1
|
Scholtysek L, Poetsch A, Hofmann E, Hemschemeier A. The activation of Chlamydomonas reinhardtii alpha amylase 2 by glutamine requires its N-terminal aspartate kinase-chorismate mutase-tyrA (ACT) domain. PLANT DIRECT 2024; 8:e609. [PMID: 38911017 PMCID: PMC11190351 DOI: 10.1002/pld3.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The coordination of assimilation pathways for all the elements that make up cellular components is a vital task for every organism. Integrating the assimilation and use of carbon (C) and nitrogen (N) is of particular importance because of the high cellular abundance of these elements. Starch is one of the most important storage polymers of photosynthetic organisms, and a complex regulatory network ensures that biosynthesis and degradation of starch are coordinated with photosynthetic activity and growth. Here, we analyzed three starch metabolism enzymes of Chlamydomonas reinhardtii that we captured by a cyclic guanosine monophosphate (cGMP) affinity chromatography approach, namely, soluble starch synthase STA3, starch-branching enzyme SBE1, and α-amylase AMA2. While none of the recombinant enzymes was directly affected by the presence of cGMP or other nucleotides, suggesting an indirect binding to cGMP, AMA2 activity was stimulated in the presence of L-glutamine (Gln). This activating effect required the enzyme's N-terminal aspartate kinase-chorismate mutase-tyrA domain. Gln is the first N assimilation product and not only a central compound for the biosynthesis of N-containing molecules but also a recognized signaling molecule for the N status. Our observation suggests that AMA2 might be a means to coordinate N and C metabolism at the enzymatic level, increasing the liberation of C skeletons from starch when high Gln levels signal an abundance of assimilated N.
Collapse
Affiliation(s)
- Lisa Scholtysek
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Ansgar Poetsch
- Faculty of Biology and Biotechnology, Department for Plant BiochemistryRuhr University BochumBochumGermany
- School of Basic Medical SciencesNanchang UniversityNanchangChina
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, Protein CrystallographyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
2
|
Amala M, Nagarajan H, Ahila M, Nachiappan M, Veerapandiyan M, Vetrivel U, Jeyakanthan J. Unveiling the intricacies of allosteric regulation in aspartate kinase from the Wolbachia endosymbiont of Brugia Malayi: Mechanistic and therapeutic insights. Int J Biol Macromol 2024; 267:131326. [PMID: 38569988 DOI: 10.1016/j.ijbiomac.2024.131326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.
Collapse
Affiliation(s)
- Mathimaran Amala
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Mathimaran Ahila
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Mutharasappan Nachiappan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110 067, India
| | - Malaisamy Veerapandiyan
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu 600 031, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
3
|
Fang H, Shan T, Gu H, Chen J, Qi Y, Li Y, Saeed M, Yuan J, Li P, Wang B. Identification and characterization of ACR gene family in maize for salt stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1381056. [PMID: 38745920 PMCID: PMC11091409 DOI: 10.3389/fpls.2024.1381056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Background Members of the ACR gene family are commonly involved in various physiological processes, including amino acid metabolism and stress responses. In recent decades, significant progress has been made in the study of ACR genes in plants. However, little is known about their characteristics and function in maize. Methods In this study, ACR genes were identified from the maize genome, and their molecular characteristics, gene structure, gene evolution, gene collinearity analysis, cis-acting elements were analyzed. qRT-PCR technology was used to verify the expression patterns of the ZmACR gene family in different tissues under salt stress. In addition, Ectopic expression technique of ZmACR5 in Arabidopsis thaliana was utilized to identify its role in response to salt stress. Results A total of 28 ZmACR genes were identified, and their molecular characteristics were extensively described. Two gene pairs arising from segmented replication events were detected in maize, and 18 collinear gene pairs were detected between maize and 3 other species. Through phylogenetic analysis, three subgroups were revealed, demonstrating distinct divergence between monocotyledonous and dicotyledonous plants. Analysis of ZmACR cis-acting elements revealed the optional involvement of ZmACR genes in light response, hormone response and stress resistance. Expression analysis of 8 ZmACR genes under salt treatment clearly revealed their role in the response to salt stress. Ectopic overexpression of ZmACR5 in Arabidopsis notably reduced salt tolerance compared to that of the wild type under salt treatment, suggesting that ZmACR5 has a negative role in the response to salt stress. Conclusion Taken together, these findings confirmed the involvement of ZmACR genes in regulating salt stress and contributed significantly to our understanding of the molecular function of ACR genes in maize, facilitating further research in this field.
Collapse
Affiliation(s)
- Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Tingyu Shan
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Haijing Gu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Junyu Chen
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yingxiao Qi
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yexiong Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Muhammad Saeed
- Department of Agricultural Sciences, Government College University, Faisalabad, Pakistan
| | | | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Isogai S, Nishimura A, Inoue A, Sonohara S, Tsugukuni T, Okada T, Takagi H. Functional analysis of feedback inhibition-insensitive aspartate kinase identified in a threonine-accumulating mutant of Saccharomyces cerevisiae. Appl Environ Microbiol 2024; 90:e0015524. [PMID: 38456673 PMCID: PMC11022571 DOI: 10.1128/aem.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Humans and mammals need to ingest essential amino acids (EAAs) for protein synthesis. In addition to their importance as nutrients, EAAs are involved in brain homeostasis. However, elderly people are unable to efficiently consume EAAs from their daily diet due to reduced appetite and variations in the contents of EAAs in foods. On the other hand, strains of the yeast Saccharomyces cerevisiae that accumulate EAAs would enable elderly people to intakegest adequate amounts of EAAs and thus might slow down the neurodegenerative process, contributing to the extension of their healthy lifespan. In this study, we isolated a mutant (strain HNV-5) that accumulates threonine, an EAA, derived from a diploid laboratory yeast by conventional mutagenesis. Strain HNV-5 carries a novel mutation in the HOM3 gene encoding the Ala462Thr variant of aspartate kinase (AK). Enzymatic analysis revealed that the Ala462Thr substitution significantly decreased the sensitivity of AK activity to threonine feedback inhibition even in the presence of 50 mM threonine. Interestingly, Ala462Thr substitution did not affect the catalytic ability of Hom3, in contrast to previously reported amino acid substitutions that resulted in reduced sensitivity to threonine feedback inhibition. Furthermore, yeast cells expressing the Ala462Thr variant showed an approximately threefold increase in intracellular threonine content compared to that of the wild-type Hom3. These findings will be useful for the development of threonine-accumulating yeast strains that may improve the quality of life in elderly people.IMPORTANCEFor humans and mammals, essential amino acids (EAAs) play an important role in maintaining brain function. Therefore, increasing the intake of EAAs by using strains of the yeast Saccharomyces cerevisiae that accumulate EAAs may inhibit neurodegeneration in elderly people and thus contribute to extending healthy lifespan and improving their quality of life. Threonine, an EAA, is synthesized from aspartate. Aspartate kinase (AK) catalyzes the first step in threonine biosynthesis and is subject to allosteric regulation by threonine. Here, we isolated a threonine-accumulating mutant of S. cerevisiae by conventional mutagenesis and identified a mutant gene encoding a novel variant of AK. In contrast to previously isolated variants, the Hom3 variant exhibited AK activity that was insensitive to feedback inhibition by threonine but retained its catalytic ability. This resulted in increased production of threonine in yeast. These findings open up the possibility for the rational design of AK to increase threonine productivity in yeast.
