1
|
Wang Z, Yang Q, Zhang D, Lu Y, Wang Y, Pan Y, Qiu Y, Men Y, Yan W, Xiao Z, Sun R, Li W, Huang H, Guo H. A cytoplasmic osmosensing mechanism mediated by molecular crowding-sensitive DCP5. Science 2024; 386:eadk9067. [PMID: 39480925 DOI: 10.1126/science.adk9067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024]
Abstract
Plants are frequently challenged by osmotic stresses. How plant cells sense environmental osmolarity changes is not fully understood. We report that Arabidopsis Decapping 5 (DCP5) functions as a multifunctional cytoplasmic osmosensor that senses and responds to extracellular hyperosmolarity. DCP5 harbors a plant-specific intramolecular crowding sensor (ICS) that undergoes conformational change and drives phase separation in response to osmotically intensified molecular crowding. Upon hyperosmolarity exposure, DCP5 rapidly and reversibly assembles to DCP5-enriched osmotic stress granules (DOSGs), which sequestrate plenty of mRNA and regulatory proteins, and thus adaptively reprograms both the translatome and transcriptome to facilitate plant osmotic stress adaptation. Our findings uncover a cytoplasmic osmosensing mechanism mediated by DCP5 with plant-specific molecular crowding sensitivity and suggest a stress sensory function for hyperosmotically induced stress granules.
Collapse
Affiliation(s)
- Zhenyu Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiuhua Yang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuanyi Lu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yichuan Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yajie Pan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhina Xiao
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruixue Sun
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenyang Li
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongda Huang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Huang Z, Xu Z, Liu X, Chen G, Hu C, Chen M, Liu Y. Exploring the Role of the Processing Body in Plant Abiotic Stress Response. Curr Issues Mol Biol 2024; 46:9844-9855. [PMID: 39329937 PMCID: PMC11430669 DOI: 10.3390/cimb46090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with specific proteins to form P-Bodies, where they are either stored or degraded. The protein composition of P-Bodies varies depending on cell type, developmental stage, and external environmental conditions. This review primarily elucidates the protein composition in plants and the assembly of P-Bodies, and focuses on the mechanisms by which various proteins within the P-Bodies of plants regulate mRNA decapping, degradation, translational repression, and storage at the post-transcriptional level in response to ethylene signaling and abiotic stresses such as drought, high salinity, or extreme temperatures. This overview provides insights into the role of the P-Body in plant abiotic stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Cai Z, Tang Q, Song P, Tian E, Yang J, Jia G. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. THE PLANT CELL 2024; 36:2908-2926. [PMID: 38835286 PMCID: PMC11289641 DOI: 10.1093/plcell/koae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
N 6-methyladenosine (m6A) is the most abundant mRNA modification and plays diverse roles in eukaryotes, including plants. It regulates various processes, including plant growth, development, and responses to external or internal stress responses. However, the mechanisms underlying how m6A is related to environmental stresses in both mammals and plants remain elusive. Here, we identified EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) as an m6A reader protein and showed that its m6A-binding capability is required for salt stress responses in Arabidopsis (Arabidopsis thaliana). ECT8 accelerates the degradation of its target transcripts through direct interaction with the decapping protein DECAPPING 5 within processing bodies. We observed a significant increase in the ECT8 expression level under various environmental stresses. Using salt stress as a representative stressor, we found that the transcript and protein levels of ECT8 rise in response to salt stress. The increased abundance of ECT8 protein results in the enhanced binding capability to m6A-modified mRNAs, thereby accelerating their degradation, especially those of negative regulators of salt stress responses. Our results demonstrated that ECT8 acts as an abiotic stress sensor, facilitating mRNA decay, which is vital for maintaining transcriptome homeostasis and enhancing stress tolerance in plants. Our findings not only advance the understanding of epitranscriptomic gene regulation but also offer potential applications for breeding more resilient crops in the face of rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Enlin Tian
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Carpentier MC, Receveur AE, Boubegtitene A, Cadoudal A, Bousquet-Antonelli C, Merret R. Genome-wide analysis of mRNA decay in Arabidopsis shoot and root reveals the importance of co-translational mRNA decay in the general mRNA turnover. Nucleic Acids Res 2024; 52:7910-7924. [PMID: 38721772 PMCID: PMC11260455 DOI: 10.1093/nar/gkae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 07/23/2024] Open
Abstract
Until recently, the general 5'-3' mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5' to 3' pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Anne-Elodie Receveur
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Alexandre Boubegtitene
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Adrien Cadoudal
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
5
|
Zuo Z, Roux ME, Dagdas YF, Rodriguez E, Petersen M. PAT mRNA decapping factors are required for proper development in Arabidopsis. FEBS Lett 2024; 598:1008-1021. [PMID: 38605280 DOI: 10.1002/1873-3468.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Feng L, Yan W, Tang X, Wu H, Pan Y, Lu D, Ling-Hu Q, Liu Y, Liu Y, Song X, Ali M, Fang L, Guo H, Li B. Multiple factors and features dictate the selective production of ct-siRNA in Arabidopsis. Commun Biol 2024; 7:474. [PMID: 38637717 PMCID: PMC11026412 DOI: 10.1038/s42003-024-06142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Coding transcript-derived siRNAs (ct-siRNAs) produced from specific endogenous loci can suppress the translation of their source genes to balance plant growth and stress response. In this study, we generated Arabidopsis mutants with deficiencies in RNA decay and/or post-transcriptional gene silencing (PTGS) pathways and performed comparative sRNA-seq analysis, revealing that multiple RNA decay and PTGS factors impede the ct-siRNA selective production. Genes that produce ct-siRNAs often show increased or unchanged expression and typically have higher GC content in sequence composition. The growth and development of plants can perturb the dynamic accumulation of ct-siRNAs from different gene loci. Two nitrate reductase genes, NIA1 and NIA2, produce massive amounts of 22-nt ct-siRNAs and are highly expressed in a subtype of mesophyll cells where DCL2 exhibits higher expression relative to DCL4, suggesting a potential role of cell-specific expression of ct-siRNAs. Overall, our findings unveil the multifaceted factors and features involved in the selective production and regulation of ct-siRNAs and enrich our understanding of gene silencing process in plants.
Collapse
Affiliation(s)
- Li Feng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Wei Yan
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xianli Tang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huihui Wu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yajie Pan
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Dongdong Lu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Qianyan Ling-Hu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yuelin Liu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yongqi Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Xiehai Song
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Muhammad Ali
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Liang Fang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
| |
Collapse
|
7
|
Liu C, Mentzelopoulou A, Hatzianestis IH, Tzagkarakis E, Skaltsogiannis V, Ma X, Michalopoulou VA, Romero-Campero FJ, Romero-Losada AB, Sarris PF, Marhavy P, Bölter B, Kanterakis A, Gutierrez-Beltran E, Moschou PN. A proxitome-RNA-capture approach reveals that processing bodies repress coregulated hub genes. THE PLANT CELL 2024; 36:559-584. [PMID: 37971938 PMCID: PMC10896293 DOI: 10.1093/plcell/koad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Cellular condensates are usually ribonucleoprotein assemblies with liquid- or solid-like properties. Because these subcellular structures lack a delineating membrane, determining their compositions is difficult. Here we describe a proximity-biotinylation approach for capturing the RNAs of the condensates known as processing bodies (PBs) in Arabidopsis (Arabidopsis thaliana). By combining this approach with RNA detection, in silico, and high-resolution imaging approaches, we studied PBs under normal conditions and heat stress. PBs showed a much more dynamic RNA composition than the total transcriptome. RNAs involved in cell wall development and regeneration, plant hormonal signaling, secondary metabolism/defense, and RNA metabolism were enriched in PBs. RNA-binding proteins and the liquidity of PBs modulated RNA recruitment, while RNAs were frequently recruited together with their encoded proteins. In PBs, RNAs follow distinct fates: in small liquid-like PBs, RNAs get degraded while in more solid-like larger ones, they are stored. PB properties can be regulated by the actin-polymerizing SCAR (suppressor of the cyclic AMP)-WAVE (WASP family verprolin homologous) complex. SCAR/WAVE modulates the shuttling of RNAs between PBs and the translational machinery, thereby adjusting ethylene signaling. In summary, we provide an approach to identify RNAs in condensates that allowed us to reveal a mechanism for regulating RNA fate.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Ioannis H Hatzianestis
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | | | - Vasileios Skaltsogiannis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Xuemin Ma
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Francisco J Romero-Campero
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avenida Reina Mercedes s/n, Seville 41012, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Ana B Romero-Losada
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avenida Reina Mercedes s/n, Seville 41012, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Biosciences, University of Exeter, Exeter, UK
| | - Peter Marhavy
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Bettina Bölter
- Ludwig Maximilians University Munich, Plant Biochemistry, Großhadernerstr. 2-4, Planegg-Martinsried 82152, Germany
| | - Alexandros Kanterakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
8
|
Lee KP, Liu K, Kim EY, Medina-Puche L, Dong H, Di M, Singh RM, Li M, Qi S, Meng Z, Cho J, Zhang H, Lozano-Duran R, Kim C. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis. THE PLANT CELL 2024; 36:746-763. [PMID: 38041863 PMCID: PMC10896288 DOI: 10.1093/plcell/koad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/04/2023]
Abstract
N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Kaiwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laura Medina-Puche
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Haihong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Shan Qi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoling Meng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Wu K, Fu Y, Ren Y, Liu L, Zhang X, Ruan M. Turnip crinkle virus-encoded suppressor of RNA silencing suppresses mRNA decay by interacting with Arabidopsis XRN4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:744-755. [PMID: 37522642 DOI: 10.1111/tpj.16402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Plant cells employ intricate defense mechanisms, including mRNA decay pathways, to counter viral infections. Among the RNA quality control (RQC) mechanisms, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD) pathways play critical roles in recognizing and cleaving aberrant mRNA molecules. Turnip crinkle virus (TCV) is a plant virus that triggers mRNA decay pathways, but it has also evolved strategies to evade this antiviral defense. In this study, we investigated the activation of mRNA decay during TCV infection and its impact on TCV RNA accumulation. We found that TCV infection induced the upregulation of essential mRNA decay factors, indicating their involvement in antiviral defense and the capsid protein (CP) of TCV, a well-characterized viral suppressor of RNA silencing (VSR), also compromised the mRNA decay-based antiviral defense by targeting AtXRN4. This interference with mRNA decay was supported by the observation that TCV CP stabilized a reporter transcript with a long 3' untranslated region (UTR). Moreover, TCV CP suppressed the decay of known NMD target transcripts, further emphasizing its ability to modulate host RNA control mechanisms. Importantly, TCV CP physically interacted with AtXRN4, providing insight into the mechanism of viral interference with mRNA decay. Overall, our findings reveal an alternative strategy employed by TCV, wherein the viral coat protein suppresses the mRNA decay pathway to facilitate viral infection.
Collapse
Affiliation(s)
- Kunxin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yan Fu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yanli Ren
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Linyu Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| |
Collapse
|
10
|
Chergintsev DA, Solovieva AD, Atabekova AK, Lezzhov AA, Golyshev SA, Morozov SY, Solovyev AG. Properties of Plant Virus Protein Encoded by the 5'-Proximal Gene of Tetra-Cistron Movement Block. Int J Mol Sci 2023; 24:14144. [PMID: 37762447 PMCID: PMC10532019 DOI: 10.3390/ijms241814144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To move from cell to cell through plasmodesmata, many plant viruses require the concerted action of two or more movement proteins (MPs) encoded by transport gene modules of virus genomes. A tetra-cistron movement block (TCMB) is a newly discovered transport module comprising four genes. TCMB encodes three proteins, which are similar to MPs of the transport module known as the "triple gene block", and a protein unrelated to known viral MPs and containing a double-stranded RNA (dsRNA)-binding domain similar to that found in a family of cell proteins, including AtDRB4 and AtHYL1. Here, the latter TCMB protein, named vDRB for virus dsRNA-binding protein, is shown to bind both dsRNA and single-stranded RNA in vitro. In a turnip crinkle virus-based assay, vDRB exhibits the properties of a viral suppressor of RNA silencing (VSR). In the context of potato virus X infection, vDRB significantly decreases the number and size of "dark green islands", regions of local antiviral silencing, supporting the VSR function of vDRB. Nevertheless, vDRB does not exhibit the VSR properties in non-viral transient expression assays. Taken together, the data presented here indicate that vDRB is an RNA-binding protein exhibiting VSR functions in the context of viral infection.
Collapse
Affiliation(s)
- Denis A. Chergintsev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
11
|
Zuo Z, Roux ME, Chevalier JR, Dagdas YF, Yamashino T, Højgaard SD, Knight E, Østergaard L, Rodriguez E, Petersen M. The mRNA decapping machinery targets LBD3/ASL9 to mediate apical hook and lateral root development. Life Sci Alliance 2023; 6:e202302090. [PMID: 37385753 PMCID: PMC10310928 DOI: 10.26508/lsa.202302090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Multicellular organisms perceive and transduce multiple cues to optimize development. Key transcription factors drive developmental changes, but RNA processing also contributes to tissue development. Here, we report that multiple decapping deficient mutants share developmental defects in apical hook, primary and lateral root growth. More specifically, LATERAL ORGAN BOUNDARIES DOMAIN 3 (LBD3)/ASYMMETRIC LEAVES 2-LIKE 9 (ASL9) transcripts accumulate in decapping deficient plants and can be found in complexes with decapping components. Accumulation of ASL9 inhibits apical hook and lateral root formation. Interestingly, exogenous auxin application restores lateral roots formation in both ASL9 over-expressors and mRNA decay-deficient mutants. Likewise, mutations in the cytokinin transcription factors type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs) ARR10 and ARR12 restore the developmental defects caused by over-accumulation of capped ASL9 transcript upon ASL9 overexpression. Most importantly, loss-of-function of asl9 partially restores apical hook and lateral root formation in both dcp5-1 and pat triple decapping deficient mutants. Thus, the mRNA decay machinery directly targets ASL9 transcripts for decay, possibly to interfere with cytokinin/auxin responses, during development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena E Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan R Chevalier
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Takafumi Yamashino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Nagoya, Japan
| | - Søren D Højgaard
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Knight
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Field S, Jang GJ, Dean C, Strader LC, Rhee SY. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. THE PLANT CELL 2023; 35:3173-3186. [PMID: 36879427 PMCID: PMC10473230 DOI: 10.1093/plcell/koad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This review highlights recent literature on biomolecular condensates in plant development and discusses challenges for fully dissecting their functional roles. Plant developmental biology has been inundated with descriptive examples of biomolecular condensate formation, but it is only recently that mechanistic understanding has been forthcoming. Here, we discuss recent examples of potential roles biomolecular condensates play at different stages of the plant life cycle. We group these examples based on putative molecular functions, including sequestering interacting components, enhancing dwell time, and interacting with cytoplasmic biophysical properties in response to environmental change. We explore how these mechanisms could modulate plant development in response to environmental inputs and discuss challenges and opportunities for further research into deciphering molecular mechanisms to better understand the diverse roles that biomolecular condensates exert on life.
Collapse
Affiliation(s)
- Sterling Field
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Geng-Jen Jang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Wang W, Wang C, Wang Y, Ma J, Wang T, Tao Z, Liu P, Li S, Hu Y, Gu A, Wang H, Qiu C, Li P. The P-body component DECAPPING5 and the floral repressor SISTER OF FCA regulate FLOWERING LOCUS C transcription in Arabidopsis. THE PLANT CELL 2023; 35:3303-3324. [PMID: 37220754 PMCID: PMC10473201 DOI: 10.1093/plcell/koad151] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Flowering is the transition from vegetative to reproductive growth and is critical for plant adaptation and reproduction. FLOWERING LOCUS C (FLC) plays a central role in flowering time control, and dissecting its regulation mechanism provides essential information for crop improvement. Here, we report that DECAPPING5 (DCP5), a component of processing bodies (P-bodies), regulates FLC transcription and flowering time in Arabidopsis (Arabidopsis thaliana). DCP5 and its interacting partner SISTER OF FCA (SSF) undergo liquid-liquid phase separation (LLPS) that is mediated by their prion-like domains (PrDs). Enhancing or attenuating the LLPS of both proteins using transgenic methods greatly affects their ability to regulate FLC and flowering time. DCP5 regulates FLC transcription by modulating RNA polymerase II enrichment at the FLC locus. DCP5 requires SSF for FLC regulation, and loss of SSF or its PrD disrupts DCP5 function. Our results reveal that DCP5 interacts with SSF, and the nuclear DCP5-SSF complex regulates FLC expression at the transcriptional level.
Collapse
Affiliation(s)
- Wanyi Wang
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chuanhong Wang
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yunhe Wang
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jing Ma
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Tengyue Wang
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Tao
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Peipei Liu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Shuai Li
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuanyuan Hu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Aiju Gu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Hui Wang
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chunhong Qiu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Peijin Li
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Wilby EL, Weil TT. Relating the Biogenesis and Function of P Bodies in Drosophila to Human Disease. Genes (Basel) 2023; 14:1675. [PMID: 37761815 PMCID: PMC10530015 DOI: 10.3390/genes14091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila has been a premier model organism for over a century and many discoveries in flies have furthered our understanding of human disease. Flies have been successfully applied to many aspects of health-based research spanning from behavioural addiction, to dysplasia, to RNA dysregulation and protein misfolding. Recently, Drosophila tissues have been used to study biomolecular condensates and their role in multicellular systems. Identified in a wide range of plant and animal species, biomolecular condensates are dynamic, non-membrane-bound sub-compartments that have been observed and characterised in the cytoplasm and nuclei of many cell types. Condensate biology has exciting research prospects because of their diverse roles within cells, links to disease, and potential for therapeutics. In this review, we will discuss processing bodies (P bodies), a conserved biomolecular condensate, with a particular interest in how Drosophila can be applied to advance our understanding of condensate biogenesis and their role in disease.
Collapse
Affiliation(s)
| | - Timothy T. Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
| |
Collapse
|
15
|
Vermeulen A, Takken FLW, Sánchez-Camargo VA. Translation Arrest: A Key Player in Plant Antiviral Response. Genes (Basel) 2023; 14:1293. [PMID: 37372472 DOI: 10.3390/genes14061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolved several mechanisms to protect themselves against viruses. Besides recessive resistance, where compatible host factors required for viral proliferation are absent or incompatible, there are (at least) two types of inducible antiviral immunity: RNA silencing (RNAi) and immune responses mounted upon activation of nucleotide-binding domain leucine-rich repeat (NLR) receptors. RNAi is associated with viral symptom recovery through translational repression and transcript degradation following recognition of viral double-stranded RNA produced during infection. NLR-mediated immunity is induced upon (in)direct recognition of a viral protein by an NLR receptor, triggering either a hypersensitive response (HR) or an extreme resistance response (ER). During ER, host cell death is not apparent, and it has been proposed that this resistance is mediated by a translational arrest (TA) of viral transcripts. Recent research indicates that translational repression plays a crucial role in plant antiviral resistance. This paper reviews current knowledge on viral translational repression during viral recovery and NLR-mediated immunity. Our findings are summarized in a model detailing the pathways and processes leading to translational arrest of plant viruses. This model can serve as a framework to formulate hypotheses on how TA halts viral replication, inspiring new leads for the development of antiviral resistance in crops.
Collapse
Affiliation(s)
- Annemarie Vermeulen
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Victor A Sánchez-Camargo
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Reis RS. Thermomorphogenesis: Opportunities and challenges in posttranscriptional regulation. JOURNAL OF EXPERIMENTAL BOTANY 2023:7134107. [PMID: 37082809 DOI: 10.1093/jxb/erad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
Plants exposed to mildly elevated temperatures display morphological and developmental changes collectively termed thermomorphogenesis. This adaptative process has several undesirable consequences to food production, including yield reduction and increased vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for understanding how plants will respond to increasingly warmer temperature conditions, such as those caused by climate change. Recently, we have made major advances in that direction, and it has become apparent that plants resource to a broad range of molecules and molecular mechanisms to perceive and respond to increases in environmental temperature. However, most of our efforts have been focused on regulation of transcription and protein abundance and activity, with an important gap encompassing nearly all processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, and posttranslational regulation, focused on opportunities and challenges in understanding posttranscriptional regulation-a fertile field for exciting new discoveries.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
17
|
Liu C, Mentzelopoulou A, Muhammad A, Volkov A, Weijers D, Gutierrez-Beltran E, Moschou PN. An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome. EMBO J 2023; 42:e111885. [PMID: 36741000 PMCID: PMC10152145 DOI: 10.15252/embj.2022111885] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein-protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR-WAVE complex, whereby the DCP1-SCAR-WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces.
Collapse
Affiliation(s)
- Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Amna Muhammad
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.,University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Andriy Volkov
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, Spain.,Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.,Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
18
|
Identification of a DEAD-box RNA Helicase BnRH6 Reveals Its Involvement in Salt Stress Response in Rapeseed ( Brassica napus). Int J Mol Sci 2022; 24:ijms24010002. [PMID: 36613447 PMCID: PMC9819673 DOI: 10.3390/ijms24010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Rapeseed (Brassica napus) is one of the most important vegetable oil crops worldwide. Abiotic stresses such as salinity are great challenges for its growth and productivity. DEAD-box RNA helicase 6 (RH6) is a subfamily member of superfamily 2 (SF2), which plays crucial roles in plant growth and development. However, no report is available on RH6 in regulating plant abiotic stress response. This study investigated the function and regulatory mechanism for BnRH6. BnRH6 was targeted to the nucleus and cytoplasmic processing body (P-body), constitutively expressed throughout the lifespan, and induced by salt stress. Transgenic overexpressing BnRH6 in Brassica and Arabidopsis displayed salt hypersensitivity, manifested by lagging seed germination (decreased to 55−85% of wild-type), growth stunt, leaf chlorosis, oxidative stress, and over-accumulation of Na ions with the K+/Na+ ratio being decreased by 18.3−28.6%. Given the undesirable quality of knockout Brassica plants, we utilized an Arabidopsis T-DNA insertion mutant rh6-1 to investigate downstream genes by transcriptomics. We constructed four libraries with three biological replicates to investigate global downstream genes by RNA sequencing. Genome-wide analysis of differentially expressed genes (DEGs) (2-fold, p < 0.05) showed that 41 genes were upregulated and 66 genes were downregulated in rh6-1 relative to wild-type under salt stress. Most of them are well-identified and involved in transcription factors, ABA-responsive genes, and detoxified components or antioxidants. Our research suggests that BnRH6 can regulate a group of salt-tolerance genes to negatively promote Brassica adaptation to salt stress.
Collapse
|
19
|
Hoffmann G, Mahboubi A, Bente H, Garcia D, Hanson J, Hafrén A. Arabidopsis RNA processing body components LSM1 and DCP5 aid in the evasion of translational repression during Cauliflower mosaic virus infection. THE PLANT CELL 2022; 34:3128-3147. [PMID: 35511183 PMCID: PMC9338796 DOI: 10.1093/plcell/koac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Viral infections impose extraordinary RNA stress, triggering cellular RNA surveillance pathways such as RNA decapping, nonsense-mediated decay, and RNA silencing. Viruses need to maneuver among these pathways to establish infection and succeed in producing high amounts of viral proteins. Processing bodies (PBs) are integral to RNA triage in eukaryotic cells, with several distinct RNA quality control pathways converging for selective RNA regulation. In this study, we investigated the role of Arabidopsis thaliana PBs during Cauliflower mosaic virus (CaMV) infection. We found that several PB components are co-opted into viral factories that support virus multiplication. This pro-viral role was not associated with RNA decay pathways but instead, we established that PB components are helpers in viral RNA translation. While CaMV is normally resilient to RNA silencing, dysfunctions in PB components expose the virus to this pathway, which is similar to previous observations for transgenes. Transgenes, however, undergo RNA quality control-dependent RNA degradation and transcriptional silencing, whereas CaMV RNA remains stable but becomes translationally repressed through decreased ribosome association, revealing a unique dependence among PBs, RNA silencing, and translational repression. Together, our study shows that PB components are co-opted by the virus to maintain efficient translation, a mechanism not associated with canonical PB functions.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Heinrich Bente
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
20
|
Bunyaviral N Proteins Localize at RNA Processing Bodies and Stress Granules: The Enigma of Cytoplasmic Sources of Capped RNA for Cap Snatching. Viruses 2022; 14:v14081679. [PMID: 36016301 PMCID: PMC9414089 DOI: 10.3390/v14081679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Most cytoplasmic-replicating negative-strand RNA viruses (NSVs) initiate genome transcription by cap snatching. The source of host mRNAs from which the cytoplasmic NSVs snatch capped-RNA leader sequences has remained elusive. Earlier reports have pointed towards cytoplasmic-RNA processing bodies (P body, PB), although several questions have remained unsolved. Here, the nucleocapsid (N) protein of plant- and animal-infecting members of the order Bunyavirales, in casu Tomato spotted wilt virus (TSWV), Rice stripe virus (RSV), Sin nombre virus (SNV), Crimean-Congo hemorrhagic fever virus (CCHFV) and Schmallenberg virus (SBV) have been expressed and localized in cells of their respective plant and animal hosts. All N proteins localized to PBs as well as stress granules (SGs), but extensively to docking stages of PB and SG. TSWV and RSV N proteins also co-localized with Ran GTPase-activating protein 2 (RanGAP2), a nucleo-cytoplasmic shuttling factor, in the perinuclear region, and partly in the nucleus when co-expressed with its WPP domain containing a nuclear-localization signal. Upon silencing of PB and SG components individually or concomitantly, replication levels of a TSWV minireplicon, as measured by the expression of a GFP reporter gene, ranged from a 30% reduction to a four-fold increase. Upon the silencing of RanGAP homologs in planta, replication of the TSWV minireplicon was reduced by 75%. During in vivo cap-donor competition experiments, TSWV used transcripts destined to PB and SG, but also functional transcripts engaged in translation. Altogether, the results implicate a more complex situation in which, besides PB, additional cytoplasmic sources are used during transcription/cap snatching of cytoplasmic-replicating and segmented NSVs.
Collapse
|
21
|
Tong J, Ren Z, Sun L, Zhou S, Yuan W, Hui Y, Ci D, Wang W, Fan LM, Wu Z, Qian W. ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules. NATURE PLANTS 2022; 8:778-791. [PMID: 35817823 DOI: 10.1038/s41477-022-01175-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
High temperature is one of the major environmental stresses affecting plant growth and fitness. Heat stress transcription factors (HSFs) play critical roles in regulating the expression of heat-responsive genes. However, how HSFs are regulated remains obscure. Here, we show that ALBA4, ALBA5 and ALBA6, which phase separate into stress granules (SGs) and processing bodies (PBs) under heat stress, directly bind selected messenger RNAs, including HSF mRNAs, and recruit them into SGs and PBs to protect them from degradation under heat stress in Arabidopsis. The alba456 triple mutants, but not single and double mutants, display pleiotropic developmental defects and hypersensitivity to heat stress. Mutations in XRN4, a cytoplasmic 5' to 3' exoribonuclease, can rescue the observed developmental and heat-sensitive phenotypes of alba456 seedlings. Our study reveals a new layer of regulation for HSFs whereby HSF mRNAs are stabilized by redundant action of ALBA proteins in SGs and PBs for plant thermotolerance.
Collapse
Affiliation(s)
- Jinjin Tong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Sixian Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Yuan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yufan Hui
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- School of Computing Sciences, University of East Anglia, Norwich, UK
| | - Dong Ci
- School of Life Sciences, Peking University, Beijing, China
| | - Wei Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Liu-Min Fan
- School of Life Sciences, Peking University, Beijing, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
22
|
Schiaffini M, Chicois C, Pouclet A, Chartier T, Ubrig E, Gobert A, Zuber H, Mutterer J, Chicher J, Kuhn L, Hammann P, Gagliardi D, Garcia D. A NYN domain protein directly interacts with DECAPPING1 and is required for phyllotactic pattern. PLANT PHYSIOLOGY 2022; 188:1174-1188. [PMID: 34791434 PMCID: PMC8825452 DOI: 10.1093/plphys/kiab529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 06/01/2023]
Abstract
In eukaryotes, general mRNA decay requires the decapping complex. The activity of this complex depends on its catalytic subunit, DECAPPING2 (DCP2), and its interaction with decapping enhancers, including its main partner DECAPPING1 (DCP1). Here, we report that in Arabidopsis thaliana, DCP1 also interacts with a NYN domain endoribonuclease, hence named DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1). Interestingly, we found DNE1 predominantly associated with DCP1, but not with DCP2, and reciprocally, suggesting the existence of two distinct protein complexes. We also showed that the catalytic residues of DNE1 are required to repress the expression of mRNAs in planta upon transient expression. The overexpression of DNE1 in transgenic lines led to growth defects and a similar gene deregulation signature than inactivation of the decapping complex. Finally, the combination of dne1 and dcp2 mutations revealed a functional redundancy between DNE1 and DCP2 in controlling phyllotactic pattern formation. Our work identifies DNE1, a hitherto unknown DCP1 protein partner highly conserved in the plant kingdom and identifies its importance for developmental robustness.
Collapse
Affiliation(s)
- Marlene Schiaffini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Clara Chicois
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aude Pouclet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Tiphaine Chartier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Zuo Z, Roux M, Rodriguez E, Petersen M. mRNA Decapping Factors LSM1 and PAT Paralogs Are Involved in Turnip Mosaic Virus Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:125-130. [PMID: 35100808 DOI: 10.1094/mpmi-09-21-0220-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Turnip mosaic virus is a devastating potyvirus infecting many economically important brassica crops. In response to this, the plant host engages its RNA silencing machinery, involving AGO proteins, as a prominent strategy to restrain turnip mosaic virus (TuMV) infection. It has also been shown that the mRNA decay components DCP2 and VCS partake in viral infection suppression. Here, we report that the mRNA decapping components LSM1, PAT1, PATH1, and PATH2 are essential for TuMV infection. More specifically, lsm1a/lsm1b double mutants and pat1/path1/path2 triple mutants in summ2 background exhibit resistance to TuMV. Concurrently, we observed that TuMV interferes with the decapping function of LSM1 and PAT proteins as the mRNA-decay target genes UGT87A2 and ASL9 accumulate during TuMV infection. Moreover, as TuMV coat protein can be specifically found in complexes with PAT proteins but not LSM1, this suggests that TuMV "hijacks" decapping components via PAT proteins to support viral infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Sajeev N, Baral A, America AHP, Willems LAJ, Merret R, Bentsink L. The mRNA-binding proteome of a critical phase transition during Arabidopsis seed germination. THE NEW PHYTOLOGIST 2022; 233:251-264. [PMID: 34643285 PMCID: PMC9298696 DOI: 10.1111/nph.17800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/01/2021] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana seed germination is marked by extensive translational control at two critical phase transitions. The first transition refers to the start of hydration, the hydration translational shift. The second shift, the germination translational shift (GTS) is the phase between testa rupture and radicle protrusion at which the seed makes the all or nothing decision to germinate. The mechanism behind the translational regulation at these phase transitions is unknown. RNA binding proteins (RBPs) are versatile players in the post-transcriptional control of messenger RNAs (mRNAs) and as such candidates for regulating translation during seed germination. Here, we report the mRNA binding protein repertoire of seeds during the GTS. Thirty seed specific RBPs and 22 dynamic RBPs were identified during the GTS, like the putative RBP Vacuolar ATPase subunit A and RBP HSP101. Several stress granule markers were identified in this study, which suggests that seeds are prepared to quickly adapt the translation of specific mRNAs in response to changes in environmental conditions during the GTS. Taken together this study provides a detailed insight into the world of RBPs during seed germination and their possible regulatory role during this developmentally regulated process.
Collapse
Affiliation(s)
- Nikita Sajeev
- Laboratory of PhysiologyWageningen Seed Science CentreWageningen UniversityWageningen6708PBthe Netherlands
| | - Anirban Baral
- Laboratory of PhysiologyWageningen Seed Science CentreWageningen UniversityWageningen6708PBthe Netherlands
| | | | - Leo A. J. Willems
- Laboratory of PhysiologyWageningen Seed Science CentreWageningen UniversityWageningen6708PBthe Netherlands
| | - Rémy Merret
- Laboratoire Génome et Développement des PlantesCNRS‐LGDP UMR 5096Perpignan66860France
| | - Leónie Bentsink
- Laboratory of PhysiologyWageningen Seed Science CentreWageningen UniversityWageningen6708PBthe Netherlands
| |
Collapse
|
25
|
HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Int J Mol Sci 2021; 22:ijms22147440. [PMID: 34299060 PMCID: PMC8306789 DOI: 10.3390/ijms22147440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.
Collapse
|
26
|
Abulfaraj AA, Hirt H, Rayapuram N. G3BPs in Plant Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:680710. [PMID: 34177995 PMCID: PMC8222905 DOI: 10.3389/fpls.2021.680710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 05/24/2023]
Abstract
The sessile nature of plants enforces highly adaptable strategies to adapt to different environmental stresses. Plants respond to these stresses by a massive reprogramming of mRNA metabolism. Balancing of mRNA fates, including translation, sequestration, and decay is essential for plants to not only coordinate growth and development but also to combat biotic and abiotic environmental stresses. RNA stress granules (SGs) and processing bodies (P bodies) synchronize mRNA metabolism for optimum functioning of an organism. SGs are evolutionarily conserved cytoplasmic localized RNA-protein storage sites that are formed in response to adverse conditions, harboring mostly but not always translationally inactive mRNAs. SGs disassemble and release mRNAs into a translationally active form upon stress relief. RasGAP SH3 domain binding proteins (G3BPs or Rasputins) are "scaffolds" for the assembly and stability of SGs, which coordinate receptor mediated signal transduction with RNA metabolism. The role of G3BPs in the formation of SGs is well established in mammals, but G3BPs in plants are poorly characterized. In this review, we discuss recent findings of the dynamics and functions of plant G3BPs in response to environmental stresses and speculate on possible mechanisms such as transcription and post-translational modifications that might regulate the function of this important family of proteins.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Naganand Rayapuram
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Kim J, Lee H, Lee HG, Seo PJ. Get closer and make hotspots: liquid-liquid phase separation in plants. EMBO Rep 2021; 22:e51656. [PMID: 33913240 DOI: 10.15252/embr.202051656] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of membraneless compartments in a cell and allows the spatiotemporal organization of biochemical reactions by concentrating macromolecules locally. In plants, LLPS defines cellular reaction hotspots, and stimulus-responsive LLPS is tightly linked to a variety of cellular and biological functions triggered by exposure to various internal and external stimuli, such as stress responses, hormone signaling, and temperature sensing. Here, we provide an overview of the current understanding of physicochemical forces and molecular factors that drive LLPS in plant cells. We illustrate how the biochemical features of cellular condensates contribute to their biological functions. Additionally, we highlight major challenges for the comprehensive understanding of biological LLPS, especially in view of the dynamic and robust organization of biochemical reactions underlying plastic responses to environmental fluctuations in plants.
Collapse
Affiliation(s)
- Jiwoo Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Scheer H, de Almeida C, Ferrier E, Simonnot Q, Poirier L, Pflieger D, Sement FM, Koechler S, Piermaria C, Krawczyk P, Mroczek S, Chicher J, Kuhn L, Dziembowski A, Hammann P, Zuber H, Gagliardi D. The TUTase URT1 connects decapping activators and prevents the accumulation of excessively deadenylated mRNAs to avoid siRNA biogenesis. Nat Commun 2021; 12:1298. [PMID: 33637717 PMCID: PMC7910438 DOI: 10.1038/s41467-021-21382-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Uridylation is a widespread modification destabilizing eukaryotic mRNAs. Yet, molecular mechanisms underlying TUTase-mediated mRNA degradation remain mostly unresolved. Here, we report that the Arabidopsis TUTase URT1 participates in a molecular network connecting several translational repressors/decapping activators. URT1 directly interacts with DECAPPING 5 (DCP5), the Arabidopsis ortholog of human LSM14 and yeast Scd6, and this interaction connects URT1 to additional decay factors like DDX6/Dhh1-like RNA helicases. Nanopore direct RNA sequencing reveals a global role of URT1 in shaping poly(A) tail length, notably by preventing the accumulation of excessively deadenylated mRNAs. Based on in vitro and in planta data, we propose a model that explains how URT1 could reduce the accumulation of oligo(A)-tailed mRNAs both by favoring their degradation and because 3' terminal uridines intrinsically hinder deadenylation. Importantly, preventing the accumulation of excessively deadenylated mRNAs avoids the biogenesis of illegitimate siRNAs that silence endogenous mRNAs and perturb Arabidopsis growth and development.
Collapse
Affiliation(s)
- Hélène Scheer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Caroline de Almeida
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Emilie Ferrier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Quentin Simonnot
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Laure Poirier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - François M Sement
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christina Piermaria
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Johana Chicher
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
29
|
Wolff H, Jakoby M, Stephan L, Koebke E, Hülskamp M. Heat Stress-Dependent Association of Membrane Trafficking Proteins With mRNPs Is Selective. FRONTIERS IN PLANT SCIENCE 2021; 12:670499. [PMID: 34249042 PMCID: PMC8264791 DOI: 10.3389/fpls.2021.670499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/27/2021] [Indexed: 05/03/2023]
Abstract
The Arabidopsis AAA ATPase SKD1 is essential for ESCRT-dependent endosomal sorting by mediating the disassembly of the ESCRTIII complex in an ATP-dependent manner. In this study, we show that SKD1 localizes to messenger ribonucleoprotein complexes upon heat stress. Consistent with this, the interactome of SKD1 revealed differential interactions under normal and stress conditions and included membrane transport proteins as well as proteins associated with RNA metabolism. Localization studies with selected interactome proteins revealed that not only RNA associated proteins but also several ESCRTIII and membrane trafficking proteins were recruited to messenger ribonucleoprotein granules after heat stress.
Collapse
Affiliation(s)
- Heike Wolff
- Cluster of Excellence on Plant Sciences (CEPLAS), Botanical Institute, Cologne University, Cologne, Germany
| | - Marc Jakoby
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Eva Koebke
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- *Correspondence: Martin Hülskamp
| |
Collapse
|
30
|
Marondedze C, Elia G, Thomas L, Wong A, Gehring C. Citrullination of Proteins as a Specific Response Mechanism in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:638392. [PMID: 33897727 PMCID: PMC8060559 DOI: 10.3389/fpls.2021.638392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/17/2021] [Indexed: 05/19/2023]
Abstract
Arginine deimination, also referred to as citrullination of proteins by L-arginine deiminases, is a post-translational modification affecting histone modifications, epigenetic transcriptional regulation, and proteolysis in animals but has not been reported in higher plants. Here we report, firstly, that Arabidopsis thaliana proteome contains proteins with a specific citrullination signature and that many of the citrullinated proteins have nucleotide-binding regulatory functions. Secondly, we show that changes in the citrullinome occur in response to cold stress, and thirdly, we identify an A. thaliana protein with peptidyl arginine deiminase activity that was shown to be calcium-dependent for many peptide substrates. Taken together, these findings establish this post-translational modification as a hitherto neglected component of cellular reprogramming during stress responses.
Collapse
Affiliation(s)
- Claudius Marondedze
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Rijk Zwaan, De Lier, Netherlands
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
- Claudius Marondedze,
| | - Giuliano Elia
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ludivine Thomas
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
| | - Chris Gehring
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- *Correspondence: Chris Gehring,
| |
Collapse
|
31
|
Nocua PA, Requena JM, Puerta CJ. Identification of the interactomes associated with SCD6 and RBP42 proteins in Leishmania braziliensis. J Proteomics 2020; 233:104066. [PMID: 33296709 DOI: 10.1016/j.jprot.2020.104066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 02/04/2023]
Abstract
Leishmania are protozoan parasites responsible for leishmaniasis. These parasites present a precise gene regulation that allows them to survive different environmental conditions during their digenetic life cycle. This adaptation depends on the regulation of the expression of a wide variety of genes, which occurs, mainly at the post-transcriptional level. This differential gene expression is achieved by mechanisms based mainly in RNA binding proteins that regulate the translation and/or stability of mRNA targets by interaction with cis elements principally located in the untranslated regions (UTR). In recent studies, our group identified and characterized two proteins, SCD6 and RBP42, as RNA binding proteins in Leishmania braziliensis. To find clues about the cellular processes in which these proteins are involved, this work was aimed to determine the SCD6- and RBP42-interacting proteins (interactome) in L. braziliensis promastigotes. For this purpose, after an in vivo UV cross-linking, cellular extracts were used to immunoprecipitated, by specific antibodies, protein complexes in which SCD6 or RBP42 were present. Protein mass spectrometry analysis of the immunoprecipitated proteins identified 96 proteins presumably associated with SCD6 and 173 proteins associated with RBP42. Notably, a significant proportion of the identified proteins were shared in both interactomes, indicating a possible functional relationship between SCD6 and RBP42. Remarkably, many of the proteins identified in the SCD6 and RBP42 interactomes are related to RNA metabolism and translation processes, and many of them have been described as components of ribonucleoprotein (RNP) granules in Leishmania and related trypanosomatids. Thus, these results support a role of SCD6 and RBP42 in the assembly and/or function of mRNA-protein complexes, participating in the fate (decay/accumulation/translation) of L. braziliensis transcripts. SIGNIFICANCE: Parasites of the Leishmania genus present a particular regulation of gene expression, operating mainly at the post-transcriptional level, surely aimed to modulate quickly both mRNA and protein levels to survive the sudden environmental changes that occur during a parasite's life cycle as it moves from one host to another. This regulation of gene expression processes would be governed by the interaction of mRNA with RNA binding proteins. Nevertheless, the entirety of protein networks involved in these regulatory processes is far from being understood. In this regard, our work is contributing to stablish protein networks in which the L. braziliensis SCD6 and RBP42 proteins are involved; these proteins, in previous works, have been described as RNA binding proteins and found to participate in gene regulation in different cells and organisms. Additionally, our data point out a possible functional relationship between SCD6 and RBP42 proteins as constituents of mRNA granules, like processing bodies or stress granules, which are essential structures in the regulation of gene expression. This knowledge could provide a new approach for the development of therapeutic targets to control Leishmania infections.
Collapse
Affiliation(s)
- Paola A Nocua
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
32
|
Zuo Z, Roux ME, Saemundsson HP, Müller M, Munne Bosch S, Petersen M. The Arabidopsis thaliana mRNA decay factor PAT1 functions in osmotic stress responses and decaps ABA-responsive genes. FEBS Lett 2020; 595:253-263. [PMID: 33124072 DOI: 10.1002/1873-3468.13977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022]
Abstract
mRNA decapping plays essential roles in regulating gene expression during cellular reprogramming in response to developmental and environmental cues. The evolutionarily conserved PAT1 proteins activate decapping by binding mRNA, recruiting other decapping components, and promoting processing body (PB) assembly. Arabidopsis encodes 3 PAT proteins: PAT1, PATH1, and PATH2. Here, we report that only pat1 mutants exhibit hypersensitivity to ABA and that transcripts of ABA-responsive genes, but not those of ABA biosynthesis genes, persist longer in these mutants. The pat1 mutants also exhibit increased resistance to drought stress and resistance to Pythium irregulare. This is supported by assays showing that PAT1 functions specifically in decapping of the canonical ABA-responsive gene COR15A. In summary, PAT1 protein mediates decay of ABA-responsive genes and, thus, regulates stress responses.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark.,Novo Nordisk, Regulatory Affairs Durable Devices and Needles, Søborg, Denmark
| | | | - Maren Müller
- Department of Evolutionary Biology, Ecology & Environmental Sciences, Faculty of Biology, University of Barcelona, Spain
| | - Sergi Munne Bosch
- Department of Evolutionary Biology, Ecology & Environmental Sciences, Faculty of Biology, University of Barcelona, Spain
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
33
|
Westermann J, Koebke E, Lentz R, Hülskamp M, Boisson-Dernier A. A Comprehensive Toolkit for Quick and Easy Visualization of Marker Proteins, Protein-Protein Interactions and Cell Morphology in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2020; 11:569194. [PMID: 33178238 PMCID: PMC7593560 DOI: 10.3389/fpls.2020.569194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Even though stable genomic transformation of sporelings and thalli of Marchantia polymorpha is straightforward and efficient, numerous problems can arise during critical phases of the process such as efficient spore production, poor selection capacity of antibiotics or low transformation efficiency. It is therefore also desirable to establish quick methods not relying on stable transgenics to analyze the localization, interactions and functions of proteins of interest. The introduction of foreign DNA into living cells via biolistic mechanisms has been first reported roughly 30 years ago and has been commonly exploited in established plant model species such as Arabidopsis thaliana or Nicotiana benthamiana. Here, we report the fast and reliable transient biolistic transformation of Marchantia thallus epidermal cells using fluorescent protein fusions. We present a catalog of fluorescent markers which can be readily used for tagging of a variety of subcellular compartments. Moreover, we report the functionality of the bimolecular fluorescence complementation (BiFC) in M. polymorpha with the example of the p-body markers MpDCP1/2. Finally, we provide standard staining procedures for live cell imaging in M. polymorpha, applicable to visualize cell boundaries or cellular structures, to complement or support protein localizations and to understand how results gained by transient transformations can be embedded in cell architecture and dynamics. Taken together, we offer a set of easy and quick tools for experiments that aim at understanding subcellular localization, protein-protein interactions and thus functions of proteins of interest in the emerging early diverging land plant model M. polymorpha.
Collapse
Affiliation(s)
| | | | | | | | - Aurélien Boisson-Dernier
- Institute for Plant Sciences, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
De S, Pollari M, Varjosalo M, Mäkinen K. Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathog 2020; 16:e1008956. [PMID: 33045020 PMCID: PMC7581364 DOI: 10.1371/journal.ppat.1008956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the significance of a conserved five-amino acid motif 'AELPR' in the C-terminal region of helper component-proteinase (HCPro) for potato virus A (PVA; genus Potyvirus) infection. This motif is a putative interaction site for WD40 domain-containing proteins, including VARICOSE (VCS). We abolished the interaction site in HCPro by replacing glutamic acid (E) and arginine (R) with alanines (A) to generate HCProWD. These mutations partially eliminated HCPro-VCS co-localization in cells. We have earlier described potyvirus-induced RNA granules (PGs) in which HCPro and VCS co-localize and proposed that they have a role in RNA silencing suppression. We now demonstrate that the ability of HCProWD to induce PGs, introduce VCS into PGs, and suppress RNA silencing was impaired. Accordingly, PVA carrying HCProWD (PVAWD) infected Nicotiana benthamiana less efficiently than wild-type PVA (PVAWT) and HCProWD complemented the lack of HCPro in PVA gene expression only partially. HCPro was purified from PVA-infected leaves as part of high molecular weight (HMW) ribonucleoprotein (RNP) complexes. These complexes were more stable when associated with wild-type HCPro than with HCProWD. Moreover, VCS and two viral components of the HMW-complexes, viral protein genome-linked and cylindrical inclusion protein were specifically decreased in HCProWD-containing HMW-complexes. A VPg-mediated boost in translation of replication-deficient PVA (PVAΔGDD) was observed only if viral RNA expressed wild-type HCPro. The role of VCS-VPg-HCPro coordination in PVA translation was further supported by results from VCS silencing and overexpression experiments and by significantly elevated PVA-derived Renilla luciferase vs PVA RNA ratio upon VPg-VCS co-expression. Finally, we found that PVAWD was unable to form virus particles or to spread systemically in the infected plant. We highlight the role of HCPro-VCS containing multiprotein assemblies associated with PVA RNA in protecting it from degradation, ensuring efficient translation, formation of stable virions and establishment of systemic infection.
Collapse
Affiliation(s)
- Swarnalok De
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | - Maija Pollari
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | | | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| |
Collapse
|
35
|
Yu X, Li B, Jang GJ, Jiang S, Jiang D, Jang JC, Wu SH, Shan L, He P. Orchestration of Processing Body Dynamics and mRNA Decay in Arabidopsis Immunity. Cell Rep 2020; 28:2194-2205.e6. [PMID: 31433992 DOI: 10.1016/j.celrep.2019.07.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 06/02/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023] Open
Abstract
Proper transcriptome reprogramming is critical for hosts to launch an effective defense response upon pathogen attack. How immune-related genes are regulated at the posttranscriptional level remains elusive. We demonstrate here that P-bodies, the non-membranous cytoplasmic ribonucleoprotein foci related to 5'-to-3' mRNA decay, are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns (MAMPs). The DCP1-DCP2 mRNA decapping complex, a hallmark of P-bodies, positively regulates plant MAMP-triggered responses and immunity against pathogenic bacteria. MAMP-activated MAP kinases directly phosphorylate DCP1 at the serine237 residue, which further stimulates its interaction with XRN4, an exonuclease executing 5'-to-3' degradation of decapped mRNA. Consequently, MAMP treatment potentiates DCP1-dependent mRNA decay on a specific group of MAMP-downregulated genes. Thus, the conserved 5'-to-3' mRNA decay elicited by the MAMP-activated MAP kinase cascade is an integral part of plant immunity. This mechanism ensures a rapid posttranscriptional downregulation of certain immune-related genes that may otherwise negatively impact immunity.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shan Jiang
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Daohong Jiang
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
36
|
Jang GJ, Jang JC, Wu SH. Dynamics and Functions of Stress Granules and Processing Bodies in Plants. PLANTS 2020; 9:plants9091122. [PMID: 32872650 PMCID: PMC7570210 DOI: 10.3390/plants9091122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022]
Abstract
RNA granules, such as stress granules and processing bodies, can balance the storage, degradation, and translation of mRNAs in diverse eukaryotic organisms. The sessile nature of plants demands highly versatile strategies to respond to environmental fluctuations. In this review, we discuss recent findings of the dynamics and functions of these RNA granules in plants undergoing developmental reprogramming or responding to environmental stresses. Special foci include the dynamic assembly, disassembly, and regulatory roles of these RNA granules in determining the fate of mRNAs.
Collapse
Affiliation(s)
- Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA;
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
- Correspondence: ; Tel.: +886-2-2787-1178
| |
Collapse
|
37
|
Hu SF, Wei WL, Hong SF, Fang RY, Wu HY, Lin PC, Sanobar N, Wang HP, Sulistio M, Wu CT, Lo HF, Lin SS. Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. BOTANICAL STUDIES 2020; 61:22. [PMID: 32748085 PMCID: PMC7399735 DOI: 10.1186/s40529-020-00299-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/16/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Posttranscriptional gene silencing (PTGS) is one of the most important mechanisms for plants during viral infection. However, viruses have also developed viral suppressors to negatively control PTGS by inhibiting microRNA (miRNA) and short-interfering RNA (siRNA) regulation in plants. The first identified viral suppressor, P1/HC-Pro, is a fusion protein that was translated from potyviral RNA. Upon infecting plants, the P1 protein itself is released from HC-Pro by the self-cleaving activity of P1. P1 has an unknown function in enhancing HC-Pro-mediated PTGS suppression. We performed proteomics to identify P1-interacting proteins. We also performed transcriptomics that were generated from Col-0 and various P1/HC-Pro-related transgenic plants to identify novel genes. The results showed several novel genes were identified through the comparative network analysis that might be involved in P1/HC-Pro-mediated PTGS suppression. RESULTS First, we demonstrated that P1 enhances HC-Pro function and that the mechanism might work through P1 binding to VERNALIZATION INDEPENDENCE 3/SUPERKILLER 8 (VIP3/SKI8), a subunit of the exosome, to interfere with the 5'-fragment of the PTGS-cleaved RNA degradation product. Second, the AGO1 was specifically posttranslationally degraded in transgenic Arabidopsis expressing P1/HC-Pro of turnip mosaic virus (TuMV) (P1/HCTu plant). Third, the comparative network highlighted potentially critical genes in PTGS, including miRNA targets, calcium signaling, hormone (JA, ET, and ABA) signaling, and defense response. CONCLUSION Through these genetic and omics approaches, we revealed an overall perspective to identify many critical genes involved in PTGS. These new findings significantly impact in our understanding of P1/HC-Pro-mediated PTGS suppression.
Collapse
Affiliation(s)
- Sin-Fen Hu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Lun Wei
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Ru-Ying Fang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| | - Pin-Chun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Neda Sanobar
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsin-Ping Wang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan
| | - Margo Sulistio
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Ta Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan
| | - Hsiao-Feng Lo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
38
|
Hyjek‐Składanowska M, Bajczyk M, Gołębiewski M, Nuc P, Kołowerzo‐Lubnau A, Jarmołowski A, Smoliński DJ. Core spliceosomal Sm proteins as constituents of cytoplasmic mRNPs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1155-1173. [PMID: 32369637 PMCID: PMC7540296 DOI: 10.1111/tpj.14792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/15/2023]
Abstract
In recent years, research has increasingly focused on the key role of post-transcriptional regulation of messenger ribonucleoprotein (mRNP) function and turnover. As a result of the complexity and dynamic nature of mRNPs, the full composition of a single mRNP complex remains unrevealed and mRNPs are poorly described in plants. Here we identify canonical Sm proteins as part of the cytoplasmic mRNP complex, indicating their function in the post-transcriptional regulation of gene expression in plants. Sm proteins comprise an evolutionarily ancient family of small RNA-binding proteins involved in pre-mRNA splicing. The latest research indicates that Sm could also impact on mRNA at subsequent stages of its life cycle. In this work we show that in the microsporocyte cytoplasm of Larix decidua, the European larch, Sm proteins accumulate within distinct cytoplasmic bodies, also containing polyadenylated RNA. To date, several types of cytoplasmic bodies involved in the post-transcriptional regulation of gene expression have been described, mainly in animal cells. Their role and molecular composition in plants remain less well established, however. A total of 222 mRNA transcripts have been identified as cytoplasmic partners for Sm proteins. The specific colocalization of these mRNAs with Sm proteins within cytoplasmic bodies has been confirmed via microscopic analysis. The results from this work support the hypothesis, that evolutionarily conserved Sm proteins have been adapted to perform a whole repertoire of functions related to the post-transcriptional regulation of gene expression in Eukaryota. This adaptation presumably enabled them to coordinate the interdependent processes of splicing element assembly, mRNA maturation and processing, and mRNA translation regulation, and its degradation.
Collapse
Affiliation(s)
- Malwina Hyjek‐Składanowska
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
- Present address:
Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology4 Trojdena St.02‐109WarsawPoland
| | - Mateusz Bajczyk
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Marcin Gołębiewski
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
- Department of Plant Physiology and BiotechnologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
| | - Przemysław Nuc
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Agnieszka Kołowerzo‐Lubnau
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
| | - Artur Jarmołowski
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
| |
Collapse
|
39
|
Merret R, Bousquet-Antonelli C. Immunity gate-keepers. NATURE PLANTS 2020; 6:608-609. [PMID: 32483331 DOI: 10.1038/s41477-020-0679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Rémy Merret
- CNRS-UMR5096, Plant Genome and Development Laboratory, Perpignan, France
- UPVD-UMR5096, Plant Genome and Development Laboratory, Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-UMR5096, Plant Genome and Development Laboratory, Perpignan, France.
- UPVD-UMR5096, Plant Genome and Development Laboratory, Perpignan, France.
| |
Collapse
|
40
|
Chantarachot T, Sorenson RS, Hummel M, Ke H, Kettenburg AT, Chen D, Aiyetiwa K, Dehesh K, Eulgem T, Sieburth LE, Bailey-Serres J. DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. NATURE PLANTS 2020; 6:675-685. [PMID: 32483330 DOI: 10.1038/s41477-020-0681-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/29/2020] [Indexed: 05/21/2023]
Abstract
Gene transcription is counterbalanced by messenger RNA decay processes that regulate transcript quality and quantity. We show here that the evolutionarily conserved DHH1/DDX6-like RNA hellicases of Arabidopsis thaliana control the ephemerality of a subset of cellular mRNAs. These RNA helicases co-localize with key markers of processing bodies and stress granules and contribute to their subcellular dynamics. They function to limit the precocious accumulation and ribosome association of stress-responsive mRNAs involved in auto-immunity and growth inhibition under non-stress conditions. Given the conservation of this RNA helicase subfamily, they may control basal levels of conditionally regulated mRNAs in diverse eukaryotes, accelerating responses without penalty.
Collapse
Affiliation(s)
- Thanin Chantarachot
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Reed S Sorenson
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Maureen Hummel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Haiyan Ke
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Alek T Kettenburg
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Daniel Chen
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Karen Aiyetiwa
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Katayoon Dehesh
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Thomas Eulgem
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Leslie E Sieburth
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
41
|
Zhang J, Chen Y, Lu J, Zhang Y, Wen CK. Uncertainty of EIN2 Ser645/Ser924 Inactivation by CTR1-Mediated Phosphorylation Reveals the Complexity of Ethylene Signaling. PLANT COMMUNICATIONS 2020; 1:100046. [PMID: 33367241 PMCID: PMC7747984 DOI: 10.1016/j.xplc.2020.100046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/26/2019] [Accepted: 04/15/2020] [Indexed: 05/26/2023]
Abstract
ETHYLENE INSENSITIVE2 (EIN2) is a key component of ethylene signaling whose activity is inhibited upon phosphorylation of Ser645 and Ser924 by the Raf-like CONSTITUTIVE TRIPLE-RESPONSE 1 (CTR1) in the absence of ethylene. Ethylene prevents CTR1 activity and thus EIN2Ser645/Ser924 phosphorylation, and subcellular trafficking of a proteolytically cleaved EIN2 C terminus (EIN2-C) from the endoplasmic reticulum to the nucleus and processing bodies triggers ethylene signaling. Here, we report an unexpected complexity of EIN2-activated ethylene signaling. EIN2 activation in part requires ethylene in the absence of CTR1-mediated negative regulation. The ein2 mutant was complemented by the transgenes encoding EIN2, EIN2 variants with mutations that either prevent or mimic Ser645/Ser924 phosphorylation, or EIN2-C; and all the transgenic lines carrying these EIN2-derived transgenes responded to ethylene. Furthermore, we found that the fluorescence protein-tagged EIN2 and its variants were affected little by ethylene and exhibited similar subcellular distribution patterns: in the cytosolic particles and nuclear speckles. Of note, the subcellular localization patterns of EIN2 proteins fused with a fluorescence protein either at the N or C terminus were similar, whereas EIN2-C-YFP was primarily observed in the cytosol but not in the nucleus. Western blots and mass spectrum analyses suggested a high complexity of EIN2, which is likely proteolytically processed into multiple fragments. Our results suggested a nuclear localization of the full-length EIN2, weak association of the EIN2Ser645/Ser924 phosphorylation status and ethylene signaling, and the complexity of ethylene signaling caused by EIN2 and its proteolytic products in different subcellular compartments. We propose an alternative model to explain EIN2-activated ethylene signaling.
Collapse
Affiliation(s)
- Jingyi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
42
|
Pontvianne F, Liu C. Chromatin domains in space and their functional implications. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:1-10. [PMID: 31881292 DOI: 10.1016/j.pbi.2019.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 05/19/2023]
Abstract
Genome organization displays functional compartmentalization. Many factors, including epigenetic modifications, transcription factors, chromatin remodelers, and RNAs, shape chromatin domains and the three-dimensional genome organization. Various types of chromatin domains with distinct epigenetic and spatial features exhibit different transcriptional activities. As part of the efforts to better understand plant functional genomics, over the past a few years, spatial distribution patterns of plant chromatin domains have been brought to light. In this review, we discuss chromatin domains associated with the nuclear periphery and the nucleolus, as well as chromatin domains staying in proximity and showing physical interactions. The functional implication of these domains is discussed, with a particular focus on the transcriptional regulation and replication timing. Finally, from a biophysical point of view, we discuss potential roles of liquid-liquid phase separation in plant nuclei in the genesis and maintenance of spatial chromatin domains.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France; UPVD, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France.
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany.
| |
Collapse
|
43
|
Armarego-Marriott T, Sandoval-Ibañez O, Kowalewska Ł. Beyond the darkness: recent lessons from etiolation and de-etiolation studies. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1215-1225. [PMID: 31854450 PMCID: PMC7031072 DOI: 10.1093/jxb/erz496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/29/2019] [Indexed: 05/06/2023]
Abstract
The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with a type of growth called skotomorphogenesis. Upon illumination, de-etiolation occurs, marked by the transition from etioplast to chloroplast, and, at the seedling level, a switch to photomorphogenic growth. Etiolation and de-etiolation systems are therefore important for understanding both the acquisition of photosynthetic capacity during chloroplast biogenesis and plant responses to light-the most relevant signal in the life and growth of the organism. In this review, we discuss recent discoveries (within the past 2-3 years) in the field of etiolation and de-etiolation, with a particular focus on post-transcriptional processes and ultrastructural changes. We further discuss ambiguities in definitions of the term 'etiolation', and benefits and biases of common etiolation/de-etiolation systems. Finally, we raise several open questions and future research possibilities.
Collapse
Affiliation(s)
| | | | - Łucja Kowalewska
- Faculty of Biology, Department of Plant Anatomy and Cytology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
44
|
Bai B, van der Horst S, Cordewener JHG, America TAHP, Hanson J, Bentsink L. Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are Translationally Regulated during Germination. PLANT PHYSIOLOGY 2020; 182:378-392. [PMID: 31527088 PMCID: PMC6945870 DOI: 10.1104/pp.19.00644] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/01/2019] [Indexed: 05/20/2023]
Abstract
The life cycle of many organisms includes a quiescent stage, such as bacterial or fungal spores, insect larvae, or plant seeds. Common to these stages is their low water content and high survivability during harsh conditions. Upon rehydration, organisms need to reactivate metabolism and protein synthesis. Plant seeds contain many mRNAs that are transcribed during seed development. Translation of these mRNAs occurs during early seed germination, even before the requirement of transcription. Therefore, stored mRNAs are postulated to be important for germination. How these mRNAs are stored and protected during long-term storage is unknown. The aim of this study was to investigate how mRNAs are stored in dry seeds and whether they are indeed translated during seed germination. We investigated seed polysome profiles and the mRNAs and protein complexes that are associated with these ribosomes in seeds of the model organism Arabidopsis (Arabidopsis thaliana). We showed that most stored mRNAs are associated with monosomes in dry seeds; therefore, we focus on monosomes in this study. Seed ribosome complexes are associated with mRNA-binding proteins, stress granule, and P-body proteins, which suggests regulated packing of seed mRNAs. Interestingly, ∼17% of the mRNAs that are specifically associated with monosomes are translationally up-regulated during seed germination. These mRNAs are transcribed during seed maturation, suggesting a role for this developmental stage in determining the translational fate of mRNAs during early germination.
Collapse
Affiliation(s)
- Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjors van der Horst
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan H G Cordewener
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Twan A H P America
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
45
|
Xu M, Mazur MJ, Tao X, Kormelink R. Cellular RNA Hubs: Friends and Foes of Plant Viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:40-54. [PMID: 31415225 DOI: 10.1094/mpmi-06-19-0161-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA granules are dynamic cellular foci that are widely spread in eukaryotic cells and play essential roles in cell growth and development, and immune and stress responses. Different types of granules can be distinguished, each with a specific function and playing a role in, for example, RNA transcription, modification, processing, decay, translation, and arrest. By means of communication and exchange of (shared) components, they form a large regulatory network in cells. Viruses have been reported to interact with one or more of these either cytoplasmic or nuclear granules, and act either proviral, to enable and support viral infection and facilitate viral movement, or antiviral, protecting or clearing hosts from viral infection. This review describes an overview and recent progress on cytoplasmic and nuclear RNA granules and their interplay with virus infection, first in animal systems and as a prelude to the status and current developments on plant viruses, which have been less well studied on this thus far.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Magdalena J Mazur
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
46
|
Ma X, Zhou Y, Moffett P. Alterations in cellular RNA decapping dynamics affect tomato spotted wilt virus cap snatching and infection in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:789-803. [PMID: 31292958 DOI: 10.1111/nph.16049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
RNA processing and decay pathways have important impacts on RNA viruses, particularly animal-infecting bunyaviruses, which utilize a cap-snatching mechanism to translate their mRNAs. However, their effects on plant-infecting bunyaviruses have not been investigated. The roles of mRNA degradation and non-sense-mediated decay components, including DECAPPING 2 (DCP2), EXORIBONUCLEASE 4 (XRN4), ASYMMETRIC LEAVES2 (AS2) and UP-FRAMESHIFT 1 (UPF1) were investigated in infection of Arabidopsis thaliana by several RNA viruses, including the bunyavirus, tomato spotted wilt virus (TSWV). TSWV infection on mutants with decreased or increased RNA decapping ability resulted in increased and decreased susceptibility, respectively. By contrast, these mutations had the opposite, or no, effect on RNA viruses that use different mRNA capping strategies. Consistent with this, the RNA capping efficiency of TSWV mRNA was higher in a dcp2 mutant. Furthermore, the TSWV N protein partially colocalized with RNA processing body (PB) components and altering decapping activity by heat shock or coinfection with another virus resulted in corresponding changes in TSWV accumulation. The present results indicate that TSWV infection in plants depends on its ability to snatch caps from mRNAs destined for decapping in PBs and that genetic or environmental alteration of RNA processing dynamics can affect infection outcomes.
Collapse
Affiliation(s)
- Xiaofang Ma
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, no. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd. de l' Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, no. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd. de l' Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
47
|
Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance. Int J Mol Sci 2019; 20:ijms20194725. [PMID: 31554168 PMCID: PMC6801879 DOI: 10.3390/ijms20194725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Salt stress is one of the key abiotic stresses that causes great loss of yield and serious decrease in quality in maize (Zea mays L.). Therefore, it is very important to reveal the molecular mechanism of salt tolerance in maize. To acknowledge the molecular mechanisms underlying maize salt tolerance, two maize inbred lines, including salt-tolerant 8723 and salt-sensitive P138, were used in this study. Comparative proteomics of seedling roots from two maize inbred lines under 180 mM salt stress for 10 days were performed by the isobaric tags for relative and absolute quantitation (iTRAQ) approach. A total of 1056 differentially expressed proteins (DEPs) were identified. In total, 626 DEPs were identified in line 8723 under salt stress, among them, 378 up-regulated and 248 down-regulated. There were 473 DEPs identified in P138, of which 212 were up-regulated and 261 were down-regulated. Venn diagram analysis showed that 17 DEPs were up-regulated and 12 DEPs were down-regulated in the two inbred lines. In addition, 8 DEPs were up-regulated in line 8723 but down-regulated in P138, 6 DEPs were down-regulated in line 8723 but up-regulated in P138. In salt-stressed 8723, the DEPs were primarily associated with phenylpropanoid biosynthesis, starch and sucrose metabolism, and the mitogen-activated protein kinase (MAPK) signaling pathway. Intriguingly, the DEPs were only associated with the nitrogen metabolism pathway in P138. Compared to P138, the root response to salt stress in 8723 could maintain stronger water retention capacity, osmotic regulation ability, synergistic effects of antioxidant enzymes, energy supply capacity, signal transduction, ammonia detoxification ability, lipid metabolism, and nucleic acid synthesis. Based on the proteome sequencing information, changes of 8 DEPs abundance were related to the corresponding mRNA levels by quantitative real-time PCR (qRT-PCR). Our results from this study may elucidate some details of salt tolerance mechanisms and salt tolerance breeding of maize.
Collapse
|
48
|
Matsui A, Nakaminami K, Seki M. Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. PLANT & CELL PHYSIOLOGY 2019; 60:1897-1905. [PMID: 31093678 DOI: 10.1093/pcp/pcz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved various sophisticated mechanisms for adaptation to nonoptimal environments. Recent studies using RNA metabolism-related mutants have revealed that RNA processing, RNA decay and RNA stability play an important role in regulating gene expression at a post-transcriptional level in response to abiotic stresses. Studies indicate that RNA metabolism is a unified network, and modification of stress adaptation-related transcripts at multiple steps of RNA metabolism is necessary to control abiotic stress-related gene expression. Recent studies have also demonstrated the important role of noncoding RNAs (ncRNAs) in regulating abiotic stress-related gene expression and revealed their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications and RNA-RNA interactions. ncRNAs regulate mRNA transcription and their synthesis is affected by mRNA processing and degradation. In the present review, recent findings pertaining to the role of the metabolic regulation of mRNAs and ncRNAs in abiotic stress adaptation are summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
49
|
Poornima G, Mythili R, Nag P, Parbin S, Verma PK, Hussain T, Rajyaguru PI. RGG-motif self-association regulates eIF4G-binding translation repressor protein Scd6. RNA Biol 2019; 16:1215-1227. [PMID: 31157589 PMCID: PMC6693564 DOI: 10.1080/15476286.2019.1621623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Regulation of mRNA translation plays a key role in the control of gene expression. Scd6, a conserved RGG-motif containing protein represses translation by binding to translation initiation factor eIF4G1. Here we report that Scd6 binds itself in RGG-motif dependent manner and self-association regulates its repression activity. Scd6 self-interaction competes with eIF4G1 binding and methylation of Scd6 RGG-motif by Hmt1 negatively affects self-association. Results pertaining to Sbp1 indicate that self-association could be a general feature of RGG-motif containing translation repressor proteins. Taken together, our study reveals a mechanism of regulation of eIF4G-binding RGG-motif translation repressors.
Collapse
Affiliation(s)
| | - Ravishankar Mythili
- a Department of Biochemistry, Indian Institute of Science , Bangalore , India.,b Department of Biology, University of Western Ontario , London , Canada
| | - Priyabrata Nag
- c Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Sabnam Parbin
- a Department of Biochemistry, Indian Institute of Science , Bangalore , India
| | - Praveen Kumar Verma
- a Department of Biochemistry, Indian Institute of Science , Bangalore , India
| | - Tanweer Hussain
- c Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | |
Collapse
|
50
|
Sajeev N, Bai B, Bentsink L. Seeds: A Unique System to Study Translational Regulation. TRENDS IN PLANT SCIENCE 2019; 24:487-495. [PMID: 31003894 DOI: 10.1016/j.tplants.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 05/18/2023]
Abstract
Seeds accumulate mRNA during their development and have the ability to store these mRNAs over extended periods of time. On imbibition, seeds transform from a quiescent dry state (no translation) to a fully active metabolic state, and selectively translate subsets of these stored mRNA. Thus, seeds provide a unique developmentally regulated 'on/off' switch for translation. Additionally, there is extensive translational control during seed germination. Here we discuss new findings and hypotheses linked to mRNA fate and the role of translational regulation in seeds. Translation is an understated yet important mode of gene regulation. We propose seeds as a novel system to study developmentally and physiologically regulated translation.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl.
| |
Collapse
|