JW. Biophoton distress flares signal the onset of the hypersensitive reaction. TRENDS IN PLANT SCIENCE 2005; 10:307-9. [PMID: 15951222 DOI: 10.1016/j.tplants.2005.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 04/27/2005] [Accepted: 05/26/2005] [Indexed: 05/02/2023]
Abstract
Detection of biophoton emission, a natural bioluminescence, has emerged as a non-destructive method to mark the onset of the hypersensitive resistance reaction in Arabidopsis, bean and tomato. Rapid biophoton emission in Arabidopsis requires an intact R-gene signalling network and increased levels of cytosolic calcium and nitric oxide. The burst of biophotons precedes macroscopic symptoms by several hours and its timing is characteristic for specific gene-for-gene interactions. The ability to monitor biophoton emission from whole plants in real time should allow detailed dissection of plant defence responses.
Collapse
Affiliation(s)
- John W Mansfield
- Imperial College, Division of Biology, Wye Campus, Ashford, Kent, UK TN25 5AH.
| |
Collapse
|