1
|
Yang X, Cheng X, Wang G, Song S, Ding X, Xiong H, Wang C, Zhao J, Li T, Deng P, Liu X, Chen C, Ji W. Cytogenetic identification and molecular mapping for the wheat-Thinopyrum ponticum introgression line with resistance to Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:191. [PMID: 39046492 DOI: 10.1007/s00122-024-04686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Xinong 511, a new wheat-Thinopyrum ponticum variety with excellent fusarium head blight resistance, the QTLs were mapped to the wheat chromosomes 5B and 7A with named QFhb.nwafu-5B and QFhb.nwafu-7A, respectively. Novel Fusarium head blight (FHB) resistance germplasms and genes are valuable for wheat improvement and breeding efforts. Thinopyrum ponticum, a wild relative of common wheat, is a valuable germplasm of disease resistance for wheat improvement and breeding. Xinong 511 (XN511) is a high-quality wheat variety widely cultivated in the Yellow and Huai Rivers Valley of China with stable FHB-resistance. Through analysis of pedigree materials of the wheat cultivar XN511, we found that the genetic material and FHB resistance from Th. ponticum were transmitted to the introgression line, indicating that the FHB resistance in XN511 likely originates from Th. ponticum. To further explore the genetic basis of FHB resistance in XN511, QTL mapping was conducted using the RILs population of XN511 and the susceptible line Aikang 58 (AK58). Survey with makers closely-linked to Fhb1, Fhb2, Fhb4, Fhb5, and Fhb7, indicated that both XN511 and the susceptible lines do not contain these QTL. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed allele-specific PCR (AS-PCR) markers, QTLs in XN511 were successfully located on wheat chromosomes 5B and 7A. These findings are significant for further understanding and utilizing FHB resistance genes in wheat improvement.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaofang Cheng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Guangyi Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Siyuan Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xu Ding
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Changyou Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Tingdong Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Xinlun Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Chunhuan Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Wanquan Ji
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China.
| |
Collapse
|
2
|
Tan L, Wu DD, Zhang CB, Cheng YR, Sha LN, Fan X, Kang HY, Wang Y, Zhang HQ, Escudero M, Zhou YH. Genome constitution and evolution of Elymus atratus (Poaceae: Triticeae) inferred from cytogenetic and phylogenetic analysis. Genes Genomics 2024; 46:589-599. [PMID: 38536618 DOI: 10.1007/s13258-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/21/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet. OBJECTIVE To identify the genome constitution and origin of E. atratus. METHODS In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed. RESULTS Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome. CONCLUSION Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.
Collapse
Affiliation(s)
- Lu Tan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, 615000, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Chang-Bing Zhang
- Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Yi-Ran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Li-Na Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hai-Qin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Lin Y, Zhou S, Yang W, Han B, Liang X, Zhang Y, Zhang J, Han H, Guo B, Liu W, Yang X, Li X, Li L. Chromosomal mapping of a major genetic locus from Agropyron cristatum chromosome 6P that influences grain number and spikelet number in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:82. [PMID: 38489037 DOI: 10.1007/s00122-024-04584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE A novel locus on Agropyron cristatum chromosome 6P that increases grain number and spikelet number was identified in wheat-A. cristatum derivatives and across 3 years. Agropyron cristatum (2n = 4x = 28, PPPP), which has the characteristics of high yield with multiple flowers and spikelets, is a promising gene donor for wheat high-yield improvement. Identifying the genetic loci and genes that regulate yield could elucidate the genetic variations in yield-related traits and provide novel gene sources and insights for high-yield wheat breeding. In this study, cytological analysis and molecular marker analysis revealed that del10a and del31a were wheat-A. cristatum chromosome 6P deletion lines. Notably, del10a carried a segment of the full 6PS and 6PL bin (1-13), while del31a carried a segment of the full 6PS and 6PL bin (1-8). The agronomic characterization and genetic population analysis confirmed that the 6PL bin (9-13) brought about an increase in grain number per spike (average increase of 10.43 grains) and spikelet number per spike (average increase of 3.67) over the three growing seasons. Furthermore, through resequencing, a multiple grain number locus was mapped to the physical interval of 593.03-713.89 Mb on chromosome 6P of A. cristatum Z559. The RNA-seq analysis revealed the expression of 537 genes in the del10a young spike tissue, with the annotation indicating that 16 of these genes were associated with grain number and spikelet number. Finally, a total of ten A. cristatum-specific molecular markers were developed for this interval. In summary, this study presents novel genetic material that is useful for high-yield wheat breeding initiatives to meet the challenge of global food security through enhanced agricultural production.
Collapse
Affiliation(s)
- Yida Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Shenghui Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Wenjing Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Bing Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Xuezhong Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Yuxin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Jinpeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Haiming Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Baojin Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Weihua Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Xinming Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Xiuquan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Lihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Gong B, Chen L, Zhang H, Zhu W, Xu L, Cheng Y, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Chen G, Zhou Y, Kang H, Wu D. Development, identification, and utilization of wheat-tetraploid Thinopyrum elongatum 4EL translocation lines resistant to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:17. [PMID: 38198011 DOI: 10.1007/s00122-023-04525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Linfeng Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Han G, Liu H, Zhu S, Gu T, Cao L, Yan H, Jin Y, Wang J, Liu S, Zhou Y, Shi Z, He H, An D. Two functional CC-NBS-LRR proteins from rye chromosome 6RS confer differential age-related powdery mildew resistance to wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:66-81. [PMID: 38153293 PMCID: PMC10754004 DOI: 10.1111/pbi.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 12/29/2023]
Abstract
Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shanying Zhu
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Huagang He
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Zhang J, Fan C, Liu Y, Shi Q, Sun Y, Huang Y, Yuan J, Han F. Cytological analysis of the diploid-like inheritance of newly synthesized allotetraploid wheat. Chromosome Res 2023; 32:1. [PMID: 38108925 DOI: 10.1007/s10577-023-09745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Polyploidization is a process which is related to species hybridization and whole genome duplication. It is widespread among angiosperm evolution and is essential for speciation and diversification. Allopolyploidization is mainly derived from interspecific hybridization and is believed to pose chromosome imbalances and genome instability caused by meiotic irregularity. However, the self-compatible allopolyploid in wild nature is cytogenetically and genetically stable. Whether this stabilization form was achieved in initial generation or a consequence of long term of evolution was largely unknown. Here, we synthesized a series of nascent allotetraploid wheat derived from three diploid genomes of A, S*, and D. The chromosome numbers of the majority of the progeny derived from these newly formed allotetraploid wheat plants were found to be relatively consistent, with each genome containing 14 chromosomes. In meiosis, bivalent was the majority of the chromosome configuration in metaphase I which supports the stable chromosome number inheritance in the nascent allotetraploid. These findings suggest that diploidization occurred in the newly formed synthetic allotetraploid wheat. However, we still detected aneuploids in a proportion of newly formed allotetraploid wheat, and meiosis of these materials present more irregular chromosome behavior than the euploid. We found that centromere pairing and centromere clustering in meiosis was affected in the aneuploids, which suggest that aneuploidy may trigger the irregular interactions of centromere in early meiosis which may take participate in promoting meiosis stabilization in newly formed allotetraploid wheat.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaolan Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yishuang Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Jiang C, Liu X, Yang Z, Li G. Chromosome Rearrangement in Elymus dahuricus Revealed by ND-FISH and Oligo-FISH Painting. PLANTS (BASEL, SWITZERLAND) 2023; 12:3268. [PMID: 37765432 PMCID: PMC10535892 DOI: 10.3390/plants12183268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
As a perennial herb in Triticeae, Elymus dahuricus is widely distributed in Qinghai-Tibetan Plateau and Central Asia. It has been used as high-quality fodders for improving degraded grassland. The genomic constitution of E. dahuricus (2n = 6x = 42) has been revealed as StStHHYY by cytological approaches. However, the universal karyotyping nomenclature system of E. dahuricus is not fully established by traditional fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH). In this study, the non-denaturing fluorescent in situ hybridization (ND-FISH) using 14 tandem-repeat oligos could effectively distinguish the entire E. dahuricus chromosomes pairs, while Oligo-FISH painting by bulked oligo pools based on wheat-barley collinear regions combined with GISH analysis, is able to precisely determine the linkage group and sub-genomes of the individual E. dahuricus chromosomes. We subsequently established the 42-chromosome karyotype of E. dahuricus with distinctive chromosomal FISH signals, and characterized a new type of intergenomic rearrangement between 2H and 5Y. Furthermore, the comparative chromosomal localization of the centromeric tandem repeats and immunostaining by anti-CENH3 between cultivated barley (Hordeum vulgare L.) and E. dahuricus suggests that centromere-associated sequences in H subgenomes were continuously changing during the process of polyploidization. The precise karyotyping system based on ND-FISH and Oligo-FISH painting methods will be efficient for describing chromosomal rearrangements and evolutionary networks for polyploid Elymus and their related species.
Collapse
Affiliation(s)
| | | | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (X.L.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (X.L.)
| |
Collapse
|
8
|
Yang G, Deng P, Ji W, Fu S, Li H, Li B, Li Z, Zheng Q. Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. FRONTIERS IN PLANT SCIENCE 2023; 14:1131205. [PMID: 36909389 PMCID: PMC9995812 DOI: 10.3389/fpls.2023.1131205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Thinopyrum ponticum (Podp.) Barkworth and D.R. Dewey is a decaploid species that has served as an important genetic resource for improving wheat for the better part of a century. The wheat-Th. ponticum 4Ag (4D) disomic substitution line Blue 58, which was obtained following the distant hybridization between Th. ponticum and common wheat, has been stably resistant to powdery mildew under field conditions for more than 40 years. The transfer of 4Ag into the susceptible wheat cultivar Xiaoyan 81 resulted in powdery mildew resistance, indicating the alien chromosome includes the resistance locus. Irradiated Blue 58 pollen were used for the pollination of the recurrent parent Xiaoyan 81, which led to the development of four stable wheat-Th. ponticum 4Ag translocation lines with diverse alien chromosomal segments. The assessment of powdery mildew resistance showed that translocation line L1 was susceptible, but the other three translocation lines (WTT139, WTT146, and WTT323) were highly resistant. The alignment of 81 specific-locus amplified fragments to the Th. elongatum genome revealed that 4Ag originated from a group 4 chromosome. The corresponding physical positions of every 4Ag-derived fragment were determined according to a cytogenetic analysis, the amplification of specific markers, and a sequence alignment. Considering the results of the evaluation of disease resistance, the Pm locus was mapped to the 3.79-97.12 Mb region of the short arm of chromosome 4Ag. Because of its durability, this newly identified Pm locus from a group 4 chromosome of Th. ponticum may be important for breeding wheat varieties with broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Shi Q, Guo X, Su H, Zhang Y, Hu Z, Zhang J, Han F. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:536-545. [PMID: 36534091 DOI: 10.1111/tpj.16066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyploidy is a common mode of evolution in flowering plants. Both the natural tetraploid Thinopyrum elongatum and the diploid one from the same population show a diploid-like pairing in meiosis. However, debate on the chromosome composition and origin of the tetraploid Th. elongatum is ongoing. In the present study, we obtained the induced tetraploid Th. elongatum and found that the induced and natural tetraploids are morphologically close, except for slower development and lower seed setting. Using probes developed from single chromosome microdissection and a Fosmid library, obvious differentiations were discovered between two chromosome sets (E1 and E2 ) of the natural tetraploid Th. elongatum but not the induced one. Interestingly, hybrid F1 derived from the two different wheat-tetraploid Th. elongatum amphiploids 8802 and 8803 produced seeds well. More importantly, analysis of meiosis in F2 individuals revealed that chromosomes from E1 and E2 could pair well on the durum wheat background with the presence of Ph1. No chromosome set differentiation on the FISH level was discovered from the S1 to S4 generations in the induced one. In metaphase of the meiosis first division in the natural tetraploid, more pairings were bivalents and fewer quadrivalents with ratio of 13.94 II + 0.03 IV (n = 31). Chromosome pairing configuration in the induced tetraploid is 13.05 II + 0.47 IV (n = 19), with the quadrivalent ratio being only slightly higher than the ratio in the natural tetraploid. Therefore, the natural tetraploid Th. elongatum is of autoploid origin and the induced tetraploid Th. elongatum evolutionarily underwent rapid diploidization in the low generation.
Collapse
Affiliation(s)
- Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Li G, Chen Q, Jiang W, Zhang A, Yang E, Yang Z. Molecular and Cytogenetic Identification of Wheat- Thinopyrum intermedium Double Substitution Line-Derived Progenies for Stripe Rust Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 12:28. [PMID: 36616156 PMCID: PMC9823681 DOI: 10.3390/plants12010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) has been hybridized extensively with common wheat and proven to be a valuable germplasm source for improving disease resistance and yield potential of wheat. A novel disease-resistant wheat-Th. intermedium double substitution line X479, carrying 1St(1B) and 4St-4JS (4B), was identified using multi-color non-denaturing fluorescence in situ hybridization (ND-FISH). With the aim of transferring Thinopyrum-specific chromatin to wheat, a total of 573 plants from F2 and F3 progenies of X479 crossed with wheat cultivar MY11 were developed and characterized using sequential ND-FISH with multiple probes. Fifteen types of wheat-Thinopyrum translocation chromosomes were preferentially transmitted in the progenies, and the homozygous wheat-1St, and wheat-4JSL translocation lines were identified using ND-FISH, Oligo-FISH painting and CENH3 immunostaining. The wheat-4JSL translocation lines exhibited high levels of resistance to stripe rust prevalent races in field screening. The gene for stripe rust resistance was found to be physically located on FL0-0.60 of the 4JSL, using deletion lines and specific DNA markers. The new wheat-Th. intermedium translocation lines can be exploited as useful germplasms for wheat improvement.
Collapse
Affiliation(s)
- Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiheng Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenxi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ahui Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
11
|
Ulyanov AV, Karlov AV, Khatefov EB. The use of maize haploidy inducers as a tool in agricultural plant biotechnology. Vavilovskii Zhurnal Genet Selektsii 2022; 26:704-713. [DOI: 10.18699/vjgb-22-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- A. V. Ulyanov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | | - E. B. Khatefov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
12
|
Cytogenetic and Molecular Marker Analyses of a Novel Wheat–Psathyrostachys huashanica 7Ns Disomic Addition Line with Powdery Mildew Resistance. Int J Mol Sci 2022; 23:ijms231810285. [PMID: 36142197 PMCID: PMC9499632 DOI: 10.3390/ijms231810285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is a devastating disease that reduces wheat yield and quality worldwide. The exploration and utilization of new resistance genes from wild wheat relatives is the most effective strategy against this disease. Psathyrostachys huashanica Keng f. ex P. C. Kuo (2n = 2x = 14, NsNs) is an important tertiary gene donor with multiple valuable traits for wheat genetic improvement, especially disease resistance. In this study, we developed and identified a new wheat—P. huashanica disomic addition line, 18-1-5—derived from a cross between P. huashanica and common wheat lines Chinese Spring and CSph2b. Sequential genomic and multicolor fluorescence in situ hybridization analyses revealed that 18-1-5 harbored 21 pairs of wheat chromosomes plus a pair of alien Ns chromosomes. Non-denaturing fluorescence in situ hybridization and molecular marker analyses further demonstrated that the alien chromosomes were derived from chromosome 7Ns of P. huashanica. The assessment of powdery mildew response revealed that line 18-1-5 was highly resistant at the adult stage to powdery mildew pathogens prevalent in China. The evaluation of agronomic traits indicated that 18-1-5 had a significantly reduced plant height and an increased kernel length compared with its wheat parents. Using genotyping-by-sequencing technology, we developed 118 PCR-based markers specifically for chromosome 7Ns of P. huashanica and found that 26 of these markers could be used to distinguish the genomes of P. huashanica and other wheat-related species. Line 18-1-5 can therefore serve as a promising bridging parent for wheat disease resistance breeding. These markers should be conducive for the rapid, precise detection of P. huashanica chromosomes and chromosomal segments carrying Pm resistance gene(s) during marker-assisted breeding and for the investigation of genetic differences and phylogenetic relationships among diverse Ns genomes and other closely related ones.
Collapse
|
13
|
Jia H, Feng H, Yang G, Li H, Fu S, Li B, Li Z, Zheng Q. Establishment and identification of six wheat-Thinopyrum ponticum disomic addition lines derived from partial amphiploid Xiaoyan 7430. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3277-3291. [PMID: 35916916 DOI: 10.1007/s00122-022-04185-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Six wheat-Thinopyrum ponticum disomic addition lines derived from partial amphiploid Xiaoyan 7430 were identified using in situ hybridization and SNP microarray, the homoeologous group and stripe rust resistance of each alien chromosome were determined, and Th. ponticum chromosome-specific markers were developed. Xiaoyan 7430 is a significant partial amphiploid, which is used to set up a bridge for transferring valuable genes from Thinopyrum ponticum (Podp.) Barkworth & D.R. Dewey into common wheat. To accelerate the application of these useful genes in enriching the genetic variability of cultivated wheat by chromosome engineering, a complete set of derived addition lines has been created from Xiaoyan 7430. The chromosome composition of each line was characterized by the combination of genomic in situ hybridization and multicolor fluorescence in situ hybridization (mc-FISH), and the homoeology of each alien chromosome was determined by wheat SNP microarray analysis. Addition line WTA55 with alien group-6 chromosome was evaluated resistant to stripe rust isolates at both the seedling and grain-filling stages (Zadoks scale at z.11 and z.73). Diagnostic marker analysis proved that it could carry a novel stripe rust resistance gene derived from Th. ponticum. Furthermore, a FISH probe and 45 molecular markers specific for alien chromosomes were developed based on specific-locus amplified fragment sequencing (SLAF-seq). Of which 27 markers were separately located on single alien chromosome, and some of them could be used to identify the derived translocation lines. This set of addition lines as well as the molecular markers and the FISH probe will promote the introgression of abundant variation from Th. ponticum into wheat in wheat improvement programs.
Collapse
Affiliation(s)
- Hongwei Jia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- School of Basic Medical Science, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hang Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- School of Basic Medical Science, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Han G, Li H, Cao L, Liu S, Yan H, Wang J, Zhou Y, An D. A Novel Wheat-Rye 2R (2D) Disomic Substitution Line Pyramids Two Types of Resistance to Powdery Mildew. PLANT DISEASE 2022; 106:2433-2440. [PMID: 35188419 DOI: 10.1094/pdis-12-21-2765-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease of wheat that seriously affects yield and quality worldwide. Because of the extensive growth of wheat cultivars with homogeneous genetic background, exploring novel resistant resources from wheat relatives has become important for increasing the genetic diversity of wheat. Rye (Secale cereale) is a wheat relative possessing abundant resistance genes because of its high variation. Wheat line AL69, resistant to powdery mildew, was developed by crossing, backcrossing, and self-pollination for multiple generations between hexaploid triticale Zhongsi 237 and common wheat cultivar Zimai 17. Through genomic in situ hybridization (GISH) and multicolor fluorescence in situ hybridization (FISH), nondenaturing FISH, multicolor GISH, and selection with specific molecular markers, AL69 was determined to be a wheat-rye 2R (2D) disomic substitution line. Testing with different B. graminis f. sp. tritici isolates and genetic analysis showed that the all-stage resistance (also called seedling resistance) of AL69 was conferred by the cataloged powdery mildew resistance gene Pm4b derived from Zimai 17, and its adult-plant resistance was derived from the alien chromosome 2R of Zhongsi 237, which was found to be different from the previously reported rye-derived Pm genes, including Pm7 on 2RL. In addition, AL69 showed improved spike number per plant, spike length, fertile spikelet number per spike, kernel number per spike, and grain yield per plant compared with its wheat parent Zimai 17. An elite line S251 combining powdery mildew resistance with excellent agronomic performance was selected from the progenies of AL69 and wheat cultivar Jimai 22. Therefore, AL69 has two types of resistance genes to powdery mildew and improved agronomic traits through pyramiding and thus can be used as a promising genetic stock for wheat breeding.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Hongwei Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
- The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Liu C, Wang J, Fu S, Wang L, Li H, Wang M, Huang Y, Shi Q, Zhou Y, Guo X, Zhu C, Zhang J, Han F. Establishment of a set of wheat-rye addition lines with resistance to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2469-2480. [PMID: 35676422 DOI: 10.1007/s00122-022-04127-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Complete new wheat-rye disomic, telosomic addition lines and various chromosomal aberrations were developed and characterized by molecular cytogenetic method as novel chromosome engineering materials. A new stem rust resistance (Ug99) gene was located on 3RL. Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating fungal disease worldwide. A recently emerged great threat to global wheat production is Pgt strain Ug99 and its derivatives, which have overcome most of the commonly used resistance genes. Rye (Secale cereale L.), closely related to wheat (Triticum aestivum L.), is a significant and valuable resource of resistance genes for wheat germplasm improvement. It is of great importance and urgency to identify new resistance gene sources of rye and transfer them into wheat. In this study, two complete sets of wheat-rye addition lines were established through wide hybridization, chromosome doubling and backcrossing. A wheat-rye 3RL telosomic addition line was identified with high resistance to stem rust strain Ug99. PCR-based markers specific for the rye chromosome were developed. Furthermore, abundant chromosomal aberrations such as minichromosomes, ring chromosomes as well as centromere reduction and expansion were identified in the progeny of wheat-rye addition lines by multicolor GISH and FISH. The line carrying a novel resistance gene to stem rust can be utilized as a bridge material for wheat disease resistance breeding. The chromosomal and centromeric variation within the wheat-rye hybrids can further contribute to genetic diversity of their offspring.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Shulan Fu
- Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mian Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congle Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Yang X, Xu M, Wang Y, Cheng X, Huang C, Zhang H, Li T, Wang C, Chen C, Wang Y, Ji W. Development and Molecular Cytogenetic Identification of Two Wheat-Aegilops geniculata Roth 7Mg Chromosome Substitution Lines with Resistance to Fusarium Head Blight, Powdery Mildew and Stripe Rust. Int J Mol Sci 2022; 23:ijms23137056. [PMID: 35806057 PMCID: PMC9266563 DOI: 10.3390/ijms23137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium head blight (Fhb), powdery mildew, and stripe rust are major wheat diseases globally. Aegilops geniculata Roth (UgUgMgMg, 2n = 4x = 28), a wild relative of common wheat, is valuable germplasm of disease resistance for wheat improvement and breeding. Here, we report the development and characterization of two substitution accessions with high resistance to powdery mildew, stripe rust and Fhb (W623 and W637) derived from hybrid progenies between Ae. geniculata and hexaploid wheat Chinese Spring (CS). Fluorescence in situ hybridization (FISH), Genomic in situ hybridizations (GISH), and sequential FISH-GISH studies indicated that the two substitution lines possess 40 wheat chromosomes and 2 Ae. geniculata chromosomes. Furthermore, compared that the wheat addition line parent W166, the 2 alien chromosomes from W623 and W637 belong to the 7Mg chromosomes of Ae. geniculata via sequential FISH-GISH and molecular marker analysis. Nullisomic-tetrasomic analysis for homoeologous group-7 of wheat and FISH revealed that the common wheat chromosomes 7A and 7B were replaced in W623 and W637, respectively. Consequently, lines W623, in which wheat chromosomes 7A were replaced by a pair of Ae. geniculata 7Mg chromosomes, and W637, which chromosomes 7B were substituted by chromosomes 7Mg, with resistance to Fhb, powdery mildew, and stripe rust. This study has determined that the chromosome 7Mg from Ae. geniculata exists genes resistant to Fhb and powdery mildew.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
| | - Maoru Xu
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
| | - Yongfu Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
| | - Xiaofang Cheng
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
| | - Chenxi Huang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
| | - Hong Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Tingdong Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Changyou Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Chunhuan Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Yajuan Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (Y.W.); (W.J.)
| | - Wanquan Ji
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.X.); (Y.W.); (X.C.); (C.H.); (H.Z.); (T.L.); (C.W.); (C.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (Y.W.); (W.J.)
| |
Collapse
|
17
|
Yang G, Tong C, Li H, Li B, Li Z, Zheng Q. Cytogenetic identification and molecular marker development of a novel wheat-Thinopyrum ponticum translocation line with powdery mildew resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2041-2057. [PMID: 35451594 DOI: 10.1007/s00122-022-04092-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
A new wheat-Thinopyrum ponticum translocation line with excellent powdery mildew resistance was produced, and alien-specific PCR markers and FISH probes were developed by SLAF-seq. Powdery mildew is one of the most threatening diseases in wheat production. Thinopyrum ponticum (Podp.) Barkworth and D. R. Dewey, as a wild relative, has been used for wheat genetic improvement for the better part of a century. In view of the good powdery mildew resistance of Th. ponticum, we have been working to transfer the resistance genes from Th. ponticum to wheat by creating translocation lines. In this study, a new wheat-Th. ponticum translocation line with excellent resistance and agronomic performance was developed and through seedling disease evaluation, gene postulation and diagnostic marker analysis proved to carry a novel Pm gene derived from Th. ponticum. Cytogenetic analysis revealed that a small alien segment was translocated to the terminal of chromosome 1D to form new translocation TTh-1DS·1DL chromosome. The translocation breakpoint was determined to lie in 21.5 Mb region of chromosome 1D by using Wheat660K SNP array analysis. Based on specific-locus amplified fragment sequencing (SLAF-seq) technology, eight molecular markers and one repetitive sequence probe were developed, which were specific for Th. ponticum. Fortunately, the probe could be used in distinguishing six alien chromosome pairs in partial amphiploid Xiaoyan 7430 by fluorescence in situ hybridization (FISH). Furthermore, a Thinopyrum-specific oligonucleotide probe was designed depending on the sequence information of the FISH probe. The novel translocation line could be used in wheat disease resistance breeding, and these specific markers and probes will enable wheat breeders to rapidly trace the alien genome with the novel Pm gene(s).
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Gong B, Zhang H, Yang Y, Zhang J, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Wu D, Chen G, Zhou Y, Kang H. Development and Identification of a Novel Wheat- Thinopyrum scirpeum 4E (4D) Chromosomal Substitution Line with Stripe Rust and Powdery Mildew Resistance. PLANT DISEASE 2022; 106:975-983. [PMID: 34698515 DOI: 10.1094/pdis-08-21-1599-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici are devastating diseases of wheat worldwide. Exploration of new disease-resistant genes from cultivated wheat and wild relatives are the most effective means of reducing the amounts of fungicides applied to combat these diseases. Thinopyrum scirpeum (2n = 4x = 28, EEEE) is an important promising reservoir of useful genes, including stripe rust and powdery mildew resistance, and may be useful for increasing wheat disease resistance. Here, we characterize a novel wheat-Th. scirpeum disomic substitution line, K16-730-3, and chromosome-specific markers were developed that can be used to trace the Th. scirpeum chromosome or chromosome segments transferred into wheat. Genomic in situ hybridization and fluorescence in situ hybridization analyses indicated that K16-730-3 is a new 4E (4D) chromosomal substitution line. Evaluation of seedling and adult disease responses revealed that K16-730-3 is resistant to stripe rust and powdery mildew. In addition, no obvious difference in grain yield was observed between K16-730-3 and its wheat parents. Genotyping-by-sequencing analyses indicated that 74 PCR-based markers can accurately trace chromosome 4E, which were linked to the disease resistance genes in the wheat background. Further marker validation analyses revealed that 13 specific markers can distinguish between the E-genome chromosomes of Th. scirpeum and the chromosomes of other wheat-related species. The new substitution line K16-730-3 carrying the stripe rust and powdery mildew resistance genes will be useful as novel germplasm in breeding for disease resistance. The markers developed in this study can be used in marker-assisted selection for increasing disease resistance in wheat.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yulu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juwei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - DanDan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
19
|
Tan L, Huang QX, Song Y, Wu DD, Cheng YR, Zhang CB, Sha LN, Fan X, Kang HY, Wang Y, Zhang HQ, Zhou YH. Biosystematics studies on Elymus breviaristatus and Elymus sinosubmuticus (Poaceae: Triticeae). BMC PLANT BIOLOGY 2022; 22:57. [PMID: 35105308 PMCID: PMC8805286 DOI: 10.1186/s12870-022-03441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/18/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Elymus breviaristatus and Elymus sinosubmuticus are perennial herbs, not only morphologically similar but also sympatric distribution. The genome composition of E. sinosubmuticus has not been reported, and the relationship between E. sinosubmuticus and E. breviaristatus is still controversial. We performed artificial hybridization, genomic in situ hybridization, and phylogenetic analyses to clarify whether the two taxa were the same species. RESULTS The high frequency bivalent (with an average of 20.62 bivalents per cell) at metaphase I of pollen mother cells of the artificial hybrids of E. breviaristatus (StYH) × E. sinosubmuticus was observed. It illustrated that E. sinosubmuticus was closely related to E. breviaristatus. Based on genomic in situ hybridization results, we confirmed that E. sinosubmuticus was an allohexaploid, and the genomic constitution was StYH. Phylogenetic analysis results also supported that this species contained St, Y, and H genomes. In their F1 hybrids, pollen activity was 53.90%, and the seed setting rate was 22.46%. Those indicated that the relationship between E. sinosubmuticus and E. breviaristatus is intersubspecific rather than interspecific, and it is reasonable to treated E. sinosubmuticus as the subspecies of E. breviaristatus. CONCLUSIONS In all, the genomic constitutions of E. sinosubmuticus and E. breviaristatus were StYH, and they are species in the genus Campeiostachys. Because E. breviaristatus was treated as Campeistachys breviaristata, Elymus sinosubmuticus should be renamed Campeiostachys breviaristata (Keng) Y. H. Zhou, H. Q. Zhang et C. R. Yang subsp. sinosubmuticus (S. L. Chen) Y. H. Zhou, H. Q. Zhang et L. Tan.
Collapse
Affiliation(s)
- Lu Tan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Qing-Xiang Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Yang Song
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Yi-Ran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Chang-Bin Zhang
- Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Li-Na Sha
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Hai-Qin Zhang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Xuan Y, Ma B, Li D, Tian Y, Zeng Q, He N. Chromosome restructuring and number change during the evolution of Morus notabilis and Morus alba. HORTICULTURE RESEARCH 2022; 9:6510928. [PMID: 35043186 PMCID: PMC8769039 DOI: 10.1093/hr/uhab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 05/20/2023]
Abstract
Mulberry (Morus spp.) is an economically important plant as the main food plant used for rearing domesticated silkworm and it has multiple uses in traditional Chinese medicine. Two basic chromosome numbers (Morus notabilis, n = 7, and Morus alba, n = 14) have been reported in the genus Morus, but the evolutionary history and relationship between them remain unclear. In the present study, a 335-Mb high-quality chromosome-scale genome was assembled for the wild mulberry species M. notabilis. Comparative genomic analyses indicated high chromosomal synteny between the 14 chromosomes of cultivated M. alba and the six chromosomes of wild M. notabilis. These results were successfully verified by fluorescence in situ hybridization. Chromosomal fission/fusion events played crucial roles in the chromosome restructuring process between M. notabilis and M. alba. The activity of the centromere was another key factor that ensured the stable inheritance of chromosomes. Our results also revealed that long terminal repeat retrotransposons were a major driver of the genome divergence and evolution of the mulberry genomes after they diverged from each other. This study provides important insights and a solid foundation for studying the evolution of mulberry, allowing the accelerated genetic improvement of cultivated mulberry species.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Corresponding author. E-mail:
| |
Collapse
|
21
|
Yang G, Zheng Q, Hu P, Li H, Luo Q, Li B, Li Z. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat- Thinopyrum intermedium translocation line WTT11. ABIOTECH 2021; 2:343-356. [PMID: 36304423 PMCID: PMC9590478 DOI: 10.1007/s42994-021-00060-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Xiaoyan 78829, a partial amphidiploid developed by crossing common wheat with Thinopyrum intermedium, is immune to wheat stripe rust. To transfer the resistance gene of this excellent germplasm resource to wheat, the translocation line WTT11 was produced by pollen irradiation and assessed for immunity to stripe rust races CYR32, CYR33 and CYR34. A novel stripe rust-resistance locus derived from Th. intermedium was confirmed by linkage and diagnostic marker analyses. Molecular cytogenetic analyses revealed that WTT11 carries a TTh·2DL translocation. The breakpoint of 1B was located at 95.5 MB, and the alien segments were found to be homoeologous to wheat-group chromosomes 6 and 7 according to a wheat660K single-nucleotide polymorphism (SNP) array analysis. Ten previously developed PCR-based markers were confirmed to rapidly trace the alien segments of WTT11, and 20 kompetitive allele-specific PCR (KASP) markers were developed to enable genotyping of Th. intermedium and common wheat. Evaluation of agronomic traits in two consecutive crop seasons uncovered some favorable agronomic traits in WTT11, such as lower plant height and longer main panicles, that may be applicable to wheat improvement. As a novel genetic resource, the new resistance locus may be useful for wheat disease-resistance breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00060-3.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Pan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
22
|
Yin X, Zhang Y, Chen Y, Wang J, Wang RRC, Fan C, Hu Z. Precise Characterization and Tracking of Stably Inherited Artificial Minichromosomes Made by Telomere-Mediated Chromosome Truncation in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:743792. [PMID: 34671377 PMCID: PMC8521072 DOI: 10.3389/fpls.2021.743792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant artificial minichromosomes are the next-generation technology for plant genetic engineering and represent an independent platform for expressing foreign genes and the tools for studying the structure and function of chromosomes. Minichromosomes have been successfully produced by telomere-mediated chromosome truncation in several plants. However, previous studies have primarily focused on the construction and rough characterization of minichromosomes, while the development of stably inherited minichromosomes and their precise characterization and tracking over different generations have rarely been demonstrated. In this study, a 0.35-kb direct repeat of the Arabidopsis telomeric sequence was transformed into Brassica napus to produce artificial minichromosomes, which were analyzed by multifluorescence in situ hybridization (multi-FISH), Southern hybridization, and primer extension telomere rapid amplification (PETRA). The stably inherited minichromosomes C2 and C4 were developed by crossing transgenic plants with wild-type plants and then selfing the hybrids. Notably, two truncation sites on chromosomes C2 and C4, respectively, were identified by resequencing; thus, the artificial minichromosomes were tracked over different generations with insertion site-specific PCR. This study provided two stably inherited minichromosomes in oilseed rape and describes approaches to precisely characterize the truncation position and track the minichromosomes in offspring through multi-FISH, genome resequencing, and insertion site-specific PCR.
Collapse
Affiliation(s)
- Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, China
| | - Richard R.-C. Wang
- Forage and Range Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Utah State University, Logan, UT, United States
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Liu MS, Tseng SH, Tsai CC, Chen TC, Chung MC. Chromosomal variations of Lycoris species revealed by FISH with rDNAs and centromeric histone H3 variant associated DNAs. PLoS One 2021; 16:e0258028. [PMID: 34591908 PMCID: PMC8483392 DOI: 10.1371/journal.pone.0258028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Lycoris species have various chromosome numbers and karyotypes, but all have a constant total number of chromosome major arms. In addition to three fundamental types, including metacentric (M-), telocentric (T-), and acrocentric (A-) chromosomes, chromosomes in various morphology and size were also observed in natural populations. Both fusion and fission translocation have been considered as main mechanisms leading to the diverse karyotypes among Lycoris species, which suggests the centromere organization playing a role in such arrangements. We detected several chromosomal structure changes in Lycoris including centric fusion, inversion, gene amplification, and segment deletion by using fluorescence in situ hybridization (FISH) probing with rDNAs. An antibody against centromere specific histone H3 (CENH3) of L. aurea (2n = 14, 8M+6T) was raised and used to obtain CENH3-associated DNA sequences of L. aurea by chromatin immunoprecipitation (ChIP) cloning method. Immunostaining with anti-CENH3 antibody could label the centromeres of M-, T-, and A-type chromosomes. Immunostaining also revealed two centromeres on one T-type chromosome and a centromere on individual mini-chromosome. Among 10,000 ChIP clones, 500 clones which showed abundant in L. aurea genome by dot-blotting analysis were FISH mapped on chromosomes to examine their cytological distribution. Five of these 500 clones could generate intense FISH signals at centromeric region on M-type but not T-type chromosomes. FISH signals of these five clones rarely appeared on A-type chromosomes. The five ChIP clones showed similarity in DNA sequences and could generate similar but not identical distribution patterns of FISH signals on individual chromosomes. Furthermore, the distinct distribution patterns of FISH signals on each chromosome generated by these five ChIP clones allow to identify individual chromosome, which is considered difficult by conventional staining approaches. Our results suggest a different organization of centromeres of the three chromosome types in Lycoris species.
Collapse
Affiliation(s)
- Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsuan Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Chi Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ting-Chu Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Schotanus K, Yadav V, Heitman J. Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii. PLoS Genet 2021; 17:e1009743. [PMID: 34464380 PMCID: PMC8407549 DOI: 10.1371/journal.pgen.1009743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres. Linear eukaryotic chromosomes require a specific chromosomal region, the centromere, where the macromolecular kinetochore protein complex assembles. In most organisms, centromeres are located in gene-free, repeat-rich chromosomal regions and may or may not be associated with heterochromatic epigenetic marks. We report that the native centromeres of the human fungal pathogen Cryptococcus deuterogattii are enriched with heterochromatin marks. Deleting a centromere in C. deuterogattii results in formation of neocentromeres that span genes. In some cases, neocentromeres are unstable leading to chromosome-chromosome fusions and neocentromere inactivation. These neocentromeres, unlike native centromeres, lack any of the tested heterochromatic marks or any epigenetic memory. We also found that neocentromere formation can be triggered not only by deletion of the native centromere but also by disrupting its function via insertion of a gene. These results show that neocentromere dynamics in this fungal pathogen are unique among organisms studied so far. Our results also revealed key differences between epigenetics of native centromeres between C. deuterogattii and its sister species, C. neoformans. These finding provide an opportunity to test and study the evolution of centromeres, as well as neocentromeres, in this species complex and how it might contribute to their genome evolution.
Collapse
Affiliation(s)
- Klaas Schotanus
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Douglas RN, Yang H, Zhang B, Chen C, Han F, Cheng J, Birchler JA. De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea mays). Chromosome Res 2021; 29:313-325. [PMID: 34406545 PMCID: PMC8710440 DOI: 10.1007/s10577-021-09670-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023]
Abstract
The B chromosome of maize undergoes nondisjunction at the second pollen mitosis as part of its accumulation mechanism. Previous work identified 9-Bic-1 (9-B inactivated centromere-1), which comprises an epigenetically silenced B chromosome centromere that was translocated to the short arm of chromosome 9(9S). This chromosome is stable in isolation, but when normal B chromosomes are added to the genotype, it will attempt to undergo nondisjunction during the second pollen mitosis and usually fractures the chromosome in 9S. These broken chromosomes allow a test of whether the inactive centromere is reactivated or whether a de novo centromere is formed elsewhere on the chromosome to allow recovery of fragments. Breakpoint determination on the B chromosome and chromosome 9 showed that mini chromosome B1104 has the same breakpoint as 9-Bic-1 in the B centromere region and includes a portion of 9S. CENH3 binding was found on the B centromere region and on 9S, suggesting both centromere reactivation and de novo centromere formation. Another mini chromosome, B496, showed evidence of rearrangement, but it also only showed evidence for a de novo centromere. Other mini chromosome fragments recovered were directly derived from the B chromosome with breakpoints concentrated near the centromeric knob region, which suggests that the B chromosome is broken at a low frequency due to the failure of the sister chromatids to separate at the second pollen mitosis. Our results indicate that both reactivation and de novo centromere formation could occur on fragments derived from the progenitor possessing an inactive centromere.
Collapse
Affiliation(s)
- Ryan N Douglas
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Bing Zhang
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
26
|
Cui Y, Xing P, Qi X, Bao Y, Wang H, Wang RRC, Li X. Characterization of chromosome constitution in three wheat - Thinopyrum intermedium amphiploids revealed frequent rearrangement of alien and wheat chromosomes. BMC PLANT BIOLOGY 2021; 21:129. [PMID: 33663390 PMCID: PMC7931331 DOI: 10.1186/s12870-021-02896-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Thinopyrum intermedium (2n = 6x = 42) is an important wild perennial Triticeae species exhibiting many potentially favorable traits for wheat improvement. Wheat-Th. intermedium partial amphiploids serve as a bridge to transfer desirable genes from Th. intermedium into common wheat. RESULTS Three octoploid Trititrigia accessions (TE261-1, TE266-1, and TE346-1) with good resistances to stripe rust, powdery mildew and aphids were selected from hybrid progenies between Th. intermedium and the common wheat variety 'Yannong 15' (YN15). Genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and multicolor GISH (McGISH) analyses demonstrated that the three octoploid Trititrigia possess 42 wheat chromosomes and 14 Th. intermedium chromosomes. The 14 alien (Th. intermedium) chromosomes belong to a mixed genome consisting of J-, JS- and St-genome chromosomes rather than a single J, JS or St genome. Different types of chromosomal structural variation were also detected in the 1A, 6A, 6B, 2D and 7D chromosomes via FISH, McGISH and molecular marker analysis. The identity of the alien chromosomes and the variationes in the wheat chromosomes in the three Trititrigia octoploids were also different. CONCLUSIONS The wheat-Th. intermedium partial amphiploids possess 14 alien chromosomes which belong to a mixed genome consisting of J-, JS- and St- chromosomes, and 42 wheat chromosomes with different structural variations. These accessions could be used as genetic resources in wheat breeding for the transfer of disease and pest resistance genes from Th. intermedium to common wheat.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Piyi Xing
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Xiaolei Qi
- Tai'an Academy of Agricultural Science, Tai'an, 271000, China
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Richard R-C Wang
- USDA-ARS Forage & Range Research Laboratory, Logan, UT, 84322-6300, USA
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
27
|
Liu Y, Wang C, Su H, Birchler JA, Han F. Phosphorylation of histone H3 by Haspin regulates chromosome alignment and segregation during mitosis in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1046-1058. [PMID: 33130883 DOI: 10.1093/jxb/eraa506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In human cells, Haspin-mediated histone H3 threonine 3 (H3T3) phosphorylation promotes centromeric localization of the chromosomal passenger complex, thereby ensuring proper kinetochore-microtubule attachment. Haspin also binds to PDS5 cohesin-associated factor B (Pds5B), antagonizing the Wings apart-like protein homolog (Wapl)-Pds5B interaction and thus preventing Wapl from releasing centromeric cohesion during mitosis. However, the role of Haspin in plant chromosome segregation is not well understood. Here, we show that in maize (Zea mays) mitotic cells, ZmHaspin localized to the centromere during metaphase and anaphase, whereas it localized to the telomeres during meiosis. These results suggest that ZmHaspin plays different roles during mitosis and meiosis. Knockout of ZmHaspin led to decreased H3T3 phosphorylation and histone H3 serine 10 phosphorylation, and defects in chromosome alignment and segregation in mitosis. These lines of evidence suggest that Haspin regulates chromosome segregation in plants via the mechanism described for humans, namely, H3T3 phosphorylation. Plant Haspin proteins lack the RTYGA and PxVxL motifs needed to bind Pds5B and heterochromatin protein 1, and no obvious cohesion defects were detected in ZmHaspin knockout plants. Taken together, these results highlight the conserved but slightly different roles of Haspin proteins in cell division in plants and in animals.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhui Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Liu Y, Yuan J, Jia G, Ye W, Jeffrey Chen Z, Song Q. Histone H3K27 dimethylation landscapes contribute to genome stability and genetic recombination during wheat polyploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:678-690. [PMID: 33131144 DOI: 10.1111/tpj.15063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 05/02/2023]
Abstract
Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to 'genomic shock' and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.
Collapse
Affiliation(s)
- Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Guanghong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
29
|
Han G, Liu S, Wang J, Jin Y, Zhou Y, Luo Q, Liu H, Zhao H, An D. Identification of an Elite Wheat-Rye T1RS·1BL Translocation Line Conferring High Resistance to Powdery Mildew and Stripe Rust. PLANT DISEASE 2020; 104:2940-2948. [PMID: 32897842 DOI: 10.1094/pdis-02-20-0323-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wheat-rye T1RS·1BL translocations have been widely used worldwide in wheat production for multiple disease resistance and superior yield traits. However, many T1RS·1BL translocations have successively lost their resistance to pathogens due to the coevolution of pathogen virulence with host resistance. Because of the extensive variation in rye (Secale cereale L.) as a naturally cross-pollinating relative of wheat, it still has promise to widen the variation of 1RS and to fully realize its application value in wheat improvement. In the present study, the wheat-rye breeding line R2207 was characterized by comprehensive analyses using genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization with multiple probes, multicolor GISH, and molecular marker analysis, and then was proven to be a cytogenetically stable wheat-rye T1RS·1BL translocation line. Based on the disease responses to different isolates of powdery mildew and genetic analysis, R2207 appears to possess a novel variation for resistance, which was confirmed to be located on the rye chromosome arm 1RS. Line R2207 also exhibited high levels of resistance to stripe rust at both seedling and adult stages, as well as enhanced agronomic performance, so it has been transferred into a large number of commercial cultivars using an efficient 1RS-specific kompetitive allele specific PCR marker for marker-assisted selection.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiaoling Luo
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China
| | - He Zhao
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Science/Key Laboratory of Plant Genetic Engineering of Hebei Province, Shijiazhuang 050051, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Liu Y, Su H, Zhang J, Shi L, Liu Y, Zhang B, Bai H, Liang S, Gao Z, Birchler JA, Han F. Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize. THE PLANT CELL 2020; 32:3113-3123. [PMID: 32817254 PMCID: PMC7534475 DOI: 10.1105/tpc.20.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/17/2020] [Accepted: 08/18/2020] [Indexed: 05/04/2023]
Abstract
Comparative genomics has revealed common occurrences in karyotype evolution such as chromosomal end-to-end fusions and insertions of one chromosome into another near the centromere, as well as many cases of de novo centromeres that generate positional polymorphisms. However, how rearrangements such as dicentrics and acentrics persist without being destroyed or lost remains unclear. Here, we sought experimental evidence for the frequency and timeframe for inactivation and de novo formation of centromeres in maize (Zea mays). The pollen from plants with supernumerary B chromosomes was gamma-irradiated and then applied to normal maize silks of a line without B chromosomes. In ∼8,000 first-generation seedlings, we found many B-A translocations, centromere expansions, and ring chromosomes. We also found many dicentric chromosomes, but a fraction of these show only a single primary constriction, which suggests inactivation of one centromere. Chromosomal fragments were found without canonical centromere sequences, revealing de novo centromere formation over unique sequences; these were validated by immunolocalization with Thr133-phosphorylated histone H2A, a marker of active centromeres, and chromatin immunoprecipitation-sequencing with the CENH3 antibody. These results illustrate the regular occurrence of centromere birth and death after chromosomal rearrangement during a narrow window of one to potentially only a few cell cycles for the rearranged chromosomes to be recognized in this experimental regime.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lindan Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Gao
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211-7400
| | - James A Birchler
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211-7400
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Song L, Zhao H, Zhang Z, Zhang S, Liu J, Zhang W, Zhang N, Ji J, Li L, Li J. Molecular Cytogenetic Identification of Wheat- Aegilops Biuncialis 5M b Disomic Addition Line with Tenacious and Black Glumes. Int J Mol Sci 2020; 21:E4053. [PMID: 32517065 PMCID: PMC7312955 DOI: 10.3390/ijms21114053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 12/02/2022] Open
Abstract
Production of wheat-alien disomic addition lines is of great value to the exploitation and utilization of elite genes originated from related species to wheat. In this study, a novel wheat-Aegilops biuncialis 5Mb disomic addition line WA317 was characterized by in situ hybridization (ISH) and specific-locus amplified fragment sequencing (SLAF-seq) markers. Compared to its parent Chinese Spring (CS), the glumes of WA317 had black color and were difficult to remove after harvesting, suggesting chromosome 5Mb carried gene(s) related to glume development and Triticeae domestication process. A total of 242 Ae. biuncialis SLAF-based markers (298 amplified patterns) were developed and further divided into four categories by Ae. biuncialis Y17, Ae. umbellulata Y139 and Ae. comosa Y258, including 172 markers amplifying the same bands of U and M genome, six and 102 markers amplifying U-specific and M-specific bands, respectively and eighteen markers amplifying specific bands in Y17. Among them, 45 markers had the specific amplifications in WA317 and were 5Mb specific markers. Taken together, line WA317 with tenacious and black glumes should serve as the foundation for understanding of the Triticeae domestication process and further exploitation of primitive alleles for wheat improvement. Ae. biuncialis SLAF-based markers can be used for studying syntenic relationships between U and M genomes as well as rapid tracking of U and M chromosomal segments in wheat background.
Collapse
Affiliation(s)
- Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
| | - Zhi Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Shuai Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Wang H, Liu Y, Yuan J, Zhang J, Han F. The condensin subunits SMC2 and SMC4 interact for correct condensation and segregation of mitotic maize chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:467-479. [PMID: 31816133 DOI: 10.1111/tpj.14639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 05/22/2023]
Abstract
Structural Maintenance of Chromosomes 2 (SMC2) and Structural Maintenance of Chromosomes 4 (SMC4) are the core components of the condensin complexes, which are required for chromosome assembly and faithful segregation during cell division. Because of the crucial functions of both proteins in cell division, much work has been done in various vertebrates, but little information is known about their roles in plants. Here, we identified ZmSMC2 and ZmSMC4 in maize (Zea mays) and confirmed that ZmSMC2 associates with ZmSMC4 via their hinge domains. Immunostaining revealed that both proteins showed dynamic localization during mitosis. ZmSMC2 and ZmSMC4 are essential for proper chromosome segregation and for H3 phosphorylation at Serine 10 (H3S10ph) at pericentromeres during mitotic division. The loss of function of ZmSMC2 and ZmSMC4 enlarges mitotic chromosome volume and impairs sister chromatid separation to the opposite poles. Taken together, these findings confirm and extend the coordinated role of ZmSMC2 and ZmSMC4 in maintenance of normal chromosome architecture and accurate segregation during mitosis.
Collapse
Affiliation(s)
- Hefei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Feng C, Yuan J, Bai H, Liu Y, Su H, Liu Y, Shi L, Gao Z, Birchler JA, Han F. The deposition of CENH3 in maize is stringently regulated. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:6-17. [PMID: 31713923 DOI: 10.1111/tpj.14606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 05/25/2023]
Abstract
The centromere, as an essential element to mediate chromosome segregation, is epigenetically determined by CENH3-containing nucleosomes as a functional marker; therefore the accurate deposition of CENH3 is crucial for chromosome transmission. We characterized the deposition of CENH3 in maize by over-expression and mutational analysis. Our results revealed that over-expressing CENH3 in callus is lethal while over-expressing GFP-CENH3 and CENH3-YFP in callus and plants is not and can be partly deposited normally. Different mutations of GFP-CENH3 demonstrated that CENH3-Thr4 in the N-terminus was needed for the deposition as a positive phosphorylation site and the last five amino acids in the C-terminus are necessary for deposition. The C-terminal tail of CENH3 is confirmed to be responsible for the interaction of CENH3 and histone H4, which indicates that CENH3 maintains deposition in centromeres via interacting with H4 to form stable nucleosomes. For GFP-CENH3 and CENH3-YFP, the fused tags at the termini probably affect the structure of CENH3 and reduce its interaction with other proteins, which in turn could decrease proper deposition. Taken together, multiple amino acids or motifs were shown to play essential roles in CENH3 deposition, which is suggested to be affected by numerous factors in maize.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lindan Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi Gao
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Han G, Liu S, Jin Y, Jia M, Ma P, Liu H, Wang J, An D. Scale development and utilization of universal PCR-based and high-throughput KASP markers specific for chromosome arms of rye (Secale cereale L.). BMC Genomics 2020; 21:206. [PMID: 32131733 PMCID: PMC7057559 DOI: 10.1186/s12864-020-6624-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 02/01/2023] Open
Abstract
Background Rye (Secale cereale L., 2n = 2x = 14, RR), a relative of common wheat, is a large gene resource pool for wheat improvement. Accurate and convenient identification of the rye chromatin in wheat background will facilitate the transfer and utilization of elite genes derived from rye in wheat breeding. Results In the present study, five rye cultivars including Imperial, German White, Jingzhouheimai, Baili and Guyuan were sequenced by specific-locus amplified fragment sequencing (SLAF-seq) to develop large-scale rye-specific markers. Based on SLAF-seq and bioinformatics analyses, a total of 404 universal PCR-based and a whole set of Kompetitive allele-specific PCR (KASP) markers specific for the 14 individual rye chromosome arms were developed and validated. Additionally, two KASP markers specific for 1RS and 2RL were successfully applied in the detection of 1RS translocations in a natural population and 2RL chromosome arms in wheat-rye derived progenies that conferred adult resistance to powdery mildew. Conclusion The 404 PCR-based markers and 14 KASP markers specific for the 14 individual rye chromosome arms developed in this study can enrich the marker densities for gene mapping and accelerate the utilization of rye-derived genes in wheat improvement. Especially, the KASP markers achieved high-throughput and accurate detection of rye chromatin in wheat background, thus can be efficiently used in marker-assisted selection (MAS). Besides, the strategy of rye-specific PCR-based markers converting into KASP markers was high-efficient and low-cost, which will facilitate the tracing of alien genes, and can also be referred for other wheat relatives.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Tellgren-Roth C, Dawson TL, Heitman J, Sanyal K. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 2020; 9:e53944. [PMID: 31958060 PMCID: PMC7025860 DOI: 10.7554/elife.53944] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.
Collapse
Affiliation(s)
- Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Promit Ganguly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | | | - Christian Tellgren-Roth
- National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Thomas L Dawson
- Skin Research Institute Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Drug Discovery, Medical University of South Carolina, School of PharmacyCharlestonUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| |
Collapse
|
36
|
Birchler JA, Swyers NC. Engineered minichromosomes in plants. Exp Cell Res 2020; 388:111852. [PMID: 31972219 DOI: 10.1016/j.yexcr.2020.111852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Artificial chromosome platforms are described in plants. Because the function of centromeres is largely epigenetic, attempts to produce artificial chromosomes with plant centromere DNA have failed. The removal of the centromeric sequences from the cell strips off the centromeric histone that is the apparent biochemical marker of centromere activity. Thus, engineered minichromosomes have been produced by telomere mediated chromosomal truncation. The introduction of telomere repeats will cleave the chromosome at the site of insertion and attach the accompanying transgenes in the process. Such truncation events have been documented in maize, Arabidopsis, barley, rice, Brassica and wheat. Truncation of the nonvital supernumerary B chromosome of maize is a favorite target but engineered minichromosomes derived from the normal A chromosomes have also been recovered. Transmission through mitosis of small chromosomes is apparently normal but there is loss during meiosis. Potential solutions to address this issue are discussed. With procedures now well established to produce the foundation for artificial chromosomes in plants, current efforts are directed at building them up to specification using gene stacking methods and editing techniques.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA.
| | - Nathan C Swyers
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA
| |
Collapse
|
37
|
Ma P, Han G, Zheng Q, Liu S, Han F, Wang J, Luo Q, An D. Development of Novel Wheat-Rye Chromosome 4R Translocations and Assignment of Their Powdery Mildew Resistance. PLANT DISEASE 2020; 104:260-268. [PMID: 31644391 DOI: 10.1094/pdis-01-19-0160-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rye (Secale cereale L.) is an important gene donor for wheat improvement because of its many valuable traits, especially disease resistance. Development of novel wheat-rye translocations with disease resistance can contribute to transferring resistance into common wheat. In a previous study, a wheat-rye T4BL·4RL and T7AS·4RS translocation line (WR41-1) was developed by distant hybridization, and it was speculated that its resistance to powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), was derived from rye based on pedigree analysis. To make accurate use of chromosome 4R in wheat improvement, a set of new 4R translocations involving different arm translocations (e.g., 4RS monosomic, 4RL monosomic, 4RL disomic, 4RS monosomic plus 4RL monosomic, 4RS monosomic plus 4RL disomic, and 4RS disomic plus 4RL disomic translocations) was developed from crosses with common wheat. Those translocations were characterized by genomic in situ hybridization and expressed sequence tag simple sequence repeat marker analysis. To confirm the source of powdery mildew resistance, the translocation plants were tested against Bgt isolate E09. The results indicated that all translocations with 4RL were resistant at all tested growth stages, whereas those with only 4RS translocation or no alien translocation were susceptible. This further indicated that the powdery mildew resistance of WR41-1 was derived from the alien chromosome arm 4RL. To effectively use 4RL resistance in wheat improvement, two competitive allele-specific PCR markers specific for chromosome arm 4RL were developed to detect the alien chromosome in the wheat genome. These new translocation lines with diagnostic markers can efficiently serve as important bridges for wheat improvement.
Collapse
Affiliation(s)
- Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Gong B, Zhu W, Li S, Wang Y, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Qi P, Huang L, Chen G, Zhou Y, Kang H. Molecular cytogenetic characterization of wheat-Elymus repens chromosomal translocation lines with resistance to Fusarium head blight and stripe rust. BMC PLANT BIOLOGY 2019; 19:590. [PMID: 31881925 PMCID: PMC6935081 DOI: 10.1186/s12870-019-2208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/18/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe and stripe rust caused by Puccinia striiformis f. sp. tritici are devastating diseases that affect wheat production worldwide. The use of disease-resistant genes and cultivars is the most effective means of reducing fungicide applications to combat these diseases. Elymus repens (2n = 6x = 42, StStStStHH) is a potentially useful germplasm of FHB and stripe rust resistance for wheat improvement. RESULTS Here, we report the development and characterization of two wheat-E. repens lines derived from the progeny of common wheat-E. repens hybrids. Cytological studies indicated that the mean chromosome configuration of K15-1192-2 and K15-1194-2 at meiosis were 2n = 42 = 0.86 I + 17.46 II (ring) + 3.11 II (rod) and 2n = 42 = 2.45 I + 14.17 II (ring) + 5.50 II (rod) + 0.07 III, respectively. Genomic and fluorescence in situ hybridization karyotyping and simple sequence repeats markers revealed that K15-1192-2 was a wheat-E. repens 3D/?St double terminal chromosomal translocation line. Line K15-1194-2 was identified as harboring a pair of 7DS/?StL Robertsonian translocations and one 3D/?St double terminal translocational chromosome. Further analyses using specific expressed sequence tag-SSR markers confirmed that the wheat-E. repens translocations involved the 3St chromatin in both lines. Furthermore, compared with the wheat parent Chuannong16, K15-1192-2 and K15-1194-2 expressed high levels of resistance to FHB and stripe rust pathogens prevalent in China. CONCLUSIONS Thus, this study has determined that the chromosome 3St of E. repens harbors gene(s) highly resistant to FHB and stripe rust, and chromatin of 3St introgressed into wheat chromosomes completely presented the resistance, indicating the feasibility of using these translocation lines as novel material for breeding resistant wheat cultivars and alien gene mining.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sanyue Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuqi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
39
|
Li D, Zhang J, Liu H, Tan B, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Ma J, Chen G, Zhou Y, Kang H. Characterization of a wheat-tetraploid Thinopyrum elongatum 1E(1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genomics 2019; 20:963. [PMID: 31823771 PMCID: PMC6905003 DOI: 10.1186/s12864-019-6359-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/01/2019] [Indexed: 01/17/2023] Open
Abstract
Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species.
Collapse
Affiliation(s)
- Daiyan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juwei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haijiao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Binwen Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
40
|
Easterling KA, Pitra NJ, Jones RJ, Lopes LG, Aquino JR, Zhang D, Matthews PD, Bass HW. 3D Molecular Cytology of Hop ( Humulus lupulus) Meiotic Chromosomes Reveals Non-disomic Pairing and Segregation, Aneuploidy, and Genomic Structural Variation. FRONTIERS IN PLANT SCIENCE 2018; 9:1501. [PMID: 30443259 PMCID: PMC6221928 DOI: 10.3389/fpls.2018.01501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 05/31/2023]
Abstract
Hop (Humulus lupulus L.) is an important crop worldwide, known as the main flavoring ingredient in beer. The diversifying brewing industry demands variation in flavors, superior process properties, and sustainable agronomics, which are the focus of advanced molecular breeding efforts in hops. Hop breeders have been limited in their ability to create strains with desirable traits, however, because of the unusual and unpredictable inheritance patterns and associated non-Mendelian genetic marker segregation. Cytogenetic analysis of meiotic chromosome behavior has also revealed conspicuous and prevalent occurrences of multiple, atypical, non-disomic chromosome complexes, including those involving autosomes in late prophase. To explore the role of meiosis in segregation distortion, we undertook 3D cytogenetic analysis of hop pollen mother cells stained with DAPI and FISH. We used telomere FISH to demonstrate that hop exhibits a normal telomere clustering bouquet. We also identified and characterized a new sub-terminal 180 bp satellite DNA tandem repeat family called HSR0, located proximal to telomeres. Highly variable 5S rDNA FISH patterns within and between plants, together with the detection of anaphase chromosome bridges, reflect extensive departures from normal disomic signal composition and distribution. Subsequent FACS analysis revealed variable DNA content in a cultivated pedigree. Together, these findings implicate multiple phenomena, including aneuploidy, segmental aneuploidy, or chromosome rearrangements, as contributing factors to segregation distortion in hop.
Collapse
Affiliation(s)
- Katherine A. Easterling
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Hopsteiner, S.S. Steiner, Inc., New York, NY, United States
| | | | | | - Lauren G. Lopes
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Jenna R. Aquino
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Dong Zhang
- Hopsteiner, S.S. Steiner, Inc., New York, NY, United States
| | | | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
41
|
Xue M, Wang J, Jiang L, Wang M, Wolfe S, Pawlowski WP, Wang Y, He Y. The Number of Meiotic Double-Strand Breaks Influences Crossover Distribution in Arabidopsis. THE PLANT CELL 2018; 30:2628-2638. [PMID: 30282794 PMCID: PMC6241269 DOI: 10.1105/tpc.18.00531] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Accepted: 09/30/2018] [Indexed: 05/06/2023]
Abstract
Meiotic recombination generates genetic diversity and ensures proper chromosome segregation. Recombination is initiated by the programmed formation of double-strand breaks (DSBs) in chromosomal DNA by DNA Topoisomerase VI-A Subunit (SPO11), a topoisomerase-like enzyme. Repair of some DSBs leads to the formation of crossovers (COs). In most organisms, including plants, the number of DSBs greatly exceeds the number of COs and which DSBs become CO sites is tightly controlled. The CO landscape is affected by DNA sequence and epigenome features of chromosomes as well as by global mechanisms controlling recombination dynamics. The latter are poorly understood and their effects on CO distribution are not well elucidated. To study how recombination dynamics affects CO distribution, we engineered Arabidopsis thaliana plants to carry hypomorphic alleles of SPO11-1 Two independent transgenic lines showed ∼30% and 40% reductions in DSB numbers, which were commensurate with the dosage of the SPO11-1 transcript. The reduction in DSB number resulted in proportional, although smaller, reductions of the number of COs. Most interestingly, CO distribution along the chromosomes was dramatically altered, with substantially fewer COs forming in pericentromeric chromosome regions. These results indicate that SPO11 activity, and the resulting DSB numbers are major factors shaping the CO landscape.
Collapse
Affiliation(s)
- Ming Xue
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Jun Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Luguang Jiang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Minghui Wang
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Bioinformatics Facility, Cornell University, Ithaca, New York 14853
| | - Sarah Wolfe
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | | | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
42
|
The Behavior of the Maize B Chromosome and Centromere. Genes (Basel) 2018; 9:genes9100476. [PMID: 30275397 PMCID: PMC6210970 DOI: 10.3390/genes9100476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/16/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
The maize B chromosome is a non-essential chromosome with an accumulation mechanism. The dispensable nature of the B chromosome facilitates many types of genetic studies in maize. Maize lines with B chromosomes have been widely used in studies of centromere functions. Here, we discuss the maize B chromosome alongside the latest progress of B centromere activities, including centromere misdivision, inactivation, reactivation, and de novo centromere formation. The meiotic features of the B centromere, related to mini-chromosomes and the control of the size of the maize centromere, are also discussed.
Collapse
|
43
|
Oliveira LC, Torres GA. Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 2018; 45:1491-1497. [DOI: 10.1007/s11033-018-4284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
|
44
|
Han F, Lamb JC, McCaw ME, Gao Z, Zhang B, Swyers NC, Birchler JA. Meiotic Studies on Combinations of Chromosomes With Different Sized Centromeres in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:785. [PMID: 29951076 PMCID: PMC6008422 DOI: 10.3389/fpls.2018.00785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/23/2018] [Indexed: 05/16/2023]
Abstract
Multiple centromere misdivision derivatives of a translocation between the supernumerary B chromosome and the short arm of chromosome 9 (TB-9Sb) permit investigation of how centromeres of different sizes behave in meiosis in opposition or in competition with each other. In the first analysis, heterozygotes were produced between the normal TB-9Sb and derivatives of it that resulted from centromere misdivision that reduced the amounts of centromeric DNA. These heterozygotes could test whether these drastic differences would result in meiotic drive of the larger chromosome in female meiosis. Cytological determinations of the segregation of large and small centromeres among thousands of progeny of four combinations were made. The recovery of the larger centromere was at a few percent higher frequency in two of four combinations. However, examination of phosphorylated histone H2A-Thr133, a characteristic of active centromeres, showed a lack of correlation with the size of the centromeric DNA, suggesting an expansion of the basal protein features of the kinetochore in two of the three cases despite the reduction in the size of the underlying DNA. In the second analysis, plants containing different sizes of the B chromosome centromere were crossed to plants with TB-9Sb with a foldback duplication of 9S (TB-9Sb-Dp9). In the progeny, plants containing large and small versions of the B chromosome centromere were selected by FISH. A meiotic "tug of war" occurred in hybrid combinations by recombination between the normal 9S and the foldback duplication in those cases in which pairing occurred. Such pairing and recombination produce anaphase I bridges but in some cases the large and small centromeres progressed to the same pole. In one combination, new dicentric chromosomes were found in the progeny. Collectively, the results indicate that the size of the underlying DNA of a centromere does not dramatically affect its segregation properties or its ability to progress to the poles in meiosis potentially because the biochemical features of centromeres adjust to the cellular conditions.
Collapse
Affiliation(s)
- Fangpu Han
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jonathan C. Lamb
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Morgan E. McCaw
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Zhi Gao
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Bing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nathan C. Swyers
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
45
|
Li D, Li T, Wu Y, Zhang X, Zhu W, Wang Y, Zeng J, Xu L, Fan X, Sha L, Zhang H, Zhou Y, Kang H. FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines. FRONTIERS IN PLANT SCIENCE 2018; 9:526. [PMID: 29765383 PMCID: PMC5938340 DOI: 10.3389/fpls.2018.00526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Tetraploid Thinopyrum elongatum, which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ES⋅1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer.
Collapse
Affiliation(s)
- Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
46
|
What is behind “centromere repositioning”? Chromosoma 2018; 127:229-234. [DOI: 10.1007/s00412-018-0672-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
|
47
|
Birchler JA, Han F. Barbara McClintock's Unsolved Chromosomal Mysteries: Parallels to Common Rearrangements and Karyotype Evolution. THE PLANT CELL 2018; 30:771-779. [PMID: 29545470 PMCID: PMC5969279 DOI: 10.1105/tpc.17.00989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 05/04/2023]
Abstract
Two obscure studies on chromosomal behavior by Barbara McClintock are revisited in light of subsequent studies and evolutionary genomics of chromosome number reduction. The phenomenon of deficiency recovery in which adjacent genetic markers lost in the zygote reappear in later developmental sectors is discussed in light of de novo centromere formation on chromosomal fragments. Second, McClintock described a small chromosome, which she postulated carried an "X component," that fostered specific types of chromosomal rearrangements mainly involving centromere changes and attachments to the termini of chromosomes. These findings are cast in the context of subsequent studies on centromere misdivision, the tendency of broken fragments to join chromosome ends, and the realization from genomic sequences that nested chromosomal insertion and end-to-end chromosomal fusions are common features of karyotype evolution. Together, these results suggest a synthesis that centromere breaks, inactivation, and de novo formation together with telomeres-acting under some circumstances as double-strand DNA breaks that join with others-is the underlying basis of these chromosomal phenomena.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Wang Y, Feng S, Li S, Tang D, Chen Y, Chen Y, Zhou B. Inducement and identification of chromosome introgression and translocation of Gossypium australe on Gossypium hirsutum. BMC Genomics 2018; 19:15. [PMID: 29301494 PMCID: PMC5755069 DOI: 10.1186/s12864-017-4398-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 12/19/2017] [Indexed: 11/23/2022] Open
Abstract
Background We previously reported the development of a set of Gossypium hirsutum-G. australe alien chromosome addition lines. Naturally, however, G. hirsutum-G. australe chromosome exchanges were very limited, impeding the stable transference of useful genes from G. australe (G2G2 genome) into the most cultivated cotton, G. hirsutum (AADD). Results In the present report, the pollen from a pentaploid (2n = AADDG2) of G. hirsutum-G. australe was irradiated with seven different doses ranging from 10 to 40 Grays and used to pollinate emasculated flowers of G. hirsutum over three consecutive years. Irradiation greatly increased the genetic recombination rates of the G. hirsutum and G. australe chromosomes and a total of 107 chromosome introgression individuals in 192 GISH-negative (with no GISH signal on chromosome) survived individuals, 11 chromosome translocation individuals (containing 12 chromosome translocation events) and 67 chromosome addition individuals were obtained in 70 GISH-positive (with GISH signal(s) on chromosome(s)) survived individuals, which are invaluable for mining desirable genes from G. australe. Multicolor genomic in situ hybridization results showed that there were three types of translocation, whole arm translocation, large alien segment translocation and small alien segment translocation, and that all translocations occurred between the G2-genome and the A-subgenome chromosomes in G. hirsutum. We also found that higher doses induced much higher rates of chromosome variation but also greatly lowered the seed viability and seedling survivability. Conclusions Irradiation has been successfully employed to induce chromosome introgressions and chromosome translocations and promote chromosome exchanges between cultivated and wild species. In addition, by balancing the rates of chromosome introgression and translocation to those of seed set, seed germination, and seedling rates in the M1 generation, we conclude that the dosage of 20 Grays is the most suitable. The established methodology may guide the utilization of the tertiary gene pool of Gossypium species such as G. australe in cotton breeding in the future. Electronic supplementary material The online version of this article (10.1186/s12864-017-4398-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Sai Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yu Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Yu Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
49
|
Liu Y, Su H, Liu Y, Zhang J, Dong Q, Birchler JA, Han F. Cohesion and centromere activity are required for phosphorylation of histone H3 in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1121-1131. [PMID: 29032586 DOI: 10.1111/tpj.13748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 05/03/2023]
Abstract
Haspin-mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.) mitotic cells, H3T3ph is concentrated at pericentromeric and centromeric regions. Additional weak H3T3ph signals occur between cohered sister chromatids at prometaphase. Immunostaining on dicentric chromosomes reveals that an inactive centromere cannot maintain H3T3ph at metaphase, indicating that a functional centromere is required for H3T3 phosphorylation. H3T3ph locates at a newly formed centromeric region that lacks detectable CentC sequences and strongly reduced CRM and ZmBs repeat sequences at metaphase II. These results suggest that centromeric localization of H3T3ph is not dependent on centromeric sequences. In maize meiocytes, H3T3 phosphorylation occurs at the late diakinesis and extends to the entire chromosome at metaphase I, but is exclusively limited to the centromere at metaphase II. The H3T3ph signals are absent in the afd1 (absence of first division) and sgo1 (shugoshin) mutants during meiosis II when the sister chromatids exhibit random distribution. Further, we show that H3T3ph is mainly located at the pericentromere during meiotic prophase II but is restricted to the inner centromere at metaphase II. We propose that this relocation of H3T3ph depends on tension at the centromere and is required to promote bi-orientation of sister chromatids.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianhua Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
50
|
Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J Genet Genomics 2017; 44:531-539. [DOI: 10.1016/j.jgg.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022]
|