Collapse
Affiliation(s)
- Shota Isogai
- Institute for Research Initiative, Nara Institute of Science and Technology, Takayama, Nara, Japan
| | - Akira Nishimura
- Institute for Research Initiative, Nara Institute of Science and Technology, Takayama, Nara, Japan
| | - Akiko Inoue
- Institute for Research Initiative, Nara Institute of Science and Technology, Takayama, Nara, Japan
| | - Shino Sonohara
- Plant Bio Business Unit, Musashi Seimitsu Industry Co., Ltd., Toyohashi, Aichi, Japan
| | - Takashi Tsugukuni
- Plant Bio Business Unit, Musashi Seimitsu Industry Co., Ltd., Toyohashi, Aichi, Japan
| | - Tomoyuki Okada
- Plant Bio Business Unit, Musashi Seimitsu Industry Co., Ltd., Toyohashi, Aichi, Japan
| | - Hiroshi Takagi
- Institute for Research Initiative, Nara Institute of Science and Technology, Takayama, Nara, Japan
| |
Collapse
|
5
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
6
|
Tan C, Qiao H, Ma M, Wang X, Tian Y, Bai S, Hasi A. Genome-Wide Identification and Characterization of Melon bHLH Transcription Factors in Regulation of Fruit Development. PLANTS 2021; 10:plants10122721. [PMID: 34961193 PMCID: PMC8709311 DOI: 10.3390/plants10122721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor families in plants and plays crucial roles in plant development. Melon is an important horticultural plant as well as an attractive model plant for studying fruit ripening. However, the bHLH gene family of melon has not yet been identified, and its functions in fruit growth and ripening are seldom researched. In this study, 118 bHLH genes were identified in the melon genome. These CmbHLH genes were unevenly distributed on chromosomes 1 to 12, and five CmbHLHs were tandem repeat on chromosomes 4 and 8. There were 13 intron distribution patterns among the CmbHLH genes. Phylogenetic analysis illustrated that these CmbHLHs could be classified into 16 subfamilies. Expression patterns of the CmbHLH genes were studied using transcriptome data. Tissue specific expression of the CmbHLH32 gene was analysed by quantitative RT-PCR. The results showed that the CmbHLH32 gene was highly expressed in female flower and early developmental stage fruit. Transgenic melon lines overexpressing CmbHLH32 were generated, and overexpression of CmbHLH32 resulted in early fruit ripening compared to wild type. The CmbHLH transcription factor family was identified and analysed for the first time in melon, and overexpression of CmbHLH32 affected the ripening time of melon fruit. These findings laid a foundation for further study on the role of bHLH family members in the growth and development of melon.
Collapse
Affiliation(s)
- Chao Tan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (C.T.); (H.Q.); (M.M.); (Y.T.)
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Huilei Qiao
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (C.T.); (H.Q.); (M.M.); (Y.T.)
| | - Ming Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (C.T.); (H.Q.); (M.M.); (Y.T.)
| | - Xue Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Yunyun Tian
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (C.T.); (H.Q.); (M.M.); (Y.T.)
| | - Selinge Bai
- Medical College, Inner Mongolia MINZU University, Tongliao 028000, China
- Correspondence: (S.B.); (A.H.)
| | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (C.T.); (H.Q.); (M.M.); (Y.T.)
- Correspondence: (S.B.); (A.H.)
| |
Collapse
|
7
|
Kim DH, Nguyen QT, Ko, GS, Yang JK. Molecular and Enzymatic Features of Homoserine Dehydrogenase from Bacillus subtilis. J Microbiol Biotechnol 2020; 30:1905-1911. [PMID: 33046675 PMCID: PMC9728202 DOI: 10.4014/jmb.2004.04060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Homoserine dehydrogenase (HSD) catalyzes the reversible conversion of L-aspartate-4- semialdehyde to L-homoserine in the aspartate pathway for the biosynthesis of lysine, methionine, threonine, and isoleucine. HSD has attracted great attention for medical and industrial purposes due to its recognized application in the development of pesticides and is being utilized in the large scale production of L-lysine. In this study, HSD from Bacillus subtilis (BsHSD) was overexpressed in Escherichia coli and purified to homogeneity for biochemical characterization. We examined the enzymatic activity of BsHSD for L-homoserine oxidation and found that BsHSD exclusively prefers NADP+ to NAD+ and that its activity was maximal at pH 9.0 and in the presence of 0.4 M NaCl. By kinetic analysis, Km values for L-homoserine and NADP+ were found to be 35.08 ± 2.91 mM and 0.39 ± 0.05 mM, respectively, and the Vmax values were 2.72 ± 0.06 μmol/min-1 mg-1 and 2.79 ± 0.11 μmol/min-1 mg-1, respectively. The apparent molecular mass determined with size-exclusion chromatography indicated that BsHSD forms a tetramer, in contrast to the previously reported dimeric HSDs from other organisms. This novel oligomeric assembly can be attributed to the additional C-terminal ACT domain of BsHSD. Thermal denaturation monitoring by circular dichroism spectroscopy was used to determine its melting temperature, which was 54.8°C. The molecular and biochemical features of BsHSD revealed in this study may lay the foundation for future studies on amino acid metabolism and its application for industrial and medical purposes.
Collapse
Affiliation(s)
- Do Hyeon Kim
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Quyet Thang Nguyen
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea,Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Gyeong Soo Ko,
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea,Corresponding author Phone: +82-2-820-0433 Fax: +82-2-824-4383 E-mail:
| |
Collapse
|
8
|
Eisa A, Bölter B, Schwenkert S. The ACT domain in chloroplast precursor-phosphorylating STY kinases binds metabolites and allosterically regulates kinase activity. J Biol Chem 2019; 294:17278-17288. [PMID: 31594863 DOI: 10.1074/jbc.ra119.010298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Indexed: 11/06/2022] Open
Abstract
Protein import of nucleus-encoded proteins into plant chloroplasts is a highly regulated process, requiring fine-tuning mechanisms especially during chloroplast differentiation. One way of altering import efficiency is phosphorylation of chloroplast transit peptides in the cytosol. We recently investigated the role of three serine/threonine/tyrosine (STY) kinases, STY8, STY17, and STY46, in precursor phosphorylation. These three kinases have a high degree of similarity and harbor a conserved aspartate kinase-chorismate mutase-tyrA (prephenate dehydrogenase) (ACT) domain upstream of the kinase domain. The ACT domain is a widely distributed structural motif known to be important for allosteric regulation of many enzymes. In this work, using biochemical and biophysical techniques in vitro and in planta, including kinase assays, microscale thermophoresis, size exclusion chromatography, as well as site-directed mutagenesis approaches, we show that the ACT domain regulates autophosphorylation and substrate phosphorylation of the STY kinases. We found that isoleucine and S-adenosylmethionine bind to the ACT domain, negatively influencing its autophosphorylation ability. Moreover, we investigated the role of the ACT domain in planta and confirmed its involvement in chloroplast differentiation in vivo Our results provide detailed insights into the regulation of enzyme activity by ACT domains and establish that it has a role in binding amino acid ligands during chloroplast biogenesis.
Collapse
Affiliation(s)
- Ahmed Eisa
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Gao Y, Han C, Liu C, Wang J, Zhao L, Fang L, Min W. Enzymatic characterization and molecular mechanism of a novel aspartokinase mutant M372I/T379W from Corynebacterium pekinense. RSC Adv 2019; 9:21344-21354. [PMID: 35521304 PMCID: PMC9066179 DOI: 10.1039/c9ra03293b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/03/2019] [Indexed: 02/01/2023] Open
Abstract
A novel aspartokinase mutant M372I/T379W from Corynebacterium pekinense was constructed by using site-directed mutagenesis. The enzyme was then purified, characterized, and its molecular mechanism was comprehensively analyzed. Compared with wild-type AK, the catalytic activity of M372I/T379W AK was 16.51 fold higher and the optimum temperature increased from 28 to 35 °C. The thermostability of M372I/T379W AK was significantly improved. Microscale thermophoresis analysis indicated that M372I/T379W AK not only weakened the inhibitory effect of Lys, but also had stronger binding force with Asp. Molecular dynamics simulation showed that mutations M372I and T379W could regulate the activity of CpAK through affecting the flexibility of Asp and ATP binding pocket residues and the hydrogen bond between CpAK and Asp. In addition, mutations could affect the relative position of protein domains. The width of the Asp binding pocket entrance gate Arg169-Ala60 of M372I/T379W AK was greater than that in wild-type AK and the CpAK switched from T-state to R-state, which promoted the binding of the enzyme to Asp and improving the catalytic efficiency of this enzyme. These results explain the molecular mechanism of M372I/T379W AK, which will greatly facilitate the rational design of more aspartokinase mutants, with have potential applications in aspartic acid metabolism.
Collapse
Affiliation(s)
- Yunna Gao
- College of Food Science and Engineering, Jilin Agricultural University Changchun 130118 China +86-138-4486-2551.,National Engineering Laboratory of Wheat and Corn Deep Processing Changchun 130118 China +86-139-4491-9697
| | - Caijing Han
- College of Food Science and Engineering, Jilin Agricultural University Changchun 130118 China +86-138-4486-2551.,National Engineering Laboratory of Wheat and Corn Deep Processing Changchun 130118 China +86-139-4491-9697
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University Changchun 130118 China +86-138-4486-2551.,National Engineering Laboratory of Wheat and Corn Deep Processing Changchun 130118 China +86-139-4491-9697
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University Changchun 130118 China +86-138-4486-2551.,National Engineering Laboratory of Wheat and Corn Deep Processing Changchun 130118 China +86-139-4491-9697
| | - Lan Zhao
- College of Food Science and Engineering, Jilin Agricultural University Changchun 130118 China +86-138-4486-2551.,National Engineering Laboratory of Wheat and Corn Deep Processing Changchun 130118 China +86-139-4491-9697
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University Changchun 130118 China +86-138-4486-2551.,National Engineering Laboratory of Wheat and Corn Deep Processing Changchun 130118 China +86-139-4491-9697
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University Changchun 130118 China +86-138-4486-2551.,National Engineering Laboratory of Wheat and Corn Deep Processing Changchun 130118 China +86-139-4491-9697
| |
Collapse
|
10
|
ACR11 modulates levels of reactive oxygen species and salicylic acid-associated defense response in Arabidopsis. Sci Rep 2018; 8:11851. [PMID: 30087396 PMCID: PMC6081435 DOI: 10.1038/s41598-018-30304-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
The ACT domain (aspartate kinase, chorismate mutase and TyrA), an allosteric effector binding domain, is commonly found in amino acid metabolic enzymes. In addition to ACT domain-containing enzymes, plants have a novel family of ACT domain repeat (ACR) proteins, which do not contain any recognizable catalytic domain. Arabidopsis has 12 ACR proteins, whose functions are largely unknown. To study the functions of Arabidopsis ACR11, we have characterized two independent T-DNA insertion mutants, acr11-2 and acr11-3. RNA gel-blot analysis revealed that the expression of wild-type ACR11 transcripts was not detectable in the acr11 mutants. Interestingly, a lesion-mimic phenotype occurs in some rosette leaves of the acr11 mutants. In addition, high levels of reactive oxygen species (ROS), salicylic acid (SA), and callose accumulate in the mutant leaves when grown under normal conditions. The expression of several SA marker genes and the key SA biosynthetic gene ISOCHORISMATE SYNTHASE1 is up-regulated in the acr11 mutants. Furthermore, the acr11 mutants are more resistant to the infection of bacterial pathogen Pseudomonas syringae pathovar tomato DC3000. These results suggest that ACR11 may be directly or indirectly involved in the regulation of ROS and SA accumulation, which in turn modulates SA-associated defense responses and disease resistance in Arabidopsis.
Collapse
|
11
|
Mechanistic insights into the allosteric regulation of Pseudomonas aeruginosa aspartate kinase. Biochem J 2018; 475:1107-1119. [PMID: 29382741 DOI: 10.1042/bcj20170829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
In plants and microorganisms, aspartate kinase (AK) catalyzes an initial commitment step of the aspartate family amino acid biosynthesis. Owing to various structural organizations, AKs from different species show tremendous diversity and complex allosteric controls. We report the crystal structure of AK from Pseudomonas aeruginosa (PaAK), a typical α2β2 hetero-tetrameric enzyme, in complex with inhibitory effectors. Distinctive features of PaAK are revealed by structural and biochemical analyses. Essentially, the open conformation of Lys-/Thr-bound PaAK structure clarifies the inhibitory mechanism of α2β2-type AK. Moreover, the various inhibitory effectors of PaAK have been identified and a general amino acid effector motif of AK family is described.
Collapse
|
12
|
Chang F, Cui J, Wang L, Ma H. Reply: The BIF Domain Is Structurally and Functionally Distinct from Other Types of ACT-Like Domains. THE PLANT CELL 2017; 29:1803-1805. [PMID: 28747420 PMCID: PMC5590505 DOI: 10.1105/tpc.17.00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 06/10/2017] [Accepted: 07/26/2017] [Indexed: 05/10/2023]
Affiliation(s)
- Fang Chang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jie Cui
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Linbo Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Center for Evolutionary Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Xia J, Wang R, Zhang T, Ding J. Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling. Cell Discov 2016; 2:16035. [PMID: 27648300 PMCID: PMC5020642 DOI: 10.1038/celldisc.2016.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanistic Target Of Rapamycin Complex 1 (mTORC1) is central to the cellular response to changes in nutrient signals such as amino acids. CASTOR1 is shown to be an arginine sensor, which plays an important role in the activation of the mTORC1 pathway. In the deficiency of arginine, CASTOR1 interacts with GATOR2, which together with GATOR1 and Rag GTPases controls the relocalization of mTORC1 to lysosomes. The binding of arginine to CASTOR1 disrupts its association with GATOR2 and hence activates the mTORC1 signaling. Here, we report the crystal structure of CASTOR1 in complex with arginine at 2.5 Å resolution. CASTOR1 comprises of four tandem ACT domains with an architecture resembling the C-terminal allosteric domains of aspartate kinases. ACT1 and ACT3 adopt the typical βαββαβ topology and function in dimerization via the conserved residues from helices α1 of ACT1 and α5 of ACT3; whereas ACT 2 and ACT4, both comprising of two non-sequential regions, assume the unusual ββαββα topology and contribute an arginine-binding pocket at the interface. The bound arginine makes a number of hydrogen-bonding interactions and extensive hydrophobic contacts with the surrounding residues of the binding pocket. The functional roles of the key residues are validated by mutagenesis and biochemical assays. Our structural and functional data together reveal the molecular basis for the arginine-binding specificity of CASTOR1 in the arginine-dependent activation of the mTORC1 signaling.
Collapse
Affiliation(s)
- Jing Xia
- School of Life Sciences, Shanghai University , Shanghai, China
| | - Rong Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Tianlong Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jianping Ding
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
15
|
Nakabayashi M, Shibata N, Ishido-Nakai E, Kanagawa M, Iio Y, Komori H, Ueda Y, Nakagawa N, Kuramitsu S, Higuchi Y. Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-β-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains. Extremophiles 2016; 20:275-82. [DOI: 10.1007/s00792-016-0817-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/14/2016] [Indexed: 01/01/2023]
|
16
|
Characterization of Aspartate Kinase from Corynebacterium pekinense and the Critical Site of Arg169. Int J Mol Sci 2015; 16:28270-84. [PMID: 26633359 PMCID: PMC4691045 DOI: 10.3390/ijms161226098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/21/2022] Open
Abstract
Aspartate kinase (AK) is the key enzyme in the biosynthesis of aspartate-derived amino acids. Recombinant AK was efficiently purified and systematically characterized through analysis under optimal conditions combined with steady-state kinetics study. Homogeneous AK was predicted as a decamer with a molecular weight of ~48 kDa and a half-life of 4.5 h. The enzymatic activity was enhanced by ethanol and Ni2+. Moreover, steady-state kinetic study confirmed that AK is an allosteric enzyme, and its activity was inhibited by allosteric inhibitors, such as Lys, Met, and Thr. Theoretical results indicated the binding mode of AK and showed that Arg169 is an important residue in substrate binding, catalytic domain, and inhibitor binding. The values of the kinetic parameter Vmax of R169 mutants, namely, R169Y, R169P, R169D, and R169H AK, with l-aspartate as the substrate, were 4.71-, 2.25-, 2.57-, and 2.13-fold higher, respectively, than that of the wild-type AK. Furthermore, experimental and theoretical data showed that Arg169 formed a hydrogen bond with Glu92, which functions as the entrance gate. This study provides a basis to develop new enzymes and elucidate the corresponding amino acid production.
Collapse
|
17
|
Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Appl Microbiol Biotechnol 2015; 99:8527-36. [DOI: 10.1007/s00253-015-6615-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/20/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
|
18
|
Manjasetty BA, Chance MR, Burley SK, Panjikar S, Almo SC. Crystal structure of Clostridium acetobutylicum Aspartate kinase ( CaAK): An important allosteric enzyme for amino acids production. ACTA ACUST UNITED AC 2014; 3:73-85. [PMID: 25170437 PMCID: PMC4142519 DOI: 10.1016/j.btre.2014.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-l-aspartate from l-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw = 48,030 Da; 437aa; SwissProt: Q97MC0) has been determined to 3 Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase domain) and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridiumtetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.
Collapse
|
19
|
Xu JY, You D, Leng PQ, Ye BC. Allosteric regulation of a protein acetyltransferase in Micromonospora aurantiaca by the amino acids cysteine and arginine. J Biol Chem 2014; 289:27034-27045. [PMID: 25124041 DOI: 10.1074/jbc.m114.579078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ACT domains (amino acid-binding domains) are linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Seventy proteins with ACT-GCN5-related N-acetyltransferase (GNAT) domain organization were found in actinomycetales. In this study, we investigate the ACT-containing GNAT acetyltransferase, Micau_1670 (MaKat), from Micromonospora aurantiaca ATCC 27029. Arginine and cysteine were identified as ligands by monitoring the conformational changes that occur upon amino acids binding to the ACT domain in the MaKat protein using FRET assay. It was found that MaKat is an amino acid-regulated protein acetyltransferase, whereas arginine and cysteine stimulated the activity of MaKat with regard to acetylation of acetyl-CoA synthetase (Micau_0428). Our research reveals the biochemical characterization of a protein acetyltransferase that contains a fusion of a GNAT domain with an ACT domain and provides a novel signaling pathway for regulating cellular protein acetylation. These findings indicate that acetylation of proteins and acetyltransferase activity may be tightly linked to cellular concentrations of some amino acids in actinomycetales.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pei-Qiang Leng
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
20
|
Zhang S, Huang T, Ilangovan U, Hinck AP, Fitzpatrick PF. The solution structure of the regulatory domain of tyrosine hydroxylase. J Mol Biol 2013; 426:1483-97. [PMID: 24361276 DOI: 10.1016/j.jmb.2013.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/13/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022]
Abstract
Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine in the biosynthesis of the catecholamine neurotransmitters. The activity of the enzyme is regulated by phosphorylation of serine residues in a regulatory domain and by binding of catecholamines to the active site. Available structures of TyrH lack the regulatory domain, limiting the understanding of the effect of regulation on structure. We report the use of NMR spectroscopy to analyze the solution structure of the isolated regulatory domain of rat TyrH. The protein is composed of a largely unstructured N-terminal region (residues 1-71) and a well-folded C-terminal portion (residues 72-159). The structure of a truncated version of the regulatory domain containing residues 65-159 has been determined and establishes that it is an ACT domain. The isolated domain is a homodimer in solution, with the structure of each monomer very similar to that of the core of the regulatory domain of phenylalanine hydroxylase. Two TyrH regulatory domain monomers form an ACT domain dimer composed of a sheet of eight strands with four α-helices on one side of the sheet. Backbone dynamic analyses were carried out to characterize the conformational flexibility of TyrH65-159. The results provide molecular details critical for understanding the regulatory mechanism of TyrH.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tao Huang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Udayar Ilangovan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrew P Hinck
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
21
|
Van Bochaute P, Novoa A, Ballet S, Rognes SE, Angenon G. Regulatory mechanisms after short- and long-term perturbed lysine biosynthesis in the aspartate pathway: the need for isogenes in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2013; 149:449-460. [PMID: 23556418 DOI: 10.1111/ppl.12053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
The aspartate-derived amino acid pathway in plants is an intensively studied metabolic pathway, because of the biosynthesis of the four essential amino acids lysine, threonine, isoleucine and methionine. The pathway is mainly controlled by the key regulatory enzymes aspartate kinase (AK; EC 2.7.2.4), homoserine dehydrogenase (HSDH; EC 1.1.1.3) and 4-hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7), formerly referred to as dihydrodipicolinate synthase (DHDPS). They are encoded by isoenzyme families and it is not known why such families are evolutionarily maintained. To gain more insight into the specific roles and regulation of the isoenzymes, we inhibited DHDPS in Arabidopsis thaliana with the chemical compound (N,N-dimethylglycinatoboranyloxycarbonylmethyl)-dimethylamine-borane (DDAB) and compared the short-term effects on the biochemical and biomolecular level to the long-term adaptations in dhdps knockout mutants. We found that DHDPS2 plays a crucial role in controlling lysine biosynthesis, thereby stabilizing flux through the whole aspartate pathway. Moreover, DHDPS2 was also shown to influence the threonine level to a large extent. In addition, the lysine-sensitive AKs, AKLYS1 and AKLYS3 control the short- and long-term responses to perturbed lysine biosynthesis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Pieter Van Bochaute
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Alexandre Novoa
- Department of Chemistry, Faculty of Science, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Steven Ballet
- Department of Chemistry, Faculty of Science, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Sven Erik Rognes
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, 0316, Oslo, Norway
| | - Geert Angenon
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| |
Collapse
|
22
|
Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL. A new model for allosteric regulation of phenylalanine hydroxylase: implications for disease and therapeutics. Arch Biochem Biophys 2013; 530:73-82. [PMID: 23296088 PMCID: PMC3580015 DOI: 10.1016/j.abb.2012.12.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The structural basis for allosteric regulation of phenylalanine hydroxylase (PAH), whose dysfunction causes phenylketonuria (PKU), is poorly understood. A new morpheein model for PAH allostery is proposed to consist of a dissociative equilibrium between two architecturally different tetramers whose interconversion requires a ∼90° rotation between the PAH catalytic and regulatory domains, the latter of which contains an ACT domain. This unprecedented model is supported by in vitro data on purified full length rat and human PAH. The conformational change is both predicted to and shown to render the tetramers chromatographically separable using ion exchange methods. One novel aspect of the activated tetramer model is an allosteric phenylalanine binding site at the intersubunit interface of ACT domains. Amino acid ligand-stabilized ACT domain dimerization follows the multimerization and ligand binding behavior of ACT domains present in other proteins in the PDB. Spectroscopic, chromatographic, and electrophoretic methods demonstrate a PAH equilibrium consisting of two architecturally distinct tetramers as well as dimers. We postulate that PKU-associated mutations may shift the PAH quaternary structure equilibrium in favor of the low activity assemblies. Pharmacological chaperones that stabilize the ACT:ACT interface can potentially provide PKU patients with a novel small molecule therapeutic.
Collapse
Affiliation(s)
- Eileen K Jaffe
- Developmental Therapeutics, Institute for Cancer Research, Fox Chase Cancer Center, Temple Health, 333 Cottman Ave., Philadelphia, PA 19111, USA.
| | | | | | | | | |
Collapse
|
23
|
Karanth NM, Sarma SP. The Coil-to-Helix Transition in IlvN Regulates the Allosteric Control of Escherichia coli Acetohydroxyacid Synthase I. Biochemistry 2012. [DOI: 10.1021/bi301415m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| |
Collapse
|
24
|
Chen L, Chen Z, Zheng P, Sun J, Zeng AP. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Appl Microbiol Biotechnol 2012; 97:2939-49. [PMID: 22669632 DOI: 10.1007/s00253-012-4176-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/26/2022]
Abstract
Biosynthetic threonine deaminase (TD) is a key enzyme for the synthesis of isoleucine which is allosterically inhibited and activated by Ile and Val, respectively. The binding sites of Ile and Val and the mechanism of their regulations in TD are not clear, but essential for a rational design of efficient productive strain(s) for Ile and related amino acids. In this study, structure-based computational approach and site-directed mutagenesis were combined to identify the potential binding sites of Ile and Val in Escherichia coli TD. Our results demonstrated that each regulatory domain of the TD monomer possesses two nonequivalent effector-binding sites. The residues R362, E442, G445, A446, Y369, I460, and S461 only interact with Ile while E347, G350, and F352 are involved not only in the Ile binding but also in the Val binding. By further considering enzyme kinetic data, we propose a concentration-dependent mechanism of the allosteric regulation of TD by Ile and Val. For the construction of Ile overproducing strain, a novel TD mutant with double mutation of F352A/R362F was also created, which showed both higher activity and much stronger resistance to Ile inhibition comparing to those of wild-type enzyme. Overexpression of this mutant TD in E. coli JW3591 significantly increased the production of ketobutyrate and Ile in comparison to the reference strains overexpressing wild-type TD or the catabolic threonine deaminase (TdcB). This work builds a solid basis for the reengineering of TD and related microorganisms for Ile production.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
The many faces of aspartate kinases. Arch Biochem Biophys 2011; 519:186-93. [PMID: 22079167 DOI: 10.1016/j.abb.2011.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Based on recent X-ray structures and biochemical characterizations of aspartate kinases from different species, we show in this review how various organizations of a regulatory domain have contributed to the different mechanisms of control observed in aspartate kinases allowing simple to complex allosteric controls in branched pathways. The aim of this review is to show the relationships between domain organization, effector binding sites, mechanism of inhibition and regulatory function of an allosteric enzyme in a biosynthetic pathway.
Collapse
|
26
|
Yang Q, Yu K, Yan L, Li Y, Chen C, Li X. Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis. Protein Cell 2011; 2:745-54. [PMID: 21976064 DOI: 10.1007/s13238-011-1094-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 09/01/2011] [Indexed: 12/01/2022] Open
Abstract
The aspartate kinase (AK) from Mycobacterium tuberculosis (Mtb) catalyzes the biosynthesis of aspartate family amino acids, including lysine, threonine, isoleucine and methionine. We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone (referred to as MtbAKβ) and in complex with threonine (referred to as MtbAKβ-Thr) at resolutions of 2.6 Å and 2.0 Å, respectively. MtbAKβ is composed of two perpendicular non-equivalent ACT domains [aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase)] per monomer. Each ACT domain contains two α helices and four antiparallel β strands. The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum (referred to as CgAKβ), suggesting similar regulatory mechanisms. Biochemical assays in our study showed that MtbAK is inhibited by threonine. Based on crystal structure analysis, we discuss the regulatory mechanism of MtbAK.
Collapse
Affiliation(s)
- Qingzhu Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
27
|
Stuttmann J, Hubberten HM, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE. Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. THE PLANT CELL 2011; 23:2788-803. [PMID: 21784950 PMCID: PMC3226217 DOI: 10.1105/tpc.111.087684] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/27/2011] [Accepted: 07/07/2011] [Indexed: 05/18/2023]
Abstract
Reliance of biotrophic pathogens on living plant tissues to propagate implies strong interdependence between host metabolism and nutrient uptake by the pathogen. However, factors determining host suitability and establishment of infection are largely unknown. We describe a loss-of-inhibition allele of ASPARTATE KINASE2 and a loss-of-function allele of DIHYDRODIPICOLINATE SYNTHASE2 identified in a screen for Arabidopsis thaliana mutants with increased resistance to the obligate biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa). Through different molecular mechanisms, these mutations perturb amino acid homeostasis leading to overaccumulation of the Asp-derived amino acids Met, Thr, and Ile. Although detrimental for the plant, the mutations do not cause defense activation, and both mutants retain full susceptibility to the adapted obligate biotrophic fungus Golovinomyces orontii (Go). Chemical treatments mimicking the mutants' metabolic state identified Thr as the amino acid suppressing Hpa but not Go colonization. We conclude that perturbations in amino acid homeostasis render the mutant plants unsuitable as an infection substrate for Hpa. This may be explained by deployment of the same amino acid biosynthetic pathways by oomycetes and plants. Our data show that the plant host metabolic state can, in specific ways, influence the ability of adapted biotrophic strains to cause disease.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | - Steffen Rietz
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Jagreet Kaur
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Paul Muskett
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Raphael Guerois
- Commissariat á l’Energie Atomique, Institut de Biologie et Technologies de Saclay, Laboratoire de Biologie Structurale et Radiobiologie and Centre National de la Recherche Scientifique, Unités de Recherche Associées 2096, F-91191 Gif-sur-Yvette, France
| | - Paweł Bednarek
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Address correspondence to
| |
Collapse
|
28
|
Qi Q, Huang J, Crowley J, Ruschke L, Goldman BS, Wen L, Rapp WD. Metabolically engineered soybean seed with enhanced threonine levels: biochemical characterization and seed-specific expression of lysine-insensitive variants of aspartate kinases from the enteric bacterium Xenorhabdus bovienii. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:193-204. [PMID: 20633240 DOI: 10.1111/j.1467-7652.2010.00545.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Threonine (Thr) is one of a few limiting essential amino acids (EAAs) in the animal feed industry, and its level in feed rations can impact production of important meat sources, such as swine and poultry. Threonine as well as EAAs lysine (Lys) and methionine (Met) are all synthesized via the aspartate family pathway. Here, we report a successful strategy to produce high free threonine soybean seed via identification of a feedback-resistant aspartate kinase (AK) enzyme that can be over-expressed in developing soybean seed. Towards this goal, we have purified and biochemically characterized AK from the enteric bacterium Xenorhabdus bovienii (Xb). Site-directed mutagenesis of XbAK identified two key regulatory residues Glu-257 and Thr-359 involved in lysine inhibition. Three feedback-resistant alleles, XbAK_T359I, XbAK_E257K and XbAK_E257K/T359I, have been generated. This study is the first to kinetically characterize the XbAK enzyme and provide biochemical and transgenic evidence that Glu-257 near the catalytic site is a critical residue for the allosteric regulation of AK. Furthermore, seed-specific expression of the feedback-resistant XbAK_T359I or XbAK_E257K allele results in increases of free Thr levels of up to 100-fold in R(1) soybean seed when compared to wild-type. Expression of feedback-sensitive wild-type AK did not substantially impact seed Thr content. In addition to high Thr, transgenic seed also showed substantial increases in other major free amino acid (FAA) levels, resulting in an up to 3.5-fold increase in the total FAA content. The transgenic seed was normal in appearance and germinated well under greenhouse conditions.
Collapse
Affiliation(s)
- Qungang Qi
- Monsanto Company, Chesterfield, MO, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yoshida A, Tomita T, Kuzuyama T, Nishiyama M. Mechanism of concerted inhibition of alpha2beta2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum. J Biol Chem 2010; 285:27477-27486. [PMID: 20573952 PMCID: PMC2930746 DOI: 10.1074/jbc.m110.111153] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/08/2010] [Indexed: 11/06/2022] Open
Abstract
Aspartate kinase (AK) is the first and committed enzyme of the biosynthetic pathway producing aspartate family amino acids, lysine, threonine, and methionine. AK from Corynebacterium glutamicum (CgAK), a bacterium used for industrial fermentation of amino acids, including glutamate and lysine, is inhibited by lysine and threonine in a concerted manner. To elucidate the mechanism of this unique regulation in CgAK, we determined the crystal structures in several forms: an inhibitory form complexed with both lysine and threonine, an active form complexed with only threonine, and a feedback inhibition-resistant mutant (S301F) complexed with both lysine and threonine. CgAK has a characteristic alpha(2)beta(2)-type heterotetrameric structure made up of two alpha subunits and two beta subunits. Comparison of the crystal structures between inhibitory and active forms revealed that binding inhibitors causes a conformational change to a closed inhibitory form, and the interaction between the catalytic domain in the alpha subunit and beta subunit (regulatory subunit) is a key event for stabilizing the inhibitory form. This study shows not only the first crystal structures of alpha(2)beta(2)-type AK but also the mechanism of concerted inhibition in CgAK.
Collapse
Affiliation(s)
- Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
30
|
A new mode of dimerization of allosteric enzymes with ACT domains revealed by the crystal structure of the aspartate kinase from Cyanobacteria. J Mol Biol 2010; 399:283-93. [PMID: 20398676 DOI: 10.1016/j.jmb.2010.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/31/2010] [Accepted: 04/07/2010] [Indexed: 11/22/2022]
Abstract
Aspartate kinases (AKs) can be divided in two subhomology divisions, AKalpha and AKbeta, depending on the presence of an extra sequence of about 60 amino acids, which is found only in the N-terminus of all AKalpha's. To date, the structures of AKalpha failed to provide a role for this additional N-terminal sequence. In this study, the structure of the AKbeta from the Cyanobacteria Synechocystis reveals that this supplementary sequence is linked to the dimerization mode of AKs. Its absence in AKbeta leads to the dimerization by the catalytic domain instead of involving the ACT domains [Pfam 01842; small regulatory domains initially found in AK, chorismate mutase and TyrA (prephenate dehydrogenase)] as observed in AKalpha. Thus, the structural analysis of the Synechocystis AKbeta revealed a dimer with a novel architecture. The four ACT domains of each monomer interact together and do not make any contact with those of the second monomer. The enzyme is inhibited synergistically by threonine and lysine with the binding of threonine first. The interaction between ACT1 and ACT4 or between ACT2 and ACT3 generates a threonine binding site and a lysine binding site at each interface, making a total of eight regulatory sites per dimer and allowing a fine-tuning of the AK activity by the end products, threonine and lysine.
Collapse
|
31
|
Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein. J Bacteriol 2010; 192:2711-21. [PMID: 20363937 DOI: 10.1128/jb.01674-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme (UTase/UR) and is believed to be the primary sensor of nitrogen status in the cell by sensing the level of glutamine in enteric bacteria. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) protein; P(II) in turn regulates a variety of other proteins. GlnD appears to have four distinct domains: an N-terminal nucleotidyltransferase (NT) domain; a central HD domain, named after conserved histidine and aspartate residues; and two C-terminal ACT domains, named after three of the allosterically regulated enzymes in which this domain is found. Here we report the functional analysis of these domains of GlnD from Escherichia coli and Rhodospirillum rubrum. We confirm the assignment of UTase activity to the NT domain and show that the UR activity is a property specifically of the HD domain: substitutions in this domain eliminated UR activity, and a truncated protein lacking the NT domain displayed UR activity. The deletion of C-terminal ACT domains had little effect on UR activity itself but eliminated the ability of glutamine to stimulate that activity, suggesting a role for glutamine sensing by these domains. The deletion of C-terminal ACT domains also dramatically decreased UTase activity under all conditions tested, but some of these effects are due to the competition of UTase activity with unregulated UR activity in these variants.
Collapse
|
32
|
Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways. Microbiol Mol Biol Rev 2010; 73:594-651. [PMID: 19946135 DOI: 10.1128/mmbr.00024-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspartokinase (Ask) exists within a variable network that supports the synthesis of 9 amino acids and a number of other important metabolites. Lysine, isoleucine, aromatic amino acids, and dipicolinate may arise from the ASK network or from alternative pathways. Ask proteins were subjected to cohesion group analysis, a methodology that sorts a given protein assemblage into groups in which evolutionary continuity is assured. Two subhomology divisions, ASK(alpha) and ASK(beta), have been recognized. The ASK(alpha) subhomology division is the most ancient, being widely distributed throughout the Archaea and Eukarya and in some Bacteria. Within an indel region of about 75 amino acids near the N terminus, ASK(beta) sequences differ from ASK(alpha) sequences by the possession of a proposed ancient deletion. ASK(beta) sequences are present in most Bacteria and usually exhibit an in-frame internal translational start site that can generate a small Ask subunit that is identical to the C-terminal portion of the larger subunit of a heterodimeric unit. Particularly novel are ask genes embedded in gene contexts that imply specialization for ectoine (osmotic agent) or aromatic amino acids. The cohesion group approach is well suited for the easy recognition of relatively recent lateral gene transfer (LGT) events, and many examples of these are described. Given the current density of genome representation for Proteobacteria, it is possible to reconstruct more ancient landmark LGT events. Thus, a plausible scenario in which the three well-studied and iconic Ask homologs of Escherichia coli are not within the vertical genealogy of Gammaproteobacteria, but rather originated via LGT from a Bacteroidetes donor, is supported.
Collapse
|
33
|
|
34
|
Jander G, Joshi V. Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. MOLECULAR PLANT 2010; 3:54-65. [PMID: 20019093 DOI: 10.1093/mp/ssp104] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants are either directly or indirectly the source of most of the essential amino acids in animal diets. Four of these essential amino acids-methionine, threonine, isoleucine, and lysine-are all produced from aspartate via a well studied biosynthesis pathway. Given the nutritional interest in essential amino acids, the aspartate-derived amino acid pathway has been the subject of extensive research. Additionally, several pathway enzymes serve as targets for economically important herbicides, and some of the downstream products are biosynthetic precursors for other essential plant metabolites such as ethylene and S-adenosylmethionine. Recent and ongoing research on the aspartate-derived family of amino acids has identified new enzyme activities, regulatory mechanisms, and in vivo metabolic functions. Together, these discoveries will open up new possibilities for plant metabolic engineering.
Collapse
Affiliation(s)
- Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14850, USA.
| | | |
Collapse
|
35
|
Molecular basis of the inhibitor selectivity and insights into the feedback inhibition mechanism of citramalate synthase from Leptospira interrogans. Biochem J 2009; 421:133-43. [PMID: 19351325 DOI: 10.1042/bj20090336] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LiCMS (Leptospira interrogans citramalate synthase) catalyses the first reaction of the isoleucine biosynthesis pathway in L. interrogans, the pathogen of leptospirosis. The catalytic reaction is regulated through feedback inhibition by its end product isoleucine. To understand the molecular basis of the high selectivity of the inhibitor and the mechanism of feedback inhibition, we determined the crystal structure of LiCMSC (C-terminal regulatory domain of LiCMS) in complex with isoleucine, and performed a biochemical study of the inhibition of LiCMS using mutagenesis and kinetic methods. LiCMSC forms a dimer of dimers in both the crystal structure and solution and the dimeric LiCMSC is the basic functional unit. LiCMSC consists of six beta-strands forming two anti-parallel beta-sheets and two alpha-helices and assumes a betaalphabeta three-layer sandwich structure. The inhibitor isoleucine is bound in a pocket at the dimer interface and has both hydrophobic and hydrogen-bonding interactions with several conserved residues of both subunits. The high selectivity of LiCMS for isoleucine over leucine is primarily dictated by the residues, Tyr430, Leu451, Tyr454, Ile458 and Val468, that form a hydrophobic pocket to accommodate the side chain of the inhibitor. The binding of isoleucine has inhibitory effects on the binding of both the substrate, pyruvate, and coenzyme, acetyl-CoA, in a typical pattern of K-type inhibition. The structural and biochemical data from the present study together suggest that the binding of isoleucine affects the binding of the substrate and coenzyme at the active site, possibly via conformational change of the dimer interface of the regulatory domain, leading to inhibition of the catalytic reaction.
Collapse
|
36
|
Yoshida A, Tomita T, Kono H, Fushinobu S, Kuzuyama T, Nishiyama M. Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase fromThermus thermophilus. FEBS J 2009; 276:3124-36. [DOI: 10.1111/j.1742-4658.2009.07030.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Jander G, Joshi V. Aspartate-Derived Amino Acid Biosynthesis in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2009; 7:e0121. [PMID: 22303247 PMCID: PMC3243338 DOI: 10.1199/tab.0121] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The aspartate-derived amino acid pathway in plants leads to the biosynthesis of lysine, methionine, threonine, and isoleucine. These four amino acids are essential in the diets of humans and other animals, but are present in growth-limiting quantities in some of the world's major food crops. Genetic and biochemical approaches have been used for the functional analysis of almost all Arabidopsis thaliana enzymes involved in aspartate-derived amino acid biosynthesis. The branch-point enzymes aspartate kinase, dihydrodipicolinate synthase, homoserine dehydrogenase, cystathionine gamma synthase, threonine synthase, and threonine deaminase contain well-studied sites for allosteric regulation by pathway products and other plant metabolites. In contrast, relatively little is known about the transcriptional regulation of amino acid biosynthesis and the mechanisms that are used to balance aspartate-derived amino acid biosynthesis with other plant metabolic needs. The aspartate-derived amino acid pathway provides excellent examples of basic research conducted with A. thaliana that has been used to improve the nutritional quality of crop plants, in particular to increase the accumulation of lysine in maize and methionine in potatoes.
Collapse
Affiliation(s)
- Georg Jander
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853 USA
- Address correspondence to
| | - Vijay Joshi
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853 USA
| |
Collapse
|
38
|
Pakhomova S, Bartlett SG, Augustus A, Kuzuyama T, Newcomer ME. Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis. J Biol Chem 2008; 283:28518-26. [PMID: 18701452 DOI: 10.1074/jbc.m803709200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fosfomycin resistance protein FomA inactivates fosfomycin by phosphorylation of the phosphonate group of the antibiotic in the presence of ATP and Mg(II). We report the crystal structure of FomA from the fosfomycin biosynthetic gene cluster of Streptomyces wedmorensis in complex with diphosphate and in ternary complex with the nonhydrolyzable ATP analog adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP), Mg(II), and fosfomycin, at 1.53 and 2.2 angstroms resolution, respectively. The polypeptide exhibits an open alphabetaalpha sandwich fold characteristic for the amino acid kinase family of enzymes. The diphosphate complex shows significant disorder in loops surrounding the active site. As a result, the nucleotide-binding site is wide open. Binding of the substrates is followed by the partial closure of the active site and ordering of the alpha2-helix. Structural comparison with N-acetyl-L-glutamate kinase shows several similarities in the site of phosphoryl transfer: 1) preservation of architecture of the catalytical amino acids of N-acetyl-L-glutamate kinase (Lys9, Lys216, and Asp150 in FomA); 2) good superposition of the phosphate acceptor groups of the substrates, and 3) good superposition of the diphosphate molecule with the beta- and gamma-phosphates of AMPPNP, suggesting that the reaction could proceed by an associative in-line mechanism. However, differences in conformations of the triphosphate moiety of AMPPNP molecules, the long distance (5.1 angstroms) between the phosphate acceptor and donor groups in FomA, and involvement of Lys18 instead of Lys9 in binding with the gamma-phosphate may indicate a different reaction mechanism. The present work identifies the active site residues of FomA responsible for substrate binding and specificity and proposes their roles in catalysis.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
39
|
Kudo T, Kawai A, Yamaya T, Hayakawa T. Cellular distribution of ACT domain repeat protein 9, a nuclear localizing protein, in rice (Oryza sativa). PHYSIOLOGIA PLANTARUM 2008; 133:167-79. [PMID: 18282189 DOI: 10.1111/j.1399-3054.2008.01051.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Regulatory ACT domains serve as amino acid-binding sites in certain amino acid metabolic enzymes and transcriptional regulators in bacteria. The ACT domain repeat protein (ACR) family in plants is primarily composed of four copies of the domain homologous to those of the bacteria Gln sensor GLND. In the current study, to evaluate the possible involvement of the protein OsACR9 in the Gln-sensing system related to nitrogen (N) metabolism in rice (Oryza sativa L.), subcellular localization of OsACR9 and its accumulation and cellular distribution in various rice organs were examined by transient expression analysis and immunological methods using a monospecific antibody, respectively. Transient expression analysis of OsACR9 fused with a synthetic green fluorescent protein in cultured rice cells suggested nuclear localization of OsACR9. In rice roots, OsACR9 protein was distributed in epidermis, exodermis, sclerenchyma and vascular parenchyma cells, and its accumulation markedly increased after supply of NH(+)(4). In rice leaf samples, OsACR9 protein was abundant in the vascular parenchyma and mestome-sheath cells of young leaf blades at the early stage of development and in the vascular parenchyma and phloem-companion cells of mature leaf sheaths. OsACR9 protein also showed a high level of accumulation in vascular parenchyma cells of dorsal vascular bundles and aleurone cells in young rice grains at the early stage of ripening. The possibility of the nuclear protein OsACR9 acting as a Gln sensor in rice is subsequently discussed through comparison of its spatiotemporal expression with that of Gln-responsive N-assimilatory genes.
Collapse
Affiliation(s)
- Toru Kudo
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
40
|
Siltberg-Liberles J, Martinez A. Searching distant homologs of the regulatory ACT domain in phenylalanine hydroxylase. Amino Acids 2008; 36:235-49. [PMID: 18368466 DOI: 10.1007/s00726-008-0057-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/11/2008] [Indexed: 11/29/2022]
Abstract
High sequence divergence, evolutionary mobility, and superfold topology characterize the ACT domain. Frequently found in multidomain proteins, these domains induce allosteric effects by binding a regulatory ligand usually to an ACT domain dimer interface. In mammalian phenylalanine hydroxylase (PAH), no contacts are formed between ACT domains, and the domain promotes an allosteric effect despite the apparent lack of ligand binding. The increased functional scenario of this abundant domain encouraged us to search for distant homologs, aiming to enhance the understanding of the ACT domain in general and the ACT domain of PAH in particular. The PDB was searched using the FATCAT server with the ACT domain of PAH as a query. The hits that were confirmed by the SSAP algorithm were divided into known ACT domains (KADs) and potential ACT domains (PADs). The FATCAT/SSAP procedure recognized most of the established KADs, as well 18 so far unrecognized non-redundant PADs with extremely low sequence identities and high divergence in functionality and oligomerization. However, analysis of the structural similarity provides remarkable clustering of the proteins according to similarities in ligand binding. Despite enormous sequence divergence and high functional variability, there is a common regulatory theme among these domains. The results reveal the close relationships of the ACT domain of PAH with amino acid binding and metallobinding ACT domains and with acylphosphatase.
Collapse
|
41
|
Liu X, Pavlovsky AG, Viola RE. The structural basis for allosteric inhibition of a threonine-sensitive aspartokinase. J Biol Chem 2008; 283:16216-25. [PMID: 18334478 DOI: 10.1074/jbc.m800760200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The commitment step to the aspartate pathway of amino acid biosynthesis is the phosphorylation of aspartic acid catalyzed by aspartokinase (AK). Most microorganisms and plants have multiple forms of this enzyme, and many of these isofunctional enzymes are subject to feedback regulation by the end products of the pathway. However, the archeal species Methanococcus jannaschii has only a single, monofunctional form of AK. The substrate l-aspartate binds to this recombinant enzyme in two different orientations, providing the first structural evidence supporting the relaxed regiospecificity previously observed with several alternative substrates of Escherichia coli AK ( Angeles, T. S., Hunsley, J. R., and Viola, R. E. (1992) Biochemistry 31, 799-805 ). Binding of the nucleotide substrate triggers significant domain movements that result in a more compact quaternary structure. In contrast, the highly cooperative binding of the allosteric regulator l-threonine to multiple sites on this dimer of dimers leads to an open enzyme structure. A comparison of these structures supports a mechanism for allosteric regulation in which the domain movements induced by threonine binding causes displacement of the substrates from the enzyme, resulting in a relaxed, inactive conformation.
Collapse
Affiliation(s)
- Xuying Liu
- Department of Chemistry, University of Toledo, Toledo, Ohio 43606
| | | | | |
Collapse
|
42
|
Curien G, Biou V, Mas-Droux C, Robert-Genthon M, Ferrer JL, Dumas R. Amino acid biosynthesis: new architectures in allosteric enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:325-339. [PMID: 18272376 DOI: 10.1016/j.plaphy.2007.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Indexed: 05/25/2023]
Abstract
This review focuses on the allosteric controls in the Aspartate-derived and the branched-chain amino acid biosynthetic pathways examined both from kinetic and structural points of view. The objective is to show the differences that exist among the plant and microbial worlds concerning the allosteric regulation of these pathways and to unveil the structural bases of this diversity. Indeed, crystallographic structures of enzymes from these pathways have been determined in bacteria, fungi and plants, providing a wonderful opportunity to obtain insight into the acquisition and modulation of allosteric controls in the course of evolution. This will be examined using two enzymes, threonine synthase and the ACT domain containing enzyme aspartate kinase. In a last part, as many enzymes in these pathways display regulatory domains containing the conserved ACT module, the organization of ACT domains in this kind of allosteric enzymes will be reviewed, providing explanations for the variety of allosteric effectors and type of controls observed.
Collapse
Affiliation(s)
- Gilles Curien
- Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier, Commissariat à l'Energie Atomique, Institut de Recherche et de Technologie des Sciences du Vivant, 38054 Grenoble, France
| | | | | | | | | | | |
Collapse
|
43
|
Cubonová L, Sandman K, Karr EA, Cochran AJ, Reeve JN. Spontaneous trpY mutants and mutational analysis of the TrpY archaeal transcription regulator. J Bacteriol 2007; 189:4338-42. [PMID: 17400746 PMCID: PMC1913389 DOI: 10.1128/jb.00164-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/19/2007] [Indexed: 11/20/2022] Open
Abstract
Over 90% of Methanothermobacter thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan had mutations in trpY. Most were single-base-pair substitutions that identified separate DNA- and tryptophan-binding regions in TrpY. In vivo and in vitro studies revealed that DNA binding was sufficient for TrpY repression of trpY transcription but that TrpY must bind DNA and tryptophan to assemble a complex that represses trpEGCFBAD.
Collapse
Affiliation(s)
- L'ubomíra Cubonová
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA
| | | | | | | | | |
Collapse
|
44
|
Yoshida A, Tomita T, Kurihara T, Fushinobu S, Kuzuyama T, Nishiyama M. Structural Insight into Concerted Inhibition of α2β2-Type Aspartate Kinase from Corynebacterium glutamicum. J Mol Biol 2007; 368:521-36. [PMID: 17350037 DOI: 10.1016/j.jmb.2007.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Aspartate kinase (AK) catalyzes the first step of the biosynthesis of the aspartic acid family amino acids, and is regulated via feedback inhibition by end-products including Thr and Lys. To elucidate the mechanism of this inhibition, we determined the crystal structure of the regulatory subunit of AK from Corynebacterium glutamicum at 1.58 A resolution in the Thr-binding form, the first crystal structure of the regulatory subunit of alpha(2)beta(2)-type AK. The regulatory subunit contains two ACT domain motifs per monomer and is arranged as a dimer. Two non-equivalent ACT domains from different chains form an effector-binding unit that binds a single Thr molecule, and the resulting two effector-binding units of the dimer associate perpendicularly in a face-to-face manner. The regulatory subunit is a monomer in the absence of Thr but becomes a dimer by adding Thr. The dimerization is eliminated in mutant AKs with changes in the Thr-binding region, suggesting that the dimerization induced by Thr binding is a key step in the inhibitory mechanism of AK from C. glutamicum. A putative Lys-binding site and the inhibitory mechanism of CgAK are discussed.
Collapse
Affiliation(s)
- Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Yoshida A, Tomita T, Kuzuyama T, Nishiyama M. Purification, crystallization and preliminary X-ray analysis of the regulatory subunit of aspartate kinase from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:96-8. [PMID: 17277448 PMCID: PMC2330127 DOI: 10.1107/s1744309106055837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 12/22/2006] [Indexed: 11/11/2022]
Abstract
Aspartate kinase (AK) from Thermus thermophilus, which catalyzes the first step of threonine and methionine biosynthesis, is regulated via feedback inhibition by the end product threonine. To elucidate the mechanism of regulation of AK, the regulatory subunit (the beta subunit of T. thermophilus AK) was crystallized in the presence of the inhibitor threonine. Diffraction data were collected to 2.15 A at a synchrotron source. The crystal belongs to the cubic space group P4(3)32 or P4(1)32, with unit-cell parameters a = b = c = 141.8 A.
Collapse
Affiliation(s)
- Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Correspondence e-mail:
| |
Collapse
|
46
|
Curien G, Laurencin M, Robert-Genthon M, Dumas R. Allosteric monofunctional aspartate kinases fromArabidopsis. FEBS J 2006; 274:164-76. [PMID: 17140415 DOI: 10.1111/j.1742-4658.2006.05573.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.
Collapse
Affiliation(s)
- Gilles Curien
- Laboratoire de Physiologie cellulaire Végétale (PCV-DRDC), CEA-CNRS-INRA-Université Joseph Fourier, Grenoble, France.
| | | | | | | |
Collapse
|
47
|
Faehnle CR, Liu X, Pavlovsky A, Viola RE. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:962-6. [PMID: 17012784 PMCID: PMC2225177 DOI: 10.1107/s1744309106038279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 09/19/2006] [Indexed: 11/10/2022]
Abstract
The activation of the beta-carboxyl group of aspartate catalyzed by aspartokinase is the commitment step to amino-acid biosynthesis in the aspartate pathway. The first structure of a microbial aspartokinase, that from Methanococcus jannaschii, has been determined in the presence of the amino-acid substrate L-aspartic acid and the nucleotide product MgADP. The enzyme assembles into a dimer of dimers, with the interfaces mediated by both the N- and C-terminal domains. The active-site functional groups responsible for substrate binding and specificity have been identified and roles have been proposed for putative catalytic functional groups.
Collapse
Affiliation(s)
| | - Xuying Liu
- Department of Chemistry, University of Toledo, Toledo, Ohio 43606, USA
| | | | - Ronald E. Viola
- Department of Chemistry, University of Toledo, Toledo, Ohio 43606, USA
| |
Collapse
|
48
|
Structures of R- and T-state Escherichia coli Aspartokinase III. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Grant GA. The ACT domain: a small molecule binding domain and its role as a common regulatory element. J Biol Chem 2006; 281:33825-9. [PMID: 16987805 DOI: 10.1074/jbc.r600024200] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gregory A Grant
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
50
|
Feller A, Hernandez JM, Grotewold E. An ACT-like Domain Participates in the Dimerization of Several Plant Basic-helix-loop-helix Transcription Factors. J Biol Chem 2006; 281:28964-74. [PMID: 16867983 DOI: 10.1074/jbc.m603262200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maize basic-helix-loop-helix (bHLH) factor R belongs to a group of proteins with important functions in the regulation of metabolism and development through the cooperation with R2R3-MYB transcription factors. Here we show that in addition to the bHLH and the R2R3-MYB-interacting domains, R contains a dimerization region located C-terminal to the bHLH motif. This protein-protein interaction domain is important for the regulation of anthocyanin pigment biosynthesis by contributing to the recruitment of the C1 R2R3-MYB factor to the C1 binding sites present in the promoters of flavonoid biosynthetic genes. The R dimerization region bares structural similarity to the ACT domain present in several metabolic enzymes. Protein fold recognition analyses resulted in the identification of similar ACT-like domains in several other plant bHLH proteins. We show that at least one of these related motifs is capable of mediating homodimer formation. These findings underscore the function of R as a docking site for multiple protein-protein interactions and provide evidence for the presence of a novel dimerization domain in multiple plant bHLH proteins.
Collapse
Affiliation(s)
- Antje Feller
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|