1
|
Trunova D, Borowska-Zuchowska N, Mykhailyk S, Xia K, Zhu Y, Sancho R, Rojek-Jelonek M, Garcia S, Wang K, Catalan P, Kovarik A, Hasterok R, Kolano B. Does time matter? Intraspecific diversity of ribosomal RNA genes in lineages of the allopolyploid model grass Brachypodium hybridum with different evolutionary ages. BMC PLANT BIOLOGY 2024; 24:981. [PMID: 39420249 PMCID: PMC11488067 DOI: 10.1186/s12870-024-05658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Polyploidisation often results in genome rearrangements that may involve changes in both the single-copy sequences and the repetitive genome fraction. In this study, we performed a comprehensive comparative analysis of repetitive DNA, with a particular focus on ribosomal DNA (rDNA), in Brachypodium hybridum (2n = 4x = 30, subgenome composition DDSS), an allotetraploid resulting from a natural cross between two diploid species that resemble the modern B. distachyon (2n = 10; DD) and B. stacei (2n = 20; SS). Taking advantage of the recurrent origin of B. hybridum, we investigated two genotypes, Bhyb26 and ABR113, differing markedly in their evolutionary age (1.4 and 0.14 Mya, respectively) and which resulted from opposite cross directions. To identify the origin of rDNA loci we employed cytogenetic and molecular methods (FISH, gCAPS and Southern hybridisation), phylogenetic and genomic approaches. RESULTS Unlike the general maintenance of doubled gene dosage in B. hybridum, the rRNA genes showed a remarkable tendency towards diploidisation at both locus and unit levels. While the partial elimination of 35S rDNA units occurred in the younger ABR113 lineage, unidirectional elimination of the entire locus was observed in the older Bhyb26 lineage. Additionally, a novel 5S rDNA family was amplified in Bhyb26 replacing the parental units. The 35S and 5S rDNA units were preferentially eliminated from the S- and D-subgenome, respectively. Thus, in the more ancient B. hybridum lineage, Bhyb26, 5S and 35S rRNA genes are likely expressed from different subgenomes, highlighting the complexity of polyploid regulatory networks. CONCLUSION Comparative analyses between two B. hybridum lineages of distinct evolutionary ages revealed that although the recent lineage ABR113 exhibited an additive pattern of rDNA loci distribution, the ancient lineage Bhyb26 demonstrated a pronounced tendency toward diploidisation manifested by the reduction in the number of both 35S and 5S loci. In conclusion, the age of the allopolyploid appears to be a decisive factor in rDNA turnover in B. hybridum.
Collapse
Affiliation(s)
- Dana Trunova
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Kai Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Ruben Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Sònia Garcia
- Institut Botànic de Barcelona IBB (CSIC-CMCNB), Barcelona, Catalonia, 08038, Spain
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, CZ- 61200, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Bozena Kolano
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| |
Collapse
|
2
|
Wang C, Liu L, Yin M, Liu B, Wu Y, Eller F, Gao Y, Brix H, Wang T, Guo W, Salojärvi J. Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis. Commun Biol 2024; 7:1007. [PMID: 39154094 PMCID: PMC11330502 DOI: 10.1038/s42003-024-06660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Biological invasions pose a significant threat to ecosystems, disrupting local biodiversity and ecosystem functions. The genomic underpinnings of invasiveness, however, are still largely unknown, making it difficult to predict and manage invasive species effectively. The common reed (Phragmites australis) is a dominant grass species in wetland ecosystems and has become particularly invasive when transferred from Europe to North America. Here, we present a high-quality gap-free, telomere-to-telomere genome assembly of Phragmites australis consisting of 24 pseudochromosomes and a B chromosome. Fully phased subgenomes demonstrated considerable subgenome dominance and revealed the divergence of diploid progenitors approximately 30.9 million years ago. Comparative genomics using chromosome-level scaffolds for three other lineages and a previously published draft genome assembly of an invasive lineage revealed that gene family expansions in the form of tandem duplications may have contributed to the invasiveness of the lineage. This study sheds light on the genome evolution of Arundinoideae grasses and suggests that genetic drivers, such as gene family expansions and tandem duplications, may underly the processes of biological invasion in plants. These findings provide a crucial step toward understanding and managing the genetic basis of invasiveness in plant species.
Collapse
Affiliation(s)
- Cui Wang
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lele Liu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Meiqi Yin
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yiming Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | | | - Yingqi Gao
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China.
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Matyášek R, Kalfusová R, Kuderová A, Řehůřková K, Sochorová J, Kovařík A. Transcriptional Silencing of 35S rDNA in Tragopogon porrifolius Correlates with Cytosine Methylation in Sequence-Specific Manner. Int J Mol Sci 2024; 25:7540. [PMID: 39062783 PMCID: PMC11276851 DOI: 10.3390/ijms25147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two T. porrifolius lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs. Moreover, two (L and S) prominent rDNA variants, differing in the repetitive organization of intergenic spacers, were detected in por2, while only the S-rDNA variant was detected in por1. Transcriptional activity of S-rDNA in por1 was associated with secondary constriction of both A-NORs. In contrast, silencing of S-rDNA in por2 was accompanied by condensation of A-NORs, secondary constriction on D-NORs, and L-rDNA transcriptional activity, suggesting (i) bidirectional nucleolar dominance and (ii) association of S-rDNAs with A-NORs and L-rDNAs with D-NORs in T. porrifolius. Each S- and L-rDNA array was formed of several sub-variants differentiating both genetically (specific SNPs) and epigenetically (transcriptional efficiency and cytosine methylation). The most significant correlations between rDNA silencing and methylation were detected for symmetric CWG motifs followed by CG motifs. No correlations were detected for external cytosine in CCGs or asymmetric CHHs, where methylation was rather position-dependent, particularly for AT-rich variants. We conclude that variations in rDNA copy numbers in plant diploids can be accompanied by prompt epigenetic responses to maintain an appropriate number of active rDNAs. The methylation dynamics of CWGs are likely to be the most responsible for regulating silent and active rDNA states.
Collapse
Affiliation(s)
- Roman Matyášek
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (R.K.); (A.K.); (K.Ř.); (J.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|
4
|
Mandáková T, Krumpolcová A, Matyášek R, Volkov R, Lysak MA, Kovařík A. Uniparental silencing of 5S rRNA genes in plant allopolyploids - insights from Cardamine (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38838061 DOI: 10.1111/tpj.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. × insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. × insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. × insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Alice Krumpolcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Matyášek
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, 58012, Chernivtsi, Ukraine
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Ales Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| |
Collapse
|
5
|
Zhang J, Fan C, Liu Y, Shi Q, Sun Y, Huang Y, Yuan J, Han F. Cytological analysis of the diploid-like inheritance of newly synthesized allotetraploid wheat. Chromosome Res 2023; 32:1. [PMID: 38108925 DOI: 10.1007/s10577-023-09745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Polyploidization is a process which is related to species hybridization and whole genome duplication. It is widespread among angiosperm evolution and is essential for speciation and diversification. Allopolyploidization is mainly derived from interspecific hybridization and is believed to pose chromosome imbalances and genome instability caused by meiotic irregularity. However, the self-compatible allopolyploid in wild nature is cytogenetically and genetically stable. Whether this stabilization form was achieved in initial generation or a consequence of long term of evolution was largely unknown. Here, we synthesized a series of nascent allotetraploid wheat derived from three diploid genomes of A, S*, and D. The chromosome numbers of the majority of the progeny derived from these newly formed allotetraploid wheat plants were found to be relatively consistent, with each genome containing 14 chromosomes. In meiosis, bivalent was the majority of the chromosome configuration in metaphase I which supports the stable chromosome number inheritance in the nascent allotetraploid. These findings suggest that diploidization occurred in the newly formed synthetic allotetraploid wheat. However, we still detected aneuploids in a proportion of newly formed allotetraploid wheat, and meiosis of these materials present more irregular chromosome behavior than the euploid. We found that centromere pairing and centromere clustering in meiosis was affected in the aneuploids, which suggest that aneuploidy may trigger the irregular interactions of centromere in early meiosis which may take participate in promoting meiosis stabilization in newly formed allotetraploid wheat.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaolan Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yishuang Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 2023; 131:179-188. [PMID: 37402824 PMCID: PMC10462631 DOI: 10.1038/s41437-023-00634-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
Collapse
Affiliation(s)
- Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
7
|
Huang Y, Liu Y, Guo X, Fan C, Yi C, Shi Q, Su H, Liu C, Yuan J, Liu D, Yang W, Han F. New insights on the evolution of nucleolar dominance in newly resynthesized hexaploid wheat Triticum zhukovskyi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1298-1315. [PMID: 37246611 DOI: 10.1111/tpj.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Nucleolar dominance (ND) is a widespread epigenetic phenomenon in hybridizations where nucleolus transcription fails at the nucleolus organizer region (NOR). However, the dynamics of NORs during the formation of Triticum zhukovskyi (GGAu Au Am Am ), another evolutionary branch of allohexaploid wheat, remains poorly understood. Here, we elucidated genetic and epigenetic changes occurring at the NOR loci within the Am , G, and D subgenomes during allopolyploidization by synthesizing hexaploid wheat GGAu Au Am Am and GGAu Au DD. In T. zhukovskyi, Au genome NORs from T. timopheevii (GGAu Au ) were lost, while the second incoming NORs from T. monococcum (Am Am ) were retained. Analysis of the synthesized T. zhukovskyi revealed that rRNA genes from the Am genome were silenced in F1 hybrids (GAu Am ) and remained inactive after genome doubling and subsequent self-pollinations. We observed increased DNA methylation accompanying the inactivation of NORs in the Am genome and found that silencing of NORs in the S1 generation could be reversed by a cytidine methylase inhibitor. Our findings provide insights into the ND process during the evolutionary period of T. zhukovskyi and highlight that inactive rDNA units may serve as a 'first reserve' in the form of R-loops, contributing to the successful evolution of T. zhukovskyi.
Collapse
Affiliation(s)
- Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaolan Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Handong Su
- Huazhong Agricultural University, Hubei, 430070, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Borowska-Zuchowska N, Mykhailyk S, Robaszkiewicz E, Matysiak N, Mielanczyk L, Wojnicz R, Kovarik A, Hasterok R. Switch them off or not: selective rRNA gene repression in grasses. TRENDS IN PLANT SCIENCE 2023; 28:661-672. [PMID: 36764871 DOI: 10.1016/j.tplants.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Nucleolar dominance (ND) is selective epigenetic silencing of 35-48S rDNA loci. In allopolyploids, it is frequently manifested at the cytogenetic level by the inactivation of nucleolar organiser region(s) (NORs) inherited from one or several evolutionary ancestors. Grasses are ecologically and economically one of the most important land plant groups, which have frequently evolved through hybridisation and polyploidisation events. Here we review common and unique features of ND phenomena in this monocot family from cytogenetic, molecular, and genomic perspectives. We highlight recent advances achieved by using an allotetraploid model grass, Brachypodium hybridum, where ND commonly occurs at a population level, and we cover modern genomic approaches that decipher structural features of core arrays of NORs.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland
| | - Lukasz Mielanczyk
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Romuald Wojnicz
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, CZ-61200 Brno, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| |
Collapse
|
10
|
Guo X, Shi Q, Liu Y, Su H, Zhang J, Wang M, Wang C, Wang J, Zhang K, Fu S, Hu X, Jing D, Wang Z, Li J, Zhang P, Liu C, Han F. Systemic development of wheat-Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1475-1489. [PMID: 36919201 DOI: 10.1111/tpj.16190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum) around the world. FHB causes significant yield losses and reduces grain quality. The lack of resistance resources is a major bottleneck for wheat FHB resistance breeding. As a wheat relative, Thinopyrum elongatum contains many genes that can be used for wheat improvement. Although the novel gene Fhb-7EL was mapped on chromosome 7EL of Th. elongatum, successful transfer of the FHB resistance gene into commercial wheat varieties has not been reported. In this study, we developed 836 wheat-Th. elongatum translocation lines of various types by irradiating the pollen of the wheat-Th. elongatum addition line CS-7EL at the flowering stage, among which 81 were identified as resistant to FHB. By backcrossing the FHB-resistant lines with the main cultivar Jimai 22, three wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, were successfully applied in wheat breeding without yield penalty. Combining karyotype and phenotype analyses, we mapped the Fhb-7EL gene to the distal end of chromosome 7EL. Five molecular markers linked with the FHB resistance interval were developed, which facilitates molecular marker-assisted breeding. Altogether, we successfully applied alien chromatin with FHB resistance from Th. elongatum in wheat breeding without yield penalty. These newly developed FHB-resistant wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, can be used as novel resistance resources for wheat breeding.
Collapse
Affiliation(s)
- Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mian Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chunhui Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shulan Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Hu
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi, China
| | - Donglin Jing
- Xingtai Academy of Agricultural Sciences, Xingtai, China
| | - Zhen Wang
- Nanyang Academy of Agricultural Sciences, Nanyang, China
| | - Jinbang Li
- Nanyang Academy of Agricultural Sciences, Nanyang, China
| | - Pingzhi Zhang
- Institute of Crop Sciences, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Kong C, Zhao G, Gao L, Kong X, Wang D, Liu X, Jia J. Epigenetic Landscape Is Largely Shaped by Diversiform Transposons in Aegilops tauschii. Int J Mol Sci 2023; 24:9349. [PMID: 37298301 PMCID: PMC10253722 DOI: 10.3390/ijms24119349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Transposons (TEs) account for more than 80% of the wheat genome, the highest among all known crop species. They play an important role in shaping the elaborate genomic landscape, which is the key to the speciation of wheat. In this study, we analyzed the association between TEs, chromatin states, and chromatin accessibility in Aegilops tauschii, the D genome donor of bread wheat. We found that TEs contributed to the complex but orderly epigenetic landscape as chromatin states showed diverse distributions on TEs of different orders or superfamilies. TEs also contributed to the chromatin state and openness of potential regulatory elements, affecting the expression of TE-related genes. Some TE superfamilies, such as hAT-Ac, carry active/open chromatin regions. In addition, the histone mark H3K9ac was found to be associated with the accessibility shaped by TEs. These results suggest the role of diversiform TEs in shaping the epigenetic landscape and in gene expression regulation in Aegilops tauschii. This has positive implications for understanding the transposon roles in Aegilops tauschii or the wheat D genome.
Collapse
Affiliation(s)
- Chuizheng Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Guangyao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Lifeng Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| |
Collapse
|
12
|
Vasudevan A, Lévesque-Lemay M, Edwards T, Cloutier S. Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploid wheat. Commun Biol 2023; 6:426. [PMID: 37069312 PMCID: PMC10110605 DOI: 10.1038/s42003-023-04781-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in the SHW lines, possibly due to inter-subgenome interactions. To elucidate this post-polyploidization genome reprogramming phenomenon, we performed RNA-seq of four SHW lines and their corresponding tetraploid and diploid parents, across ten tissues and three biological replicates. Homoeologue expression bias (HEB) analysis using more than 18,000 triads suggests massive suppression of homoeoalleles of the D subgenome in SHWs. Comparative transcriptome analysis of the whole-genome gene set further corroborated this finding. Alternative splicing analysis of the high-confidence genes indicates an additional layer of complexity where all five splice events are identified, and retained intron is predominant. Homoeologue expression upon resynthesis of hexaploid wheat has implications to the usage and handling of this germplasm in breeding as it relates to capturing the effects of epistatic interaction across subgenomes upon polyploidization. Special considerations must be given to this germplasm in pre-breeding activities to consider the extent of the inter-subgenome interactions on gene expression and their impact on traits for crop improvement.
Collapse
Affiliation(s)
- Akshaya Vasudevan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Liu C, Wang YG. Does one subgenome become dominant in the formation and evolution of a polyploid? ANNALS OF BOTANY 2023; 131:11-16. [PMID: 35291007 PMCID: PMC9904339 DOI: 10.1093/aob/mcac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/15/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Polyploids are common in flowering plants and they tend to have more expanded ranges of distributions than their diploid progenitors. Possible mechanisms underlying polyploid success have been intensively investigated. Previous studies showed that polyploidy generates novel changes and that subgenomes in allopolyploid species often differ in gene number, gene expression levels and levels of epigenetic alteration. It is widely believed that such differences are the results of conflicts among the subgenomes. These differences have been treated by some as subgenome dominance, and it is claimed that the magnitude of subgenome dominance increases in polyploid evolution. SCOPE In addition to changes which occurred during evolution, differences between subgenomes of a polyploid species may also be affected by differences between the diploid donors and changes which occurred during polyploidization. The variable genome components in many plant species are extensive, which would result in exaggerated differences between a subgenome and its progenitor when a single genotype or a small number of genotypes are used to represent a polyploid or its donors. When artificially resynthesized polyploids are used as surrogates for newly formed genotypes which have not been exposed to evolutionary selection, differences between diploid genotypes available today and those involved in the formation of the natural polyploid genotypes must also be considered. CONCLUSIONS Contrary to the now widely held views that subgenome biases in polyploids are the results of conflicts among the subgenomes and that one of the parental subgenomes generally retains more genes which are more highly expressed, available results show that subgenome biases mainly reflect legacy from the progenitors and that they can be detected before the completion of polyploidization events. Further, there is no convincing evidence that the magnitudes of subgenome biases have significantly changed during evolution for any of the allopolyploid species assessed.
Collapse
Affiliation(s)
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Shi Q, Guo X, Su H, Zhang Y, Hu Z, Zhang J, Han F. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:536-545. [PMID: 36534091 DOI: 10.1111/tpj.16066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyploidy is a common mode of evolution in flowering plants. Both the natural tetraploid Thinopyrum elongatum and the diploid one from the same population show a diploid-like pairing in meiosis. However, debate on the chromosome composition and origin of the tetraploid Th. elongatum is ongoing. In the present study, we obtained the induced tetraploid Th. elongatum and found that the induced and natural tetraploids are morphologically close, except for slower development and lower seed setting. Using probes developed from single chromosome microdissection and a Fosmid library, obvious differentiations were discovered between two chromosome sets (E1 and E2 ) of the natural tetraploid Th. elongatum but not the induced one. Interestingly, hybrid F1 derived from the two different wheat-tetraploid Th. elongatum amphiploids 8802 and 8803 produced seeds well. More importantly, analysis of meiosis in F2 individuals revealed that chromosomes from E1 and E2 could pair well on the durum wheat background with the presence of Ph1. No chromosome set differentiation on the FISH level was discovered from the S1 to S4 generations in the induced one. In metaphase of the meiosis first division in the natural tetraploid, more pairings were bivalents and fewer quadrivalents with ratio of 13.94 II + 0.03 IV (n = 31). Chromosome pairing configuration in the induced tetraploid is 13.05 II + 0.47 IV (n = 19), with the quadrivalent ratio being only slightly higher than the ratio in the natural tetraploid. Therefore, the natural tetraploid Th. elongatum is of autoploid origin and the induced tetraploid Th. elongatum evolutionarily underwent rapid diploidization in the low generation.
Collapse
Affiliation(s)
- Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Pei H, Teng W, Gao L, Gao H, Ren X, Liu Y, Jia J, Tong Y, Wang Y, Lu Z. Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. SCIENCE CHINA LIFE SCIENCES 2022; 66:819-834. [PMID: 36417050 DOI: 10.1007/s11427-022-2202-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat (Triticum aestivum. L., BBAADD) is hypothesized to increase its adaptability and/or plasticity. However, the molecular basis of expression divergence remains unclear. Squamosa promoter-binding protein-like (SPL) transcription factors are critical for a wide array of biological processes. In this study, we constructed expression regulatory networks by combining DAP-seq for 40 SPLs, ATAC-seq, and RNA-seq. Our findings indicate that a group of low-affinity SPL binding regions (SBRs) were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif. The SBRs including the low-affinity ones are evolutionarily conserved, enriched GWAS signals related to important agricultural traits. However, those SBRs are highly diversified among the cis-regulatory regions (CREs) of syntenic genes, with less than 8% SBRs coexisting in triad genes, suggesting that CRE variations are critical for subgenome differentiations. Knocking out of TaSPL7A/B/D and TaSPL15A/B/D subfamily further proved that both high- and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes. Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.
Collapse
|
16
|
Levy AA, Feldman M. Evolution and origin of bread wheat. THE PLANT CELL 2022; 34:2549-2567. [PMID: 35512194 PMCID: PMC9252504 DOI: 10.1093/plcell/koac130] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500-9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat's large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.
Collapse
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Moshe Feldman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
17
|
Xie Y, Chen Y, Li Z, Zhu J, Liu M, Zhang Y, Dong Z. Enhancer transcription detected in the nascent transcriptomic landscape of bread wheat. Genome Biol 2022; 23:109. [PMID: 35501845 PMCID: PMC9063354 DOI: 10.1186/s13059-022-02675-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
The precise spatiotemporal gene expression is orchestrated by enhancers that lack general sequence features and thus are difficult to be computationally identified. By nascent RNA sequencing combined with epigenome profiling, we detect active transcription of enhancers from the complex bread wheat genome. We find that genes associated with transcriptional enhancers are expressed at significantly higher levels, and enhancer RNA is more precise and robust in predicting enhancer activity compared to chromatin features. We demonstrate that sub-genome-biased enhancer transcription could drive sub-genome-biased gene expression. This study highlights enhancer transcription as a hallmark in regulating gene expression in wheat.
Collapse
Affiliation(s)
- Yilin Xie
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
19
|
von Well E, Booyse M, Fossey A. Effect of gamma irradiation on nucleolar activity in root tip cells of tetraploid Triticum turgidum ssp. durum L. PROTOPLASMA 2022; 259:453-468. [PMID: 34191122 DOI: 10.1007/s00709-021-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Ionizing irradiation induces positive or negative changes in plant growth (M1) depending on the amount of irradiation applied to seeds or plant parts. The effect of 50-350 Gy gamma irradiation of kernels on nucleolar activity, as an indicator of metabolic activity, in root tip cells of tetraploid wheat Triticum turgidum ssp. durum L. cv. Orania (AABB) was investigated. The number of nucleoli present in nuclei and micronuclei as well as the mitotic index in the different irradiation dosages was used as an indicator of the cells entering mitosis, the chromosomes with nucleolar organizer regions that are active as well as chromosome doubling in the event of unsuccessful mitotic division. Nucleolar activity was investigated from 17.5 to 47.5 h after the onset of imbibition to study the first mitotic division and its consequences on the cells that were in G2 and G1 phases at the time of gamma irradiation. Untreated material produced a maximum of four nucleoli formed by the nucleolar organizing regions (NORs) on chromosomes 1B and 6B. In irradiated material, additional nucleoli were noted that are due to the activation of the NORs on chromosome 1A in micronuclei. The onset of mitosis was highly significantly retarded in comparison to the control due to checkpoints in the G2 phase for the repairing of damaged DNA. This study is the first to report on the appearance of nucleoli in micronuclei as well as activation of NORs in the micronuclei that are inactive in the nucleus and the effect of chromosome doubling on nucleolar activity in the event of unsuccessful mitotic division.
Collapse
Affiliation(s)
- Eben von Well
- ARC-Small Grain, Field Crops, Division, Private Bag X29, Bethlehem, 9700, South Africa.
| | - Mardé Booyse
- ARC-Biometry, Private Bag X5013, Stellenbosch, 7599, South Africa
| | - Annabel Fossey
- Central University of Technology, 1 Park Street, Bloemfontein, 9301, South Africa
| |
Collapse
|
20
|
Tulpová Z, Kovařík A, Toegelová H, Navrátilová P, Kapustová V, Hřibová E, Vrána J, Macas J, Doležel J, Šimková H. Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. THE PLANT GENOME 2022; 15:e20191. [PMID: 35092350 DOI: 10.1002/tpg2.20191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat. Coupling chromosomal genomics with optical mapping, we reconstructed individual rDNA arrays, enabling locus-specific analyses of transcription activity and methylation status from RNA- and bisulfite-sequencing data. We estimated a total of 6,650 rDNA units in the bread wheat genome, with approximately 2,321, 3,910, 253, and 50 gene copies located in short arms of chromosomes 1B, 6B, 5D, and 1A, respectively. Only 1B and 6B loci contributed substantially to rRNA transcription at a roughly 2:1 ratio. The ratio varied among five tissues analyzed (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG context in the silenced 5D locus as compared with the active 1B and 6B loci. In conclusion, a fine genomic organization and tissue-specific expression of rDNA loci were deciphered, for the first time, in a complex polyploid species. The results are discussed in the context of wheat evolution and transcription regulation.
Collapse
Affiliation(s)
- Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pavla Navrátilová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Veronika Kapustová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
21
|
Gao D, Nascimento EFMB, Leal-Bertioli SCM, Abernathy B, Jackson SA, Araujo ACG, Bertioli DJ. TAR30, a homolog of the canonical plant TTTAGGG telomeric repeat, is enriched in the proximal chromosome regions of peanut (Arachis hypogaea L.). Chromosome Res 2022; 30:77-90. [DOI: 10.1007/s10577-022-09684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
22
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
23
|
Huang Y, Liu Y, Liu C, Birchler JA, Han F. Prospects and challenges of epigenomics in crop improvement. Genes Genomics 2021; 44:251-257. [PMID: 34837632 DOI: 10.1007/s13258-021-01187-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The advent of high-throughput epigenome mapping techniques has ushered in a new era of multiomics with powerful tools now available to map and record genomic output at different levels. Integrating the different components of the epigenome from these multiomics measures allows investigations of cis-regulatory elements on a genome-scale. Mapping of chromatin state, chromatin accessibility dynamics, and higher-order chromatin structure enables a new level of understanding of cell fate determination, identity and function in normal growth and development, disease resistance, and yield. OBJECTIVE In this paper, the recent advances in epigenomics research of rice, maize, and wheat are reviewed, and the development trends of epigenomics of major crops in the coming years are projected. METHODS We highlight the role of epigenomics in regulating growth and development and identifying potential distal cis-regulatory elements in three major crops, and discuss the prospects and challenges for new epigenetics-mediated breeding technologies in crop improvement. CONCLUSION In this review, we summarize and analyze recent epigenomic advances in three major crops epigenomics and discuss possibilities and challenges for future research in the field.
Collapse
Affiliation(s)
- Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Singh D, Chaudhary P, Taunk J, Kumar Singh C, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6836-6855. [PMID: 34302734 DOI: 10.1093/jxb/erab337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change has escalated abiotic stresses, leading to adverse effects on plant growth and development, eventually having deleterious consequences on crop productivity. Environmental stresses induce epigenetic changes, namely cytosine DNA methylation and histone post-translational modifications, thus altering chromatin structure and gene expression. Stable epigenetic changes are inheritable across generations and this enables plants to adapt to environmental changes (epipriming). Hence, epigenomes serve as a good source of additional tier of variability for development of climate-smart crops. Epigenetic resources such as epialleles, epigenetic recombinant inbred lines (epiRILs), epigenetic quantitative trait loci (epiQTLs), and epigenetic hybrids (epihybrids) can be utilized in epibreeding for improving stress tolerance of crops. Epigenome engineering is also gaining momentum for developing sustainable epimarks associated with important agronomic traits. Different epigenome editing tools are available for creating, erasing, and reading such epigenetic codes in plant genomes. However, epigenome editing is still understudied in plants due to its complex nature. Epigenetic interventions such as epi-fingerprinting can be exploited in the near future for health and quality assessment of crops under stress conditions. Keeping in view the challenges and opportunities associated with this important technology, the present review intends to enhance understanding of stress-induced epigenetic changes in plants and its prospects for development of climate-ready crops.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
25
|
Qin J, Mo R, Li H, Ni Z, Sun Q, Liu Z. The Transcriptional and Splicing Changes Caused by Hybridization Can Be Globally Recovered by Genome Doubling during Allopolyploidization. Mol Biol Evol 2021; 38:2513-2519. [PMID: 33585937 PMCID: PMC8136492 DOI: 10.1093/molbev/msab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polyploidization is a major driving force in plant evolution. Allopolyploidization, involving hybridization and genome doubling, can cause extensive transcriptome reprogramming which confers allopolyploids higher evolutionary potential than their diploid progenitors. To date, little is known about the interplay between hybridization and genome doubling in transcriptome reprogramming. Here, we performed genome-wide analyses of transcriptome reprogramming during allopolyploidization in wheat and brassica lineages. Our results indicated that hybridization-induced transcriptional and splicing changes of genes can be largely recovered to parental levels by genome doubling in allopolyploids. As transcriptome reprogramming is an important contributor to heterosis, our finding updates a longstanding theory that heterosis in interspecific hybrids can be permanently fixed through genome doubling. Our results also indicated that much of the transcriptome reprogramming in interspecific hybrids was not caused by the merging of two parental genomes, providing novel insights into the mechanisms underlying both heterosis and hybrid speciation.
Collapse
Affiliation(s)
- Jinxia Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruirui Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongxia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
26
|
Ye X, Hu H, Zhou H, Jiang Y, Gao S, Yuan Z, Stiller J, Li C, Chen G, Liu Y, Wei Y, Zheng YL, Wang YG, Liu C. Differences between diploid donors are the main contributing factor for subgenome asymmetry measured in either gene ratio or relative diversity in allopolyploids. Genome 2021; 64:847-856. [PMID: 33661713 DOI: 10.1139/gen-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subgenome asymmetry (SA) has routinely been attributed to different responses between the subgenomes of a polyploid to various stimuli during evolution. Here, we compared subgenome differences in gene ratio and relative diversity between artificial and natural genotypes of several allopolyploid species. Surprisingly, consistent differences were not detected between these two types of polyploid genotypes, although they differ in times exposed to evolutionary selection. The estimated ratio of shared genes between a subgenome and its diploid donor was invariably higher for the artificial allopolyploid genotypes than those for the natural genotypes, which is expected as it is now well-known that many genes in a species are not shared among all individuals. As the exact diploid parent for a given subgenome is unknown, the estimated ratios of shared genes for the natural genotypes would also include difference among individual genotypes of the diploid donor species. Further, we detected the presence of SA in genotypes before the completion of the polyploidization events as well as in those which were not formed via polyploidization. These results indicate that SA may, to a large degree, reflect differences between its diploid donors or that changes occurred during polyploid evolution are defined by their donor genomes.
Collapse
Affiliation(s)
- Xueling Ye
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Haiyan Hu
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Hong Zhou
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yunfeng Jiang
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Shang Gao
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Zhongwei Yuan
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiri Stiller
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Chengwei Li
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| |
Collapse
|
27
|
Liu Y, Yuan J, Jia G, Ye W, Jeffrey Chen Z, Song Q. Histone H3K27 dimethylation landscapes contribute to genome stability and genetic recombination during wheat polyploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:678-690. [PMID: 33131144 DOI: 10.1111/tpj.15063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 05/02/2023]
Abstract
Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to 'genomic shock' and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.
Collapse
Affiliation(s)
- Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Guanghong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
28
|
Borowska-Zuchowska N, Robaszkiewicz E, Mykhailyk S, Wartini J, Pinski A, Kovarik A, Hasterok R. To Be or Not to Be Expressed: The First Evidence of a Nucleolar Dominance Tissue-Specificity in Brachypodium hybridum. FRONTIERS IN PLANT SCIENCE 2021; 12:768347. [PMID: 34938308 PMCID: PMC8685274 DOI: 10.3389/fpls.2021.768347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Nucleolar dominance (ND) is an epigenetic, developmentally regulated phenomenon that describes the selective inactivation of 35S rDNA loci derived from one progenitor of a hybrid or allopolyploid. The presence of ND was documented in an allotetraploid grass, Brachypodium hybridum (genome composition DDSS), which is a polyphyletic species that arose from crosses between two putative ancestors that resembled the modern B. distachyon (DD) and B. stacei (SS). In this work, we investigated the developmental stability of ND in B. hybridum genotype 3-7-2 and compared it with the reference genotype ABR113. We addressed the question of whether the ND is established in generative tissues such as pollen mother cells (PMC). We examined condensation of rDNA chromatin by fluorescence in situ hybridization employing state-of-art confocal microscopy. The transcription of rDNA homeologs was determined by reverse-transcription cleaved amplified polymorphic sequence analysis. In ABR113, the ND was stable in all tissues analyzed (primary and adventitious root, leaf, and spikes). In contrast, the 3-7-2 individuals showed a strong upregulation of the S-genome units in adventitious roots but not in other tissues. Microscopic analysis of the 3-7-2 PMCs revealed extensive decondensation of the D-genome loci and their association with the nucleolus in meiosis. As opposed, the S-genome loci were always highly condensed and localized outside the nucleolus. These results indicate that genotype-specific loss of ND in B. hybridum occurs probