1
|
Shimoda Y, Yamaya-Ito H, Hakoyama T, Sato S, Kaneko T, Shibata S, Kawaguchi M, Suganuma N, Hayashi M, Kouchi H, Umehara Y. A mitochondrial metalloprotease FtsH4 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Sci Rep 2024; 14:27578. [PMID: 39528551 PMCID: PMC11554776 DOI: 10.1038/s41598-024-78295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Symbiotic nitrogen fixation is a highly coordinated process involving legume plants and nitrogen-fixing bacteria known as rhizobia. In this study, we investigated a novel Fix- mutant of the model legume Lotus japonicus that develops root nodules with endosymbiotic rhizobia but fails in nitrogen fixation. Map-based cloning identified the causal gene encoding the filamentation temperature-sensitive H (FtsH) protein, designated as LjFtsH4. The LjFtsH4 gene was expressed in all plant organs without increased levels during nodulation. Subcellular localization revealed that LjFtsH4, fused with a fluorescent protein, localized in mitochondria. The Ljftsh4 mutant nodules showed signs of premature senescence, including symbiosome membrane collapse and bacteroid disintegration. Additionally, nodule cells of Ljftsh4 mutant displayed mitochondria with indistinct crista structures. Grafting and complementation tests confirmed that the Fix- phenotype was determined by the root genotype, and that protease activity of LjFtsH4 was essential for nodule nitrogen fixation. Furthermore, the ATP content in Ljftsh4 mutant roots and nodules was lower than in the wild-type, suggesting reduced mitochondrial function. These findings underscore the critical role of LjFtsH4 in effective symbiotic nitrogen fixation in root nodules.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Hiroko Yamaya-Ito
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsuneo Hakoyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, 603-8555, Japan
| | - Satoshi Shibata
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Mining and Metallurgy Laboratories Technology Development Department, Metals Company, Mitsubishi Materials Corporation, Iwaki, Fukushima, 971-8101, Japan
| | | | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi, 448-8542, Japan
| | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan.
| |
Collapse
|
2
|
Ishikawa K, Kodama Y. Bilirubin Distribution in Plants at the Subcellular and Tissue Levels. PLANT & CELL PHYSIOLOGY 2024; 65:762-769. [PMID: 38466577 PMCID: PMC11138361 DOI: 10.1093/pcp/pcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
In heterotrophs, heme degradation produces bilirubin, a tetrapyrrole compound that has antioxidant activity. In plants, heme is degraded in plastids and is believed to be converted to phytochromobilin rather than bilirubin. Recently, we used the bilirubin-inducible fluorescent protein UnaG to reveal that plants produce bilirubin via a non-enzymatic reaction with NADPH. In the present study, we used an UnaG-based live imaging system to visualize bilirubin accumulation in Arabidopsis thaliana and Nicotiana benthamiana at the organelle and tissue levels. In chloroplasts, bilirubin preferentially accumulated in the stroma, and the stromal bilirubin level increased upon dark treatment. Investigation of intracellular bilirubin distribution in leaves and roots showed that it accumulated mostly in plastids, with low levels detected in the cytosol and other organelles, such as peroxisomes, mitochondria and the endoplasmic reticulum. A treatment that increased bilirubin production in chloroplasts decreased the bilirubin level in peroxisomes, implying that a bilirubin precursor is transported between the two organelles. At the cell and tissue levels, bilirubin showed substantial accumulation in the root elongation region but little or none in the root cap and guard cells. Intermediate bilirubin accumulation was observed in other shoot and root tissues, with lower levels in shoot tissues. Our data revealed the distribution of bilirubin in plants, which has implications for the transport and physiological function of tetrapyrroles.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|
3
|
Johnston E, Okada S, Gregg CM, Warden AC, Rolland V, Gillespie V, Byrne K, Colgrave ML, Eamens AL, Allen RS, Wood CC. The structural components of the Azotobacter vinelandii iron-only nitrogenase, AnfDKG, form a protein complex within the plant mitochondrial matrix. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01363-3. [PMID: 37326800 DOI: 10.1007/s11103-023-01363-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
A long-held goal of synthetic biology has been the transfer of a bacterial nitrogen-fixation pathway into plants to reduce the use of chemical fertiliser on crops such as rice, wheat and maize. There are three classes of bacterial nitrogenase, named after their metal requirements, containing either a MoFe-, VFe- or FeFe-cofactor, that converts N2 gas to ammonia. Relative to the Mo-nitrogenase the Fe-nitrogenase is not as efficient for catalysis but has less complex genetic and metallocluster requirements, features that may be preferable for engineering into crops. Here we report the successful targeting of bacterial Fe-nitrogenase proteins, AnfD, AnfK, AnfG and AnfH, to plant mitochondria. When expressed as a single protein AnfD was mostly insoluble in plant mitochondria, but coexpression of AnfD with AnfK improved its solubility. Using affinity-based purification of mitochondrially expressed AnfK or AnfG we were able to demonstrate a strong interaction of AnfD with AnfK and a weaker interaction of AnfG with AnfDK. This work establishes that the structural components of the Fe-nitrogenase can be engineered into plant mitochondria and form a complex, which will be a requirement for function. This report outlines the first use of Fe-nitrogenase proteins within a plant as a preliminary step towards engineering an alternative nitrogenase into crops.
Collapse
Affiliation(s)
- E Johnston
- CSIRO Environment, GPO Box 1700, Acton, ACT, 2601, Australia
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan NSW 2308, Callaghan, Australia
| | - S Okada
- CSIRO Environment, GPO Box 1700, Acton, ACT, 2601, Australia
| | - C M Gregg
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - A C Warden
- CSIRO Environment, GPO Box 1700, Acton, ACT, 2601, Australia
| | - V Rolland
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - V Gillespie
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - K Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - M L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - A L Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - R S Allen
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia.
| | - C C Wood
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| |
Collapse
|
4
|
Spatola Rossi T, Kriechbaumer V. An Interplay between Mitochondrial and ER Targeting of a Bacterial Signal Peptide in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:617. [PMID: 36771701 PMCID: PMC9920398 DOI: 10.3390/plants12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Protein targeting is essential in eukaryotic cells to maintain cell function and organelle identity. Signal peptides are a major type of targeting sequences containing a tripartite structure, which is conserved across all domains in life. They are frequently included in recombinant protein design in plants to increase yields by directing them to the endoplasmic reticulum (ER) or apoplast. The processing of bacterial signal peptides by plant cells is not well understood but could aid in the design of efficient heterologous expression systems. Here we analysed the signal peptide of the enzyme PmoB from methanotrophic bacteria. In plant cells, the PmoB signal peptide targeted proteins to both mitochondria and the ER. This dual localisation was still observed in a mutated version of the signal peptide sequence with enhanced mitochondrial targeting efficiency. Mitochondrial targeting was shown to be dependent on a hydrophobic region involved in transport to the ER. We, therefore, suggest that the dual localisation could be due to an ER-SURF pathway recently characterised in yeast. This work thus sheds light on the processing of bacterial signal peptides by plant cells and proposes a novel pathway for mitochondrial targeting in plants.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
5
|
Jeong J, Moon B, Hwang I, Lee DW. GREEN FLUORESCENT PROTEIN variants with enhanced folding are more efficiently imported into chloroplasts. PLANT PHYSIOLOGY 2022; 190:238-249. [PMID: 35699510 PMCID: PMC9434181 DOI: 10.1093/plphys/kiac291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chloroplasts and mitochondria are subcellular organelles that evolved from cyanobacteria and α-proteobacteria, respectively. Although they have their own genomes, the majority of their proteins are encoded by nuclear genes, translated by cytosolic ribosomes, and imported via outer and inner membrane translocon complexes. The unfolding of mature regions of proteins is thought to be a prerequisite for the import of the proteins into these organelles. However, it is not fully understood how protein folding properties affect their import into these organelles. In this study, we examined the import behavior of chloroplast and mitochondrial reporters with normal green fluorescent protein (GFP) and two GFP variants with enhanced folding propensity, superfolder GFP (sfGFP) and extra-superfolder GFP (esGFP), which is folded better than sfGFP. sfGFP and esGFP were less dependent on the sequence motifs of the transit peptide (TP) and import machinery during protein import into Arabidopsis (Arabidopsis thaliana) chloroplasts, compared with normal GFP. sfGFP and esGFP were efficiently imported into chloroplasts by a mutant TP with an alanine substitution in the N-terminal MLM motif, whereas the same mutant TP showed a defect in importing normal GFP into chloroplasts. Moreover, sfGFP and esGFP were efficiently imported into plastid protein import 2 (ppi2) and heat shock protein 93-V (hsp93-V) plants, which have mutations in atToc159 and Hsp93-V, respectively. In contrast, the presequence-mediated mitochondrial import of sfGFP and esGFP was severely impaired. Based on these results, we propose that the chloroplast import machinery is more tolerant to different folding states of preproteins, whereas the mitochondrial machinery is more specialized in the translocation of unfolded preproteins.
Collapse
Affiliation(s)
- Jinseung Jeong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, South Korea
| | - Byeongho Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, South Korea
| | | | | |
Collapse
|
6
|
Woo S, Moon B, Hwang I. Both metaxin and Tom20 together with two mitochondria-specific motifs support mitochondrial targeting of dual-targeting AtSufE1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1596-1613. [PMID: 35713200 DOI: 10.1111/jipb.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plant cells have two endosymbiotic organelles, chloroplasts, and mitochondria. These organelles perform specific functions that depend on organelle-specific proteins. The majority of chloroplast and mitochondrial proteins are specifically imported by the transit peptide and presequence, respectively. However, a significant number of proteins are also dually targeted to these two organelles. Currently, it is not fully understood how proteins are dually targeted to both chloroplasts and mitochondria. In this study, the mechanism underlying mitochondrial targeting of dual targeting AtSufE1 in Arabidopsis was elucidated. The N-terminal fragment containing 80 residues of AtSufE1 (AtSufE1N80) was sufficient to confer dual targeting of reporter protein, AtSufE1N80:GFP, in protoplasts. Two sequence motifs, two arginine residues at 15th and 21st positions, and amino acid (aa) sequence motif AKTLLLRPLK from the 31st to 40th aa position, were responsible for targeting to mitochondria a portion of reporter proteins amid the chloroplast targeting. The sequence motif PSEVPFRRT from the 41st to 50th aa position constitutes a common motif for targeting to both chloroplasts and mitochondria. For mitochondrial import of AtSufE1:N80, Metaxin played a critical role. In addition, BiFC and protein pull-down experiments showed that AtSufE1N80 specifically interacts with import receptors, Metaxin and Tom20. The interaction of AtSufE1N80 with Metaxin was required for the interaction with Tom20. Based on these results, we propose that mitochondrial targeting of dual-targeting AtSufE1 is mediated by both mitochondria-specific and common sequence motifs in the signal sequence through the interaction with import receptors, Metaxin and Tom20, in a successive manner.
Collapse
Affiliation(s)
- Seungjin Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Byeongho Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
7
|
Kang BC, Bae SJ, Lee S, Lee JS, Kim A, Lee H, Baek G, Seo H, Kim J, Kim JS. Chloroplast and mitochondrial DNA editing in plants. NATURE PLANTS 2021; 7:899-905. [PMID: 34211132 PMCID: PMC8289734 DOI: 10.1038/s41477-021-00943-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 05/21/2023]
Abstract
Plant organelles including mitochondria and chloroplasts contain their own genomes, which encode many genes essential for respiration and photosynthesis, respectively. Gene editing in plant organelles, an unmet need for plant genetics and biotechnology, has been hampered by the lack of appropriate tools for targeting DNA in these organelles. In this study, we developed a Golden Gate cloning system1, composed of 16 expression plasmids (8 for the delivery of the resulting protein to mitochondria and the other 8 for delivery to chloroplasts) and 424 transcription activator-like effector subarray plasmids, to assemble DddA-derived cytosine base editor (DdCBE)2 plasmids and used the resulting DdCBEs to efficiently promote point mutagenesis in mitochondria and chloroplasts. Our DdCBEs induced base editing in lettuce or rapeseed calli at frequencies of up to 25% (mitochondria) and 38% (chloroplasts). We also showed DNA-free base editing in chloroplasts by delivering DdCBE mRNA to lettuce protoplasts to avoid off-target mutations caused by DdCBE-encoding plasmids. Furthermore, we generated lettuce calli and plantlets with edit frequencies of up to 99%, which were resistant to streptomycin or spectinomycin, by introducing a point mutation in the chloroplast 16S rRNA gene.
Collapse
Affiliation(s)
- Beum-Chang Kang
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Su-Ji Bae
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seonghyun Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jeong Sun Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Annie Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunji Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Gayoung Baek
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jihun Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Lee DW, Hwang I. Understanding the evolution of endosymbiotic organelles based on the targeting sequences of organellar proteins. THE NEW PHYTOLOGIST 2021; 230:924-930. [PMID: 33404103 DOI: 10.1111/nph.17167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 05/17/2023]
Abstract
Organellogenesis, a key aspect of eukaryotic cell evolution, critically depends on the successful establishment of organellar protein import mechanisms. Phylogenetic analysis revealed that the evolution of the two endosymbiotic organelles, the mitochondrion and the chloroplast, is thought to have occurred at time periods far from each other. Despite this, chloroplasts and mitochondria have highly similar protein import mechanisms. This raises intriguing questions such as what underlies such similarity in the import mechanisms and how these similar mechanisms have evolved. In this review, we summarise the recent findings regarding sorting and specific targeting of these organellar proteins. Based on these findings, we propose possible evolutionary scenarios regarding how the signal sequences of chloroplasts and mitochondrial proteins ended up having such relationship.
Collapse
Affiliation(s)
- Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
9
|
Hofmann M, Loubéry S, Fitzpatrick TB. On the nature of thiamine triphosphate in Arabidopsis. PLANT DIRECT 2020; 4:e00258. [PMID: 32885135 PMCID: PMC7456500 DOI: 10.1002/pld3.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 05/02/2023]
Abstract
Vitamin B1 is a family of molecules, the most renowned member of which is diphosphorylated thiamine (TDP)-a coenzyme vital for the activity of key enzymes of energy metabolism. Triphosphorylated thiamine derivatives also exist within this family, specifically thiamine triphosphate (TTP) and adenosine thiamine triphosphate (ATTP). They have been investigated primarily in mammalian cells and are thought to act as metabolic messengers but have not received much attention in plants. In this study, we set out to examine for the presence of these triphosphorylated thiamine derivatives in Arabidopsis. We could find TTP in Arabidopsis under standard growth conditions, but we could not detect ATTP. Interestingly, TTP is found primarily in shoot tissue. Drivers of TTP synthesis are light intensity, the proton motive force, as well as TDP content. In plants, TTP accumulates in the organellar powerhouses, the plastids, and mitochondria. Furthermore, in contrast to other B1 vitamers, there are strong oscillations in tissue levels of TTP levels over diel periods peaking early during the light period. The elevation of TTP levels during the day appears to be coupled to a photosynthesis-driven process. We propose that TTP may signify TDP sufficiency, particularly in the organellar powerhouses, and discuss our findings in relation to its role.
Collapse
Affiliation(s)
- Manuel Hofmann
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Sylvain Loubéry
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | | |
Collapse
|
10
|
Lee DW, Lee S, Min CK, Park C, Kim JM, Hwang CS, Park SK, Cho NH, Hwang I. Cross-Species Functional Conservation and Possible Origin of the N-Terminal Specificity Domain of Mitochondrial Presequences. FRONTIERS IN PLANT SCIENCE 2020; 11:64. [PMID: 32117399 PMCID: PMC7031408 DOI: 10.3389/fpls.2020.00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/16/2020] [Indexed: 05/28/2023]
Abstract
Plants have two endosymbiotic organelles, chloroplast and mitochondrion. Although they have their own genomes, proteome assembly in these organelles depends on the import of proteins encoded by the nuclear genome. Previously, we elucidated the general design principles of chloroplast and mitochondrial targeting signals, transit peptide, and presequence, respectively, which are highly diverse in primary structure. Both targeting signals are composed of N-terminal specificity domain and C-terminal translocation domain. Especially, the N-terminal specificity domain of mitochondrial presequences contains multiple arginine residues and hydrophobic sequence motif. In this study we investigated whether the design principles of plant mitochondrial presequences can be applied to those in other eukaryotic species. We provide evidence that both presequences and import mechanisms are remarkably conserved throughout the species. In addition, we present evidence that the N-terminal specificity domain of presequence might have evolved from the bacterial TAT (twin-arginine translocation) signal sequence.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Sumin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jeong-Mok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
11
|
Baysal C, Pérez-González A, Eseverri Á, Jiang X, Medina V, Caro E, Rubio L, Christou P, Zhu C. Recognition motifs rather than phylogenetic origin influence the ability of targeting peptides to import nuclear-encoded recombinant proteins into rice mitochondria. Transgenic Res 2020; 29:37-52. [PMID: 31598902 PMCID: PMC7000509 DOI: 10.1007/s11248-019-00176-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 10/30/2022]
Abstract
Mitochondria fulfil essential functions in respiration and metabolism as well as regulating stress responses and apoptosis. Most native mitochondrial proteins are encoded by nuclear genes and are imported into mitochondria via one of several receptors that recognize N-terminal signal peptides. The targeting of recombinant proteins to mitochondria therefore requires the presence of an appropriate N-terminal peptide, but little is known about mitochondrial import in monocotyledonous plants such as rice (Oryza sativa). To gain insight into this phenomenon, we targeted nuclear-encoded enhanced green fluorescent protein (eGFP) to rice mitochondria using six mitochondrial pre-sequences with diverse phylogenetic origins, and investigated their effectiveness by immunoblot analysis as well as confocal and electron microscopy. We found that the ATPA and COX4 (Saccharomyces cerevisiae), SU9 (Neurospora crassa), pFA (Arabidopsis thaliana) and OsSCSb (Oryza sativa) peptides successfully directed most of the eGFP to the mitochondria, whereas the MTS2 peptide (Nicotiana plumbaginifolia) showed little or no evidence of targeting ability even though it is a native plant sequence. Our data therefore indicate that the presence of particular recognition motifs may be required for mitochondrial targeting, whereas the phylogenetic origin of the pre-sequences probably does not play a key role in the success of mitochondrial targeting in dedifferentiated rice callus and plants.
Collapse
Affiliation(s)
- Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Ana Pérez-González
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Álvaro Eseverri
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Xi Jiang
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Elena Caro
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Rubio
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
| |
Collapse
|
12
|
Okada S, Gregg CM, Allen RS, Menon A, Hussain D, Gillespie V, Johnston E, Byrne K, Colgrave ML, Wood CC. A Synthetic Biology Workflow Reveals Variation in Processing and Solubility of Nitrogenase Proteins Targeted to Plant Mitochondria, and Differing Tolerance of Targeting Sequences in a Bacterial Nitrogenase Assay. FRONTIERS IN PLANT SCIENCE 2020; 11:552160. [PMID: 33013970 PMCID: PMC7511584 DOI: 10.3389/fpls.2020.552160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/21/2020] [Indexed: 05/13/2023]
Abstract
While industrial nitrogen fertilizer is intrinsic to modern agriculture, it is expensive and environmentally harmful. One approach to reduce fertilizer usage is to engineer the bacterial nitrogenase enzyme complex within plant mitochondria, a location that may support enzyme function. Our current strategy involves fusing a mitochondrial targeting peptide (MTP) to nitrogenase (Nif) proteins, enabling their import to the mitochondrial matrix. However, the process of import modifies the N-terminus of each Nif protein and may impact nitrogenase assembly and function. Here we present our workflow assessing the mitochondrial processing, solubility and relative abundance of 16 Klebsiella oxytoca Nif proteins targeted to the mitochondrial matrix in Nicotiana benthamiana leaf. We found that processing and abundance of MTP::Nif proteins varied considerably, despite using the same constitutive promoter and MTP across all Nif proteins tested. Assessment of the solubility for all MTP::Nif proteins when targeted to plant mitochondria found NifF, M, N, S, U, W, X, Y, and Z were soluble, while NifB, E, H, J, K, Q, and V were mostly insoluble. The functional consequence of the N-terminal modifications required for mitochondrial targeting of Nif proteins was tested using a bacterial nitrogenase assay. With the exception of NifM, the Nif proteins generally tolerated the N-terminal extension. Proteomic analysis of Nif proteins expressed in bacteria found that the relative abundance of NifM with an N-terminal extension was increased ~50-fold, while that of the other Nif proteins was not influenced by the N-terminal extension. Based on the solubility, processing and functional assessments, our workflow identified that K. oxytoca NifF, N, S, U, W, Y, and Z successfully met these criteria. For the remaining Nif proteins, their limitations will need to be addressed before proceeding towards assembly of a complete set of plant-ready Nif proteins for reconstituting nitrogenase in plant mitochondria.
Collapse
Affiliation(s)
- Shoko Okada
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Christina M. Gregg
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Robert Silas Allen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Amratha Menon
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Dawar Hussain
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Vanessa Gillespie
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Ema Johnston
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Keren Byrne
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD, Australia
| | - Michelle Lisa Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Queensland Biosciences Precinct, St. Lucia, QLD, Australia
| | - Craig C. Wood
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- *Correspondence: Craig C. Wood,
| |
Collapse
|
13
|
Lee DW, Lee S, Lee J, Woo S, Razzak MA, Vitale A, Hwang I. Molecular Mechanism of the Specificity of Protein Import into Chloroplasts and Mitochondria in Plant Cells. MOLECULAR PLANT 2019; 12:951-966. [PMID: 30890495 DOI: 10.1016/j.molp.2019.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/19/2019] [Accepted: 03/10/2019] [Indexed: 05/04/2023]
Abstract
Plants possess both types of endosymbiotic organelles, chloroplasts and mitochondria. Transit peptides and presequences function as signal sequences for specific import into chloroplasts and mitochondria, respectively. However, how these highly similar signal sequences confer the protein import specificity remains elusive. Here, we show that mitochondrial- or chloroplast-specific import involves two distinct steps, specificity determination and translocation across envelopes, which are mediated by the N-terminal regions and functionally interchangeable C-terminal regions, respectively, of transit peptides and presequences. A domain harboring multiple-arginine and hydrophobic sequence motifs in the N-terminal regions of presequences was identified as the mitochondrial specificity factor. The presence of this domain and the absence of arginine residues in the N-terminal regions of otherwise common targeting signals confers specificity of protein import into mitochondria and chloroplasts, respectively. AtToc159, a chloroplast import receptor, also contributes to determining chloroplast import specificity. We propose that common ancestral sequences were functionalized into mitochondrial- and chloroplast-specific signal sequences by the presence and absence, respectively, of multiple-arginine and hydrophobic sequence motifs in the N-terminal region.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sumin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seungjin Woo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milano, Italy
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.
| |
Collapse
|
14
|
Sultana MM, Dutta AK, Tanaka Y, Aboulela M, Nishimura K, Sugiura S, Niwa T, Maeo K, Goto-Yamada S, Kimura T, Ishiguro S, Mano S, Nakagawa T. Gateway binary vectors with organelle-targeted fluorescent proteins for highly sensitive reporter assay in gene expression analysis of plants. J Biotechnol 2019; 297:19-27. [PMID: 30902643 DOI: 10.1016/j.jbiotec.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022]
Abstract
Fluorescent proteins are valuable tools in the bioscience field especially in subcellular localization analysis of proteins and expression analysis of genes. Fusion with organelle-targeting signal accumulates fluorescent proteins in specific organelles, increases local brightness, and highlights the signal of fluorescent proteins even in tissues emitting a high background of autofluorescence. For these advantages, organelle-targeted fluorescent proteins are preferably used for promoter:reporter assay to define organ-, tissue-, or cell-specific expression pattern of genes in detail. In this study, we have developed a new series of Gateway cloning technology-compatible binary vectors, pGWBs (attR1-attR2 acceptor sites) and R4L1pGWB (attR4-attL1 acceptor sites), carrying organelle-targeted synthetic green fluorescent protein with S65T mutation (sGFP) (ER-, nucleus-, peroxisome-, and mitochondria-targeted sGFP) and organelle-targeted tag red fluorescent protein (TagRFP) (nucleus-, peroxisome-, and mitochondria-targeted TagRFP). These are available for preparation of promoter:reporter constructs by an LR reaction with a promoter entry clone attL1-promoter-attL2 (for pGWBs) or attL4-promoter-attR1 (for R4L1pGWBs), respectively. A transient expression experiment with particle bombardment using cauliflower mosaic virus 35S promoter-driven constructs has confirmed the correct localization of newly developed organelle-targeted TagRFPs by a co-localization analysis with the previously established organelle-targeted sGFPs. More intense and apparent fluorescence signals were detected by the nucleus- and peroxisome-targeted sGFPs than by the normal sGFPs in the promoter assay using transgenic Arabidopsis thaliana. The new pGWBs and R4L1pGWBs developed here are highly efficient and may serve as useful platforms for more accurate observation of GFP and RFP signals in gene expression analyses of plants.
Collapse
Affiliation(s)
- Mst Momtaz Sultana
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; Department of Agricultural Extension (DAE), Ministry of Agriculture, Khamarbari, Dhaka, Bangladesh
| | - Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; Department of Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Yuji Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan; Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Sayaka Sugiura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Niwa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenichiro Maeo
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tetsuya Kimura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Sumie Ishiguro
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan.
| |
Collapse
|
15
|
Hsieh WY, Lin SC, Hsieh MH. Transformation of nad7 into the nuclear genome rescues the slow growth3 mutant in Arabidopsis. RNA Biol 2018; 15:1385-1391. [PMID: 30422048 DOI: 10.1080/15476286.2018.1546528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant pentatricopeptide repeat (PPR) proteins are mostly involved in chloroplast or mitochondrial RNA metabolism. However, direct evidence that correction of the molecular defects in the organelles can restore the plant phenotypes has yet to be demonstrated in a ppr mutant. Arabidopsis slow growth3 (slo3), a ppr mutant, is impaired in the splicing of mitochondrial nad7 intron 2. Here, we have used slo3 as an example to demonstrate that transformation of correctly spliced nad7 into the nuclear genome and targeting the Nad7 subunit into mitochondria can restore complex I activity and plant phenotypes in the mutant. These results provide direct evidence that the strong growth and developmental phenotypes of the slo3 mutant are caused by defects in mitochondrial nad7.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- a Institute of Plant and Microbial Biology , Academia Sinica , Taipei , Taiwan
| | - Sang-Chu Lin
- a Institute of Plant and Microbial Biology , Academia Sinica , Taipei , Taiwan
| | - Ming-Hsiun Hsieh
- a Institute of Plant and Microbial Biology , Academia Sinica , Taipei , Taiwan
| |
Collapse
|
16
|
Lee DW, Hwang I. Evolution and Design Principles of the Diverse Chloroplast Transit Peptides. Mol Cells 2018; 41:161-167. [PMID: 29487274 PMCID: PMC5881089 DOI: 10.14348/molcells.2018.0033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/06/2018] [Indexed: 11/27/2022] Open
Abstract
Chloroplasts are present in organisms belonging to the kingdom Plantae. These organelles are thought to have originated from photosynthetic cyanobacteria through endosymbiosis. During endosymbiosis, most cyanobacterial genes were transferred to the host nucleus. Therefore, most chloroplast proteins became encoded in the nuclear genome and must return to the chloroplast after translation. The N-terminal cleavable transit peptide (TP) is necessary and sufficient for the import of nucleus-encoded interior chloroplast proteins. Over the past decade, extensive research on the TP has revealed many important characteristic features of TPs. These studies have also shed light on the question of how the many diverse TPs could have evolved to target specific proteins to the chloroplast. In this review, we summarize the characteristic features of TPs. We also highlight recent advances in our understanding of TP evolution and provide future perspectives about this important research area.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
17
|
Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 PMCID: PMC5854594 DOI: 10.1038/s41598-018-22860-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
|
18
|
Kang H, Park Y, Lee Y, Yoo YJ, Hwang I. Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 DOI: 10.1038/s41598-018-22860-22862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 05/28/2023] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
Affiliation(s)
- Hyangju Kang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Youngmin Park
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yongjik Lee
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Joo Yoo
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
19
|
Zhong G, Zhu Q, Li Y, Liu Y, Wang H. Once for All: A Novel Robust System for Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1071. [PMID: 28676815 PMCID: PMC5476739 DOI: 10.3389/fpls.2017.01071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 05/24/2023]
Abstract
Chimeric fluorescent fusion proteins have been employed as a powerful tool to reveal the subcellular localizations and dynamics of proteins in living cells. Co-expression of a fluorescent fusion protein with well-known organelle markers in the same cell is especially useful in revealing its spatial and temporal functions of the protein in question. However, the conventional methods for co-expressing multiple fluorescent tagged proteins in plants have the drawbacks of low expression efficiency, variations in the expression level and time-consuming genetic crossing. Here, we have developed a novel robust system that allows for high-efficient co-expression of multiple chimeric fluorescent fusion proteins in plants in a time-saving fashion. This system takes advantage of employing a single expression vector which consists of multiple semi-independent expressing cassettes for the protein co-expression thereby overcoming the limitations of using multiple independent expressing plasmids. In addition, it is a highly manipulable DNA assembly system, in which modification and recombination of DNA molecules are easily achieved through an optimized one-step assembly reaction. By employing this effective system, we demonstrated that co-expression of two chimeric fluorescent fusion reporter proteins of vacuolar sorting receptor and secretory carrier membrane protein gave rise to their perspective subcellular localizations in plants via both transient expression and stable transformation. Thus, we believed that this technical advance represents a promising approach for multi-color-protein co-expression in plant cells.
Collapse
Affiliation(s)
- Guitao Zhong
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yingxin Li
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural UniversityGuangzhou, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
20
|
Allen RS, Tilbrook K, Warden AC, Campbell PC, Rolland V, Singh SP, Wood CC. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix. FRONTIERS IN PLANT SCIENCE 2017; 8:287. [PMID: 28316608 PMCID: PMC5334340 DOI: 10.3389/fpls.2017.00287] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/16/2017] [Indexed: 05/03/2023]
Abstract
The industrial production and use of nitrogenous fertilizer involves significant environmental and economic costs. Strategies to reduce fertilizer dependency are required to address the world's increasing demand for sustainable food, fibers, and biofuels. Biological nitrogen fixation, a process unique to diazatrophic bacteria, is catalyzed by the nitrogenase complex, and reconstituting this function in plant cells is an ambitious biotechnological strategy to reduce fertilizer use. Here we establish that the full array of biosynthetic and catalytic nitrogenase (Nif) proteins from the diazotroph Klebsiella pneumoniae can be individually expressed as mitochondrial targeting peptide (MTP)-Nif fusions in Nicotiana benthamiana. We show that these are correctly targeted to the plant mitochondrial matrix, a subcellular location with biochemical and genetic characteristics potentially supportive of nitrogenase function. Although Nif proteins B, D, E, F, H, J, K, M, N, Q, S, U, V, X, Y, and Z were all detectable by Western blot analysis, the NifD catalytic component was the least abundant. To address this problem, a translational fusion between NifD and NifK was designed based on the crystal structure of the nitrogenase MoFe protein heterodimer. This fusion protein enabled equimolar NifD:NifK stoichiometry and improved NifD expression levels in plants. Finally, four MTP-Nif fusion proteins (B, S, H, Y) were successfully co-expressed, demonstrating that multiple components of nitrogenase can be targeted to plant mitochondria. These results establish the feasibility of reconstituting the complete componentry for nitrogenase in plant cells, within an intracellular environment that could support the conversion of nitrogen gas into ammonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Craig C. Wood
- CSIRO Agriculture and FoodCanberra, ACT, Australia
- *Correspondence: Craig C. Wood
| |
Collapse
|
21
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
22
|
Li HM, Teng YS. Transit peptide design and plastid import regulation. TRENDS IN PLANT SCIENCE 2013; 18:360-6. [PMID: 23688728 DOI: 10.1016/j.tplants.2013.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/25/2013] [Accepted: 04/05/2013] [Indexed: 05/04/2023]
Abstract
Import of most nuclear encoded proteins into plastids is directed by an N-terminal transit peptide. Early studies suggested that transit peptides are interchangeable between precursor proteins. However, emerging evidence shows that different transit peptides contain different motifs specifying their preference for certain plastid types or ages. In this opinion article, we propose a 'multi-selection and multi-order' (M&M) model for transit peptide design, describing each transit peptide as an assembly of motifs for interacting with selected translocon components. These interactions determine the preference of the precursor for a particular plastid type or age. Furthermore, the order of the motifs varies among transit peptides, explaining why no consensus sequences have been identified through linear sequence comparison of all transit peptides as one group.
Collapse
Affiliation(s)
- Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | | |
Collapse
|