1
|
Roy A, Grinstead S, Leon Martínez G, Pinzón JCC, Nunziata SO, Padmanabhan C, Hammond J. Meta-Transcriptomic Analysis Uncovers the Presence of Four Novel Viruses and Multiple Known Virus Genera in a Single Hibiscus rosa-sinensis Plant in Colombia. Viruses 2024; 16:267. [PMID: 38400042 PMCID: PMC10891833 DOI: 10.3390/v16020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Hibiscus is not native to Colombia but well suited to its arid soil and dry climates. A single hibiscus plant from Risaralda, showing black spots on upper and lower sides of its leaves, was collected for virome analysis using meta-transcriptomic high-throughput sequencing technology. Bioinformatic analysis identified 12.5% of the total reads in the Ribo-Zero cDNA library which mapped to viral genomes. BLAST searches revealed the presence of carlavirus, potexvirus, and of known members of the genera Betacarmovirus, Cilevirus, Nepovirus, and Tobamovirus in the sample; confirmed by RT-PCR with virus-specific primers followed by amplicon sequencing. Furthermore, in silico analysis suggested the possibility of a novel soymovirus, and a new hibiscus strain of citrus leprosis virus C2 in the mixed infection. Both RNA dependent RNA polymerase and coat protein gene sequences of the potex and carla viruses shared less than 72% nucleotide and 80% amino acid identities with any alphaflexi- and betaflexi-virus sequences available in GenBank, identifying three novel carlavirus and one potexvirus species in the Hibiscus rosa-sinensis plant. The detection of physalis vein necrosis nepovirus and passion fruit green spot cilevirus in hibiscus are also new reports from Colombia. Overall, the meta-transcriptome analysis identified the complex virome associated with the black spot symptoms on hibiscus leaves and demonstrated the diversity of virus genera tolerated in the mixed infection of a single H. rosa-sinensis plant.
Collapse
Affiliation(s)
- Avijit Roy
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, MD 20705, USA
| | - Sam Grinstead
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, MD 20705, USA
| | - Guillermo Leon Martínez
- AGROSAVIA, Centro de Investigación La Libertad, Km.17 vía Pto. Lopez, Villavicencio, Meta, Colombia
| | | | - Schyler O Nunziata
- Plant Pathogen Confirmatory Diagnostics Laboratory, Science and Technology, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, USDA, Laurel, MD 20708, USA
| | - Chellappan Padmanabhan
- Plant Pathogen Confirmatory Diagnostics Laboratory, Science and Technology, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, USDA, Laurel, MD 20708, USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Ando S, Otawara S, Tabei Y, Tsushima S. Plasmodiophora brassicae affects host gene expression by secreting the transcription factor-type effector PbZFE1. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:454-467. [PMID: 37738570 DOI: 10.1093/jxb/erad377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The protist pathogen Plasmodiophora brassicae hijacks the metabolism and development of host cruciferous plants and induces clubroot formation, but little is known about its regulatory mechanisms. Previously, the Pnit2int2 sequence, a sequence around the second intron of the nitrilase gene (BrNIT2) involved in auxin biosynthesis in Brassica rapa ssp. pekinensis, was identified as a specific promoter activated during clubroot formation. In this study, we hypothesized that analysis of the transcriptional regulation of Pnit2int2 could reveal how P. brassicae affects the host gene regulatory system during clubroot development. By yeast one-hybrid screening, the pathogen zinc finger protein PbZFE1 was identified to specifically bind to Pnit2int2. Specific binding of PbZFE1 to Pnit2int2 was also confirmed by electrophoretic mobility shift assay. The binding site of PbZFE1 is essential for promoter activity of Pnit2int2 in clubbed roots of transgenic Arabidopsis thaliana (Pnit2int2-2::GUS), indicating that PbZFE1 is secreted from P. brassicae and functions within plant cells. Ectopic expression of PbZEF1 in A. thaliana delayed growth and flowering time, suggesting that PbZFE1 has significant impacts on host development and metabolic systems. Thus, P. brassicae appears to secrete PbZFE1 into host cells as a transcription factor-type effector during pathogenesis.
Collapse
Affiliation(s)
- Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shinsuke Otawara
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yutaka Tabei
- Division of Plant Sciences, The Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
- Department of Food and Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Seiya Tsushima
- Strategic Planning Headquarters, National Agriculture and Food Research Organization (NARO), 3-1-1 Kan-nondai, Tsukuba, Ibaraki 305-8517, Japan
| |
Collapse
|
3
|
Cui B, Yu M, Bai J, Zhu Z. SlbHLH22-Induced Hypertrophy Development Is Related to the Salt Stress Response of the GTgamma Gene in Tomatoes. Metabolites 2023; 13:1195. [PMID: 38132877 PMCID: PMC10744757 DOI: 10.3390/metabo13121195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Hypertrophy development induced by the overexpression of SlbHLH22 (also called SlUPA-like) was susceptible to Xanthomonas in tomatoes. Transcriptome and metabolome analyses were performed on the hypertrophy leaves of a SlbHLH22-overexpressed line (OE) and wild type (WT) to investigate the molecular mechanism. Metabolome analysis revealed that six key metabolites were over-accumulated in the OE, including Acetylserine/O-Acetyl-L-serine, Glucono-1,5-lactone, Gluconate, 2-Oxoglutarate, and Loganate, implying that the OE plants increased salt or oxidant resistance under normal growth conditions. The RNA-seq analysis showed the changed expressions of downstream genes involved in high-energy consumption, photosynthesis, and transcription regulation in OE lines, and we hypothesized that these biological processes were related to the GTgamma subfamily of trihelix factors. The RT-PCR results showed that the expressions of the GTgamma genes in tomatoes, i.e., SlGT-7 and SlGT-36, were suppressed in the hypertrophy development. The expression of the GTgamma gene was downregulated by salinity, indicating a coordinated role of GTgamma in hypertrophy development and salt stress. Further research showed that both SlGT-7 and SlGT-36 were highly expressed in leaves and could be significantly induced by abscisic acid (ABA). The GTgamma protein had a putative phosphorylation site at S96. These results suggested GTgamma's role in hypertrophy development by increasing the salt resistance.
Collapse
Affiliation(s)
- Baolu Cui
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332005, China; (B.C.); (M.Y.)
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Min Yu
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332005, China; (B.C.); (M.Y.)
| | - Jiaojiao Bai
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332005, China; (B.C.); (M.Y.)
| | - Zhiguo Zhu
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332005, China; (B.C.); (M.Y.)
| |
Collapse
|
4
|
Atsumi G, Naramoto S, Nishihara M, Nakatsuka T, Tomita R, Matsushita Y, Hoshi N, Shirakawa A, Kobayashi K, Fukuda H, Sekine KT. Identification of a novel viral factor inducing tumorous symptoms by disturbing vascular development in planta. J Virol 2023; 97:e0046323. [PMID: 37668368 PMCID: PMC10537666 DOI: 10.1128/jvi.00463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 09/06/2023] Open
Abstract
Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.
Collapse
Affiliation(s)
- Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Naramoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Reiko Tomita
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Yosuke Matsushita
- National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Nobue Hoshi
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | | | - Kappei Kobayashi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-Taro Sekine
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
- Department of Environmental Sciences and Conservation Biology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
5
|
Li J, Wu X, Liu H, Wang X, Yi S, Zhong X, Wang Y, Wang Z. Identification and Molecular Characterization of a Novel Carlavirus Infecting Chrysanthemum morifolium in China. Viruses 2023; 15:v15041029. [PMID: 37113009 PMCID: PMC10141686 DOI: 10.3390/v15041029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| |
Collapse
|
6
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
7
|
Zhong X, Yang L, Li J, Tang Z, Wu C, Zhang L, Zhou X, Wang Y, Wang Z. Integrated next-generation sequencing and comparative transcriptomic analysis of leaves provides novel insights into the ethylene pathway of Chrysanthemum morifolium in response to a Chinese isolate of chrysanthemum virus B. Virol J 2022; 19:182. [DOI: 10.1186/s12985-022-01890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant.
Methods
Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level.
Results
In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection.
Conclusion
This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.
Collapse
|
8
|
Li Y, Liu S, Guo K, Ding W, Wang R. Virome of Pseudostellaria heterophylla: Identification and characterization of three novel carlaviruses and one novel amalgavirus associated with viral diseases of Pseudostellaria heterophylla. Front Microbiol 2022; 13:955089. [PMID: 36246219 PMCID: PMC9559581 DOI: 10.3389/fmicb.2022.955089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Pseudostellaria heterophylla is a traditional Chinese herbal medicine, which has been cultivated for hundreds of years. Viral diseases of P. heterophylla occur widely and limit the yield and quality of this medicinal plant. In this study, five leaf samples of P. heterophylla with typical viral symptoms were collected from four main producing regions that are distributed in Fujian, Guizhou, and Anhui Provinces in China and analyzed by next-generation sequencing. Comprehensive bioinformatics analyses revealed that nine viruses in five genera Carlavirus, Potyvirus, Fabavirus, Cucumovirus, and Amalgavirus infected P. heterophylla. Among these viruses, three novel and two known carlaviruses, tentatively designated Pseudostellaria heterophylla carlavirus 1, 2, and 3 (PhCV1, PhCV2, and PhCV3), Jasmine virus C isolate Ph (Ph-JVC) and Stevia carlavirus 1 isolate Ph (Ph-StCV1), respectively, were first identified in P. heterophylla. PhCV1-3 share a similar genomic organization and clear sequence homology with members in the genus Carlavirus and could potentially be classified as new species of this genus. One novel amalgavirus, tentatively designated P. heterophylla amalgavirus 1 (PhAV1), was first identified in P. heterophylla. It had a typical genomic organization of the genus Amalgavirus. In PhAV1, the + 1 programmed ribosomal frameshifting, which is prevalent in most amalgaviruses, was identified and used in the expression of RNA-dependent RNA polymerase (RdRp). Combined with a phylogenetic analysis, PhAV1 could potentially be classified as new species of the genus Amalgavirus. In addition, multiple Broad bean wilt virus 2 (BBWV2) variants, Turnip mosaic virus (TuMV), and Cucumber mosaic virus (CMV), which have been reported in P. heterophylla, were also detected in this study. The distribution of PhCV1-3, Ph-JVC, Ph-StCV1, TuMV, BBWV2, and CMV in four production regions in Fujian, Guizhou, and Anhui Provinces was determined. This study increased our understanding of P. heterophylla virome and provided valuable information for the development of a molecular diagnostic technique and control of viral diseases in P. heterophylla.
Collapse
|
9
|
Yu M, Bi X, Huang Y, Chen Y, Wang J, Zhang R, Lei Y, Xia Z, An M, Wu Y. Chimeric Tobamoviruses With Coat Protein Exchanges Modulate Symptom Expression and Defence Responses in Nicotiana tabacum. Front Microbiol 2020; 11:587005. [PMID: 33240243 PMCID: PMC7677242 DOI: 10.3389/fmicb.2020.587005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023] Open
Abstract
In the pathogen infection and host defence equilibrium, plant viruses have evolved to efficiently replicate their genomes, to resist the attack from host defence responses and to avoid causing severe negative effect on growth and metabolism of the hosts. In this study, we generated chimeric tobacco mosaic virus (TMV) variants, in which the coat protein (CP) sequences were substituted with that of cucumber green mottle mosaic virus (CGMMV) or pepper mild mottle virus (PMMoV) to address the role of these in virus infection and host symptomology. The results showed that the chimeric viruses (TMV-CGCP or TMV-PMCP) induce stunting and necrotic symptoms in tobacco plants. We analyzed the transcriptomic changes in tobacco plants after infection of TMV and its chimeras using a high-throughput RNA sequencing approach and found that infection of the chimeric TMV induced significant up-regulation of host defence responsive genes together with salicylic (SA) or abscisic acid (ABA) responsive genes, but down-regulation of auxin (Aux) responsive genes. We further confirmed the increase in the levels of SA and ABA, together with the reduced levels of Aux after infection of chimeric TMV in tobacco plants. These data suggest novel roles of tobamovirus CP in induction of host symptoms and defence responses.
Collapse
Affiliation(s)
- Man Yu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanmin Huang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yong Chen
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Jun Wang
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Ruina Zhang
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Yunkang Lei
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Vetukuri RR, Kalyandurg PB, Saripella GV, Sen D, Gil JF, Lukhovitskaya NI, Grenville-Briggs LJ, Savenkov EI. Effect of RNA silencing suppression activity of chrysanthemum virus B p12 protein on small RNA species. Arch Virol 2020; 165:2953-2959. [PMID: 33040310 PMCID: PMC7588395 DOI: 10.1007/s00705-020-04832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 10/31/2022]
Abstract
Chrysanthemum virus B encodes a multifunctional p12 protein that acts as a transcriptional activator in the nucleus and as a suppressor of RNA silencing in the cytoplasm. Here, we investigated the impact of p12 on accumulation of major classes of small RNAs (sRNAs). The results show dramatic changes in the sRNA profiles characterised by an overall reduction in sRNA accumulation, changes in the pattern of size distribution of canonical siRNAs and in the ratio between sense and antisense strands, lower abundance of siRNAs with a U residue at the 5'-terminus, and changes in the expression of certain miRNAs, most of which were downregulated.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Pruthvi B Kalyandurg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden
| | | | - Diya Sen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Jose Fernando Gil
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden
| | - Nina I Lukhovitskaya
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
11
|
Davino S, Ruiz-Ruiz S, Serra P, Forment J, Flores R. Revisiting the cysteine-rich proteins encoded in the 3'-proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B. Arch Virol 2020; 165:2229-2239. [PMID: 32676682 DOI: 10.1007/s00705-020-04729-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 10/23/2022]
Abstract
A reexamination of proteins with conserved cysteines and basic amino acids encoded by the 3'-proximal gene of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses has been carried out. The cysteines are involved in a putative Zn-finger domain, which, together with the basic amino acids, form part of the nuclear or nucleolar localization signals. An in-depth study of one of these proteins, p15 from grapevine B virus (GVB), has shown: (i) a three-dimensional structure with four α-helices predicted by two independent in silico approaches, (ii) the nucleolus as the main accumulation site by applying confocal laser microscopy to a fusion between p15 and the green fluorescent protein, (iii) the involvement of the basic amino acids and the putative Zn-finger domain, mapping at the N-terminal region of p15, in the nucleolar localization signal, as revealed by the effect of six alanine substitution mutations, (iv) the p15 suppressor function of sense-mediated RNA silencing as revealed by agroinfiltration in a transgenic line of Nicotiana benthamiana, and (v) the enhancer activity of p15 on viral pathogenicity in N. benthamiana when expressed from a potato virus X vector. In addition, we elaborate on an evolutionary scenario for these filamentous viruses, invoking takeover by a common ancestor(s) of viral or host genes coding for those cysteine-rich proteins, followed by divergence, which would also explain why they are encoded in the 3'-proximal gene of the genomic single-stranded viral RNA.
Collapse
Affiliation(s)
- Salvatore Davino
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze Building 5, 90128, Palermo, Italy
| | - Susana Ruiz-Ruiz
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Pedro Serra
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain.
| |
Collapse
|
12
|
Jin H, Du Z, Zhang Y, Antal J, Xia Z, Wang Y, Gao Y, Zhao X, Han X, Cheng Y, Shen Q, Zhang K, Elder RE, Benko Z, Fenyvuesvolgyi C, Li G, Rebello D, Li J, Bao S, Zhao RY, Wang D. A distinct class of plant and animal viral proteins that disrupt mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. SCIENCE ADVANCES 2020; 6:eaba3418. [PMID: 32426509 PMCID: PMC7220342 DOI: 10.1126/sciadv.aba3418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Many animal viral proteins, e.g., Vpr of HIV-1, disrupt host mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. However, it is unknown whether plant viruses may use this mechanism in their pathogenesis. Here, we report that the 17K protein, encoded by barley yellow dwarf viruses and related poleroviruses, delays G2/M transition and disrupts mitosis in both host (barley) and nonhost (fission yeast, Arabidopsis thaliana, and tobacco) cells through interrupting the function of Wee1-Cdc25-CDKA/Cdc2 via direct protein-protein interactions and alteration of CDKA/Cdc2 phosphorylation. When ectopically expressed, 17K disrupts the mitosis of cultured human cells, and HIV-1 Vpr inhibits plant cell growth. Furthermore, 17K and Vpr share similar secondary structural feature and common amino acid residues required for interacting with plant CDKA. Thus, our work reveals a distinct class of mitosis regulators that are conserved between plant and animal viruses and play active roles in viral pathogenesis.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiqiang Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Judit Antal
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zongliang Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjun Cheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Robert E. Elder
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zsigmond Benko
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Csaba Fenyvuesvolgyi
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dionne Rebello
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jing Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Richard Y. Zhao
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, Institute of Human Virology, and Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
13
|
Identification of a potential transcriptional regulator encoded by grass carp reovirus. Arch Virol 2019; 164:1393-1404. [DOI: 10.1007/s00705-019-04204-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/09/2019] [Indexed: 01/26/2023]
|
14
|
Zhang T, Zhao X, Jiang L, Yang X, Chen Y, Song X, Lu Y, Peng J, Zheng H, Wu Y, MacFarlane S, Chen J, Yan F. p15 encoded by Garlic virus X is a pathogenicity factor and RNA silencing suppressor. J Gen Virol 2018; 99:1515-1521. [PMID: 30207520 DOI: 10.1099/jgv.0.001144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Garlic virus X (GarVX) encodes a 15 kDa cysteine-rich protein (CRP). To investigate the function(s) of p15, its subcellular localization, role as a symptom determinant and capacity to act as a viral suppressor of RNA silencing (VSR) were analysed. Results showed that GFP-tagged p15 was distributed in the cytoplasm, nucleus and nucleolus. Expression of p15 from PVX caused additional systemic foliar malformation and led to increased accumulation of PVX, showing that p15 is a virulence factor for reconstructed PVX-p15. Moreover, using a transient agro-infiltration patch assay and a Turnip crinkle virus (TCV) movement complementation assay, it was demonstrated that p15 possesses weak RNA silencing suppressor activity. Removal of an amino acid motif resembling a nuclear localization signal (NLS) prevented p15 from accumulating in the nucleus but did not abolish its silencing suppression activity. This study provides the first insights into the multiple functions of the GarVX p15 protein.
Collapse
Affiliation(s)
- Tianhao Zhang
- 1College of Plant Protection, Shenyang Agriculture University, Shenyang 110161, Liaoning, PR China
| | - Xing Zhao
- 1College of Plant Protection, Shenyang Agriculture University, Shenyang 110161, Liaoning, PR China
| | - Liangliang Jiang
- 2Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
- 3State Key laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
- 4College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xue Yang
- 1College of Plant Protection, Shenyang Agriculture University, Shenyang 110161, Liaoning, PR China
| | - Ying Chen
- 1College of Plant Protection, Shenyang Agriculture University, Shenyang 110161, Liaoning, PR China
| | - Xijiao Song
- 5Public Lab, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yuwen Lu
- 2Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
- 3State Key laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jiejun Peng
- 2Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
- 3State Key laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Hongying Zheng
- 2Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
- 3State Key laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yuanhua Wu
- 1College of Plant Protection, Shenyang Agriculture University, Shenyang 110161, Liaoning, PR China
| | - Stuart MacFarlane
- 6The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee DD2 5DA, UK
| | - Jianping Chen
- 2Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
- 3State Key laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Fei Yan
- 2Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
- 3State Key laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| |
Collapse
|
15
|
Fernando Gil J, Liebe S, Thiel H, Lennefors B, Kraft T, Gilmer D, Maiss E, Varrelmann M, Savenkov EI. Massive up-regulation of LBD transcription factors and EXPANSINs highlights the regulatory programs of rhizomania disease. MOLECULAR PLANT PATHOLOGY 2018; 19:2333-2348. [PMID: 30011123 PMCID: PMC6638176 DOI: 10.1111/mpp.12702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rhizomania of sugar beet, caused by Beet necrotic yellow vein virus (BNYVV), is characterized by excessive lateral root (LR) formation leading to dramatic reduction of taproot weight and massive yield losses. LR formation represents a developmental process tightly controlled by auxin signaling through AUX/IAA-ARF responsive module and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcriptional network. Several LBD transcription factors play central roles in auxin-regulated LR development and act upstream of EXPANSINS (EXPs), cell wall (CW)-loosening proteins involved in plant development via disruption of the extracellular matrix for CW relaxation and expansion. Here, we present evidence that BNYVV hijacks these auxin-regulated pathways resulting in formation LR and root hairs (RH). We identified an AUX/IAA protein (BvAUX28) as interacting with P25, a viral virulence factor. Mutational analysis indicated that P25 interacts with domains I and II of BvAUX28. Subcellular localization of co-expressed P25 and BvAUX28 showed that P25 inhibits BvAUX28 nuclear localization. Moreover, root-specific LBDs and EXPs were greatly upregulated during rhizomania development. Based on these data, we present a model in which BNYVV P25 protein mimics action of auxin by removing BvAUX28 transcriptional repressor, leading to activation of LBDs and EXPs. Thus, the evidence highlights two pathways operating in parallel and leading to uncontrolled formation of LRs and RHs, the main manifestation of the rhizomania syndrome.
Collapse
Affiliation(s)
- Jose Fernando Gil
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology75007UppsalaSweden
| | - Sebastian Liebe
- Institute of Sugar Beet Research, Department of Phytopathology37079GöttingenGermany
| | - Heike Thiel
- Institute of Sugar Beet Research, Department of Phytopathology37079GöttingenGermany
- Present address:
K+S KALI GmbHBertha‐von‐Suttner‐Straße 7,34131KasselGermany
| | | | - Thomas Kraft
- MariboHilleshög Research AB26123LandskronaSweden
| | - David Gilmer
- Institut de biologie moléculaire des plantesCNRS, Université de Strasbourg67084StrasbourgFrance
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Department of PhytomedicineLeibniz University Hannover30419HannoverGermany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Department of Phytopathology37079GöttingenGermany
| | - Eugene I. Savenkov
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology75007UppsalaSweden
| |
Collapse
|
16
|
Yoshida N, Shimura H, Masuta C. Allexiviruses may have acquired inserted sequences between the CP and CRP genes to change the translation reinitiation strategy of CRP. Arch Virol 2018; 163:1419-1427. [PMID: 29417240 DOI: 10.1007/s00705-018-3749-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/17/2018] [Indexed: 11/28/2022]
Abstract
Allexiviruses are economically important garlic viruses that are involved in garlic mosaic diseases. In this study, we characterized the allexivirus cysteine-rich protein (CRP) gene located just downstream of the coat protein (CP) gene in the viral genome. We determined the nucleotide sequences of the CP and CRP genes from numerous allexivirus isolates and performed a phylogenetic analysis. According to the resulting phylogenetic tree, we found that allexiviruses were clearly divided into two major groups (group I and group II) based on the sequences of the CP and CRP genes. In addition, the allexiviruses in group II had distinct sequences just before the CRP gene, while group I isolates did not. The inserted sequence between the CP and CRP genes was partially complementary to garlic 18S rRNA. Using a potato virus X vector, we showed that the CRPs affected viral accumulation and symptom induction in Nicotiana benthamiana, suggesting that the allexivirus CRP is a pathogenicity determinant. We assume that the inserted sequences before the CRP gene may have been generated during viral evolution to alter the termination-reinitiation mechanism for coupled translation of CP and CRP.
Collapse
Affiliation(s)
- Naoto Yoshida
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
17
|
Fujita N, Komatsu K, Ayukawa Y, Matsuo Y, Hashimoto M, Netsu O, Teraoka T, Yamaji Y, Namba S, Arie T. N-terminal region of cysteine-rich protein (CRP) in carlaviruses is involved in the determination of symptom types. MOLECULAR PLANT PATHOLOGY 2018; 19:180-190. [PMID: 27868376 PMCID: PMC6638135 DOI: 10.1111/mpp.12513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 05/04/2023]
Abstract
Plant viruses in the genus Carlavirus include more than 65 members. Plants infected with carlaviruses exhibit various symptoms, including leaf malformation and plant stunting. Cysteine-rich protein (CRP) encoded by carlaviruses has been reported to be a pathogenicity determinant. Carlavirus CRPs contain two motifs in their central part: a nuclear localization signal (NLS) and a zinc finger motif (ZF). In addition to these two conserved motifs, carlavirus CRPs possess highly divergent, N-terminal, 34 amino acid residues with unknown function. In this study, to analyse the role of these distinct domains, we tested six carlavirus CRPs for their RNA silencing suppressor activity, ability to enhance the pathogenicity of a heterologous virus and effects on virus accumulation levels. Although all six tested carlavirus CRPs showed RNA silencing suppressor activity at similar levels, symptoms induced by the Potato virus X (PVX) heterogeneous system exhibited two different patterns: leaf malformation and whole-plant stunting. The expression of each carlavirus CRP enhanced PVX accumulation levels, which were not correlated with symptom patterns. PVX-expressing CRP with mutations in either NLS or ZF did not induce symptoms, suggesting that both motifs play critical roles in symptom expression. Further analysis using chimeric CRPs, in which the N-terminal region was replaced with the corresponding region of another CRP, suggested that the N-terminal region of carlavirus CRPs determined the exhibited symptom types. The up-regulation of a plant gene upp-L, which has been reported in a previous study, was also observed in this study; however, the expression level was not responsible for symptom types.
Collapse
Affiliation(s)
- Naoko Fujita
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Yu Ayukawa
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchu183‐8509Japan
| | - Yuki Matsuo
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Tohru Teraoka
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| |
Collapse
|
18
|
Wildermuth MC, Steinwand MA, McRae AG, Jaenisch J, Chandran D. Adapted Biotroph Manipulation of Plant Cell Ploidy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:537-564. [PMID: 28617655 DOI: 10.1146/annurev-phyto-080516-035458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify (a) common host components manipulated to promote induced host endoreduplication and (b) biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.
Collapse
Affiliation(s)
- Mary C Wildermuth
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Michael A Steinwand
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Amanda G McRae
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Johan Jaenisch
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Divya Chandran
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India 121001
| |
Collapse
|
19
|
Aparicio F, Pallás V. The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic acid-dependent defence signalling response. MOLECULAR PLANT PATHOLOGY 2017; 18:173-186. [PMID: 26929142 PMCID: PMC6638206 DOI: 10.1111/mpp.12388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 05/03/2023]
Abstract
During virus infection, specific viral component-host factor interaction elicits the transcriptional reprogramming of diverse cellular pathways. Alfalfa mosaic virus (AMV) can establish a compatible interaction in tobacco and Arabidopsis hosts. We show that the coat protein (CP) of AMV interacts directly with transcription factor (TF) ILR3 of both species. ILR3 is a basic helix-loop-helix (bHLH) family member of TFs, previously proposed to participate in diverse metabolic pathways. ILR3 has been shown to regulate NEET in Arabidopsis, a critical protein in plant development, senescence, iron metabolism and reactive oxygen species (ROS) homeostasis. We show that the AMV CP-ILR3 interaction causes a fraction of this TF to relocate from the nucleus to the nucleolus. ROS, pathogenesis-related protein 1 (PR1) mRNAs, salicylic acid (SA) and jasmonic acid (JA) contents are increased in healthy Arabidopsis loss-of-function ILR3 mutant (ilr3.2) plants, which implicates ILR3 in the regulation of plant defence responses. In AMV-infected wild-type (wt) plants, NEET expression is reduced slightly, but is induced significantly in ilr3.2 mutant plants. Furthermore, the accumulation of SA and JA is induced in Arabidopsis wt-infected plants. AMV infection in ilr3.2 plants increases JA by over 10-fold, and SA is reduced significantly, indicating an antagonist crosstalk effect. The accumulation levels of viral RNAs are decreased significantly in ilr3.2 mutants, but the virus can still systemically invade the plant. The AMV CP-ILR3 interaction may down-regulate a host factor, NEET, leading to the activation of plant hormone responses to obtain a hormonal equilibrium state, where infection remains at a level that does not affect plant viability.
Collapse
Affiliation(s)
- Frederic Aparicio
- Department of Molecular and Evolutionary Plant VirologyInstituto de Biología Molecular y Celular de Plantas (IBMCP) (UPV‐CSIC)Ingeniero Fausto Elio s/n46022ValenciaSpain
| | - Vicente Pallás
- Department of Molecular and Evolutionary Plant VirologyInstituto de Biología Molecular y Celular de Plantas (IBMCP) (UPV‐CSIC)Ingeniero Fausto Elio s/n46022ValenciaSpain
| |
Collapse
|
20
|
Duplications in the 3' termini of three segments of Fusarium graminearum virus China 9. Arch Virol 2016; 162:897-900. [PMID: 27888409 DOI: 10.1007/s00705-016-3174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
The hypovirulence-inducing Fusarium graminearum virus China 9 (FgV-ch9) was described recently and is closely related to the Fusarium graminearum mycovirus-2 (FgV2). Both viruses share common properties of viruses belonging to the family Chrysoviridae. Re-sequencing of FgV-ch9 revealed duplications of the 3' non-coding regions of segments 2 and 3. Both duplications are arranged in a head-to-tail array, are attached to the complete terminus, and do not affect the encoded gene. An internal duplication was found in segment 5. This duplication resulted in an increase in the size of the encoded protein. In silico analysis showed similar duplications in segments 2 and 3 of FgV2.
Collapse
|
21
|
Sun D, Nandety RS, Zhang Y, Reid MS, Niu L, Jiang CZ. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3353-65. [PMID: 27099376 PMCID: PMC4892726 DOI: 10.1093/jxb/erw155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing.
Collapse
Affiliation(s)
- Daoyang Sun
- Department of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Raja Sekhar Nandety
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA
| | - Yanlong Zhang
- Department of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Michael S Reid
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Lixin Niu
- Department of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
22
|
Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato. Sci Rep 2016; 6:23818. [PMID: 27025226 PMCID: PMC4812305 DOI: 10.1038/srep23818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways.
Collapse
|
23
|
Lezzhov AA, Gushchin VA, Lazareva EA, Vishnichenko VK, Morozov SY, Solovyev AG. Translation of the shallot virus X TGB3 gene depends on non-AUG initiation and leaky scanning. J Gen Virol 2015; 96:3159-3164. [PMID: 26296665 DOI: 10.1099/jgv.0.000248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Triple gene block (TGB), a conserved gene module found in the genomes of many filamentous and rod-shaped plant viruses, encodes three proteins, TGB1, TGB2 and TGB3, required for viral cell-to-cell movement through plasmodesmata and systemic transport via the phloem. The genome of Shallot virus X, the type species of the genus Allexivirus, includes TGB1 and TGB2 genes, but contains no canonical ORF for TGB3 protein. However, a TGB3-like protein-encoding sequence lacking an AUG initiator codon has been found in the shallot virus X (ShVX) genome in a position typical for TGB3 genes. This putative TGB3 gene is conserved in all allexiviruses. Here, we carried out sequence analysis to predict possible non-AUG initiator codons in the ShVX TGB3-encoding sequence. We further used an agroinfiltration assay in Nicotiana benthamiana to confirm this prediction. Site-directed mutagenesis was used to demonstrate that the ShVX TGB3 could be translated on a bicistronic mRNA template via a leaky scanning mechanism.
Collapse
Affiliation(s)
- Alexander A Lezzhov
- Department of Genetics, Biotechnology, Plant Breeding and Seed Science, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Vladimir A Gushchin
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
- Genetic Department, Russian Center of Forest Health, Pushkino 141207, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
| | - Valery K Vishnichenko
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow 127550, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Andrey G Solovyev
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
24
|
Soler N, Fagoaga C, López C, Moreno P, Navarro L, Flores R, Peña L. Symptoms induced by transgenic expression of p23 from Citrus tristeza virus in phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. MOLECULAR PLANT PATHOLOGY 2015; 16:388-99. [PMID: 25171669 PMCID: PMC6638416 DOI: 10.1111/mpp.12188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) is phloem restricted in natural citrus hosts. The 23-kDa protein (p23) encoded by the virus is an RNA silencing suppressor and a pathogenicity determinant. The expression of p23, or its N-terminal 157-amino-acid fragment comprising the zinc finger and flanking basic motifs, driven by the constitutive 35S promoter of cauliflower mosaic virus, induces CTV-like symptoms and other aberrations in transgenic citrus. To better define the role of p23 in CTV pathogenesis, we compared the phenotypes of Mexican lime transformed with p23-derived transgenes from the severe T36 and mild T317 CTV isolates under the control of the phloem-specific promoter from Commelina yellow mottle virus (CoYMV) or the 35S promoter. Expression of the constructs restricted to the phloem induced a phenotype resembling CTV-specific symptoms (vein clearing and necrosis, and stem pitting), but not the non-specific aberrations (such as mature leaf epinasty and yellow pinpoints, growth cessation and apical necrosis) observed when p23 was ectopically expressed. Furthermore, vein necrosis and stem pitting in Mexican lime appeared to be specifically associated with p23 from T36. Phloem-specific accumulation of the p23Δ158-209(T36) fragment was sufficient to induce the same anomalies, indicating that the region comprising the N-terminal 157 amino acids of p23 is responsible (at least in part) for the vein clearing, stem pitting and, possibly, vein corking in this host.
Collapse
Affiliation(s)
- Nuria Soler
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Apdo. Oficial, Moncada, Valencia, 46113, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Deng XG, Peng XJ, Zhu F, Chen YJ, Zhu T, Qin SB, Xi DH, Lin HH. A critical domain of Sweet potato chlorotic fleck virus nucleotide-binding protein (NaBp) for RNA silencing suppression, nuclear localization and viral pathogenesis. MOLECULAR PLANT PATHOLOGY 2015; 16:365-75. [PMID: 25138489 PMCID: PMC6638403 DOI: 10.1111/mpp.12186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA silencing using a green fluorescent protein (GFP)-based transient expression assay in Nicotiana benthamiana line 16c plants. Our results showed that a putative nucleotide-binding protein (NaBp), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double-stranded RNA (dsRNA) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine-rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP, we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X (PVX) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis.
Collapse
Affiliation(s)
- Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lukhovitskaya NI, Cowan GH, Vetukuri RR, Tilsner J, Torrance L, Savenkov EI. Importin-α-mediated nucleolar localization of potato mop-top virus TRIPLE GENE BLOCK1 (TGB1) protein facilitates virus systemic movement, whereas TGB1 self-interaction is required for cell-to-cell movement in Nicotiana benthamiana. PLANT PHYSIOLOGY 2015; 167:738-52. [PMID: 25576325 PMCID: PMC4348779 DOI: 10.1104/pp.114.254938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 05/19/2023]
Abstract
Recently, it has become evident that nucleolar passage of movement proteins occurs commonly in a number of plant RNA viruses that replicate in the cytoplasm. Systemic movement of Potato mop-top virus (PMTV) involves two viral transport forms represented by a complex of viral RNA and TRIPLE GENE BLOCK1 (TGB1) movement protein and by polar virions that contain the minor coat protein and TGB1 attached to one extremity. The integrity of polar virions ensures the efficient movement of RNA-CP, which encodes the virus coat protein. Here, we report the involvement of nuclear transport receptors belonging to the importin-α family in nucleolar accumulation of the PMTV TGB1 protein and, subsequently, in the systemic movement of the virus. Virus-induced gene silencing of two importin-α paralogs in Nicotiana benthamiana resulted in significant reduction of TGB1 accumulation in the nucleus, decreasing the accumulation of the virus progeny in upper leaves and the loss of systemic movement of RNA-CP. PMTV TGB1 interacted with importin-α in N. benthamiana, which was detected by bimolecular fluorescence complementation in the nucleoplasm and nucleolus. The interaction was mediated by two nucleolar localization signals identified by bioinformatics and mutagenesis in the TGB1 amino-terminal domain. Our results showed that while TGB1 self-interaction is needed for cell-to-cell movement, importin-α-mediated nucleolar targeting of TGB1 is an essential step in establishing the efficient systemic infection of the entire plant. These results enabled the identification of two separate domains in TGB1: an internal domain required for TGB1 self-interaction and cell-to-cell movement and the amino-terminal domain required for importin-α interaction in plants, nucleolar targeting, and long-distance movement.
Collapse
Affiliation(s)
- Nina I Lukhovitskaya
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.)
| | - Graham H Cowan
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.)
| | - Ramesh R Vetukuri
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.)
| | - Jens Tilsner
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.)
| | - Lesley Torrance
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.)
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.)
| |
Collapse
|
27
|
Lukhovitskaya NI, Vetukuri RR, Sama I, Thaduri S, Solovyev AG, Savenkov EI. A viral transcription factor exhibits antiviral RNA silencing suppression activity independent of its nuclear localization. J Gen Virol 2014; 95:2831-2837. [PMID: 25143075 DOI: 10.1099/vir.0.067884-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Viral suppressors of RNA silencing (VSRs) are critical for the success of virus infection and efficient accumulation of virus progeny. The chrysanthemum virus B p12 protein acts as a transcription factor to regulate cell size and proliferation favourable for virus infection. Here, we showed that the p12 protein suppressed RNA silencing and was able to complement a VSR-deficient unrelated virus. Moreover, p12 counter-silencing activity could be uncoupled from its function as a transcription factor in the nucleus. The altered p12 protein, which lacked a nuclear localization signal and was not imported into the nucleus, was able to suppress RNA silencing as efficiently as the native protein. The data revealed new aspects of p12 functioning and identified a novel role for this viral zinc-finger transcription factor. The results provided a general insight into one of the activities of the p12 protein, which appeared to possess more than one function.
Collapse
Affiliation(s)
- Nina I Lukhovitskaya
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden
| | - Indu Sama
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden
| | - Srinivas Thaduri
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden
| |
Collapse
|
28
|
Ivanov KI, Eskelin K, Lõhmus A, Mäkinen K. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 2014; 95:1415-1429. [DOI: 10.1099/vir.0.064220-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.
Collapse
Affiliation(s)
- K. I. Ivanov
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Eskelin
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - A. Lõhmus
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Mäkinen
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| |
Collapse
|
29
|
Solovyev AG, Savenkov EI. Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1689-97. [PMID: 24420565 DOI: 10.1093/jxb/ert449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Compatible virus-host interactions depend on a suitable milieu in the host cells permitting viral gene expression, replication, and spread. During pathogenesis, viruses hijack the plant cellular machinery to access molecules, subcellular structures, and host transport pathways needed for infection. Vascular trafficking of virus transport forms (VTF) within the phloem is a crucial step in setting-up virus infection within the entire plant. Moreover, vascular trafficking is an essential step for the further transmission of the viruses by their natural vectors as movement of the viruses to the distant parts of the plant from the initial site of infection guarantees accessibility of the virus particle for vector transmission. With the recent advances in the field of plant virology several emerging themes of viral systemic movement occur linking the role of virus-mediated transcriptional reprogramming and nuclear factors in vascular trafficking. Recent studies have uncovered host factors involved in virus vascular trafficking. Surprisingly, it appears that the role of the nucleus and nuclear factors in virus movement is still under-appreciated. This review describes how these new themes started to emerge by using two contrasting modes of virus vascular trafficking. It is argued that the translocation of viral movement proteins into the nuclei is, in many cases, an essential step in promoting virus systemic infection.
Collapse
Affiliation(s)
- Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | |
Collapse
|
30
|
Pasin F, Kulasekaran S, Natale P, Simón-Mateo C, García JA. Rapid fluorescent reporter quantification by leaf disc analysis and its application in plant-virus studies. PLANT METHODS 2014; 10:22. [PMID: 25053970 PMCID: PMC4105834 DOI: 10.1186/1746-4811-10-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/02/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fluorescent proteins are extraordinary tools for biology studies due to their versatility; they are used extensively to improve comprehension of plant-microbe interactions. The viral infection process can easily be tracked and imaged in a plant with fluorescent protein-tagged viruses. In plants, fluorescent protein genes are among the most commonly used reporters in transient RNA silencing and heterologous protein expression assays. Fluorescence intensity is used to quantify fluorescent protein accumulation by image analysis or spectroscopy of protein extracts; however, these methods might not be suitable for medium- to large-scale comparisons. RESULTS We report that laser scanners, used routinely in proteomic studies, are suitable for quantitative imaging of plant leaves that express different fluorescent protein pairs. We developed a microtiter plate fluorescence spectroscopy method for direct quantitative comparison of fluorescent protein accumulation in intact leaf discs. We used this technique to measure a fluorescent reporter in a transient RNA silencing suppression assay, and also to monitor early amplification dynamics of a fluorescent protein-labeled potyvirus. CONCLUSIONS Laser scanners allow dual-color fluorescence imaging of leaf samples, which might not be acquired in standard stereomicroscope devices. Fluorescence microtiter plate analysis of intact leaf discs can be used for rapid, accurate quantitative comparison of fluorescent protein accumulation.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Satish Kulasekaran
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | | |
Collapse
|
31
|
Solovieva AD, Frolova OY, Solovyev AG, Morozov SY, Zamyatnin AA. Effect of mitochondria-targeted antioxidant SkQ1 on programmed cell death induced by viral proteins in tobacco plants. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:1006-12. [PMID: 24228922 DOI: 10.1134/s000629791309006x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Programmed cell death (PCD) is the main defense mechanism in plants to fight various pathogens including viruses. The best-studied example of virus-induced PCD in plants is Tobacco mosaic virus (TMV)-elicited hypersensitive response in tobacco plants containing the N resistance gene. It was previously reported that the animal mitochondrial protein Bcl-xL, which lacks a homolog in plants, effectively suppresses plant PCD induced by TMV p50 - the elicitor of hypersensitive response in Nicotiana tabacum carrying the N gene. Our studies show that the mitochondria-targeted antioxidant SkQ1 effectively suppresses p50-induced PCD in tobacco plants. On the other hand, SkQ1 did not affect Poa semilatent virus TGB3-induced endoplasmic reticulum stress, which is followed by PCD, in Nicotiana benthamiana epidermal cells. These data suggest that mitochondria-targeted antioxidant SkQ1 can be used to study molecular mechanisms of PCD suppression in plants.
Collapse
Affiliation(s)
- A D Solovieva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | | |
Collapse
|
32
|
Lukhovitskaya NI, Gushchin VA, Solovyev AG, Savenkov EI. Making sense of nuclear localization: a zinc-finger protein encoded by a cytoplasmically replicating plant RNA virus acts a transcription factor: a novel function for a member of large family of viral proteins. PLANT SIGNALING & BEHAVIOR 2013; 8:e25263. [PMID: 23759549 PMCID: PMC3999073 DOI: 10.4161/psb.25263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 05/16/2023]
Abstract
Recent studies have uncovered numerous nucleus-localized proteins encoded by plant RNA viruses. Whereas for some of these viruses nuclear (or, more specifically, nucleolar) passage of the proteins is needed for the virus movement within the plant or suppression of host defense, the nuclear function of these proteins remains largely unknown. Recently, the situation has been clarified for one group of plant RNA viruses, the Carlaviruses. Being positive-stranded RNA viruses, carlaviruses multiply exclusively in the cytoplasm. Chrysanthemum virus B (CVB, a carlavirus) encodes a zinc-finger protein p12 targeted to the nucleus in a nuclear localization signal-dependent manner. In a recent work, we demonstrated that p12 directly interacts with chromatin and plant promoters, thus, acts as a eukaryotic transcription factor (TF) and activates expression of a host TF involved in regulation of cell size and proliferation to favor virus infection. Therefore our studies identified a novel nuclear stage of in CVB infection involving modulation of host gene expression and plant development. Whereas it is well established that any RNA virus actively replicating in the cell causes changes in the transcriptome, our study expanded this view by showing that some positive-stranded RNA viruses can directly manipulate host transcription by encoding eukaryotic TFs.
Collapse
Affiliation(s)
- Nina I. Lukhovitskaya
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Vladimir A. Gushchin
- Department of Virology; Biological Faculty; Moscow State University; Moscow, Russia
| | - Andrey G. Solovyev
- A.N.Belozersky Institute of Physico-Chemical Biology; Moscow State University; Moscow, Russia
- Institute of Agricultural Biotechnology; Russian Academy of Agricultural Sciences; Moscow, Russia
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| |
Collapse
|
33
|
Li YY, Zhang RN, Xiang HY, Abouelnasr H, Li DW, Yu JL, McBeath JH, Han CG. Discovery and Characterization of a Novel Carlavirus Infecting Potatoes in China. PLoS One 2013; 8:e69255. [PMID: 23805334 PMCID: PMC3689765 DOI: 10.1371/journal.pone.0069255] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
A new carlavirus, tentatively named Potato virus H (PVH), was found on potato plants with mild symptoms in Hohhot, Inner Mongolia Autonomous Region, China. PVH was confirmed by genome sequencing, serological reactions, electron microscopy, and host index assays. The PVH particles were filamentous and slightly curved, with a modal length of 570 nm. Complete RNA genomic sequences of two isolates of PVH were determined using reverse transcription-PCR (RT-PCR) and the 5' rapid amplification of cDNA ends (5' RACE) method. Sequence analysis revealed that PVH had the typical genomic organization of members of the genus Carlavirus, with a positive-sense single-stranded genome of 8410 nt. It shared coat protein (CP) and replicase amino acid sequence identities of 17.9-56.7% with those of reported carlaviruses. Phylogenetic analyses based on the protein-coding sequences of replicase and CP showed that PVH formed a distinct branch, which was related only distantly to other carlaviruses. Western blotting assays showed that PVH was not related serologically to other potato carlaviruses (Potato virus S, Potato virus M, and Potato latent virus). PVH systemically infected Nicotianaglutinosa but not Nicotiana tabacum, Nicotianabenthamiana, or Chenopodiumquinoa, which is in contrast with the other potato carlaviruses. These results support the classification of PVH as a novel species in the genus Carlavirus. Preliminary results also indicated that a cysteine-rich protein encoded by the smallest ORF located in the 3' proximal region of the genome suppressed local RNA silencing and enhanced the pathogenicity of the recombinant PVX.
Collapse
MESH Headings
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Carlavirus/classification
- Carlavirus/genetics
- Carlavirus/isolation & purification
- China
- DNA, Complementary/chemistry
- DNA, Complementary/metabolism
- Genome, Viral
- Microscopy, Electron
- Phylogeny
- Plant Diseases/virology
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- RNA, Viral/metabolism
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, DNA
- Solanum tuberosum/virology
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory for Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Ru-Nan Zhang
- State Key Laboratory for Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hai-Ying Xiang
- State Key Laboratory for Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hesham Abouelnasr
- State Key Laboratory for Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Da-Wei Li
- State Key Laboratory for Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Jia-Lin Yu
- State Key Laboratory for Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Jenifer Huang McBeath
- Plant Pathology and Biotechnology Laboratory, Agriculture and Forestry Experiment Station, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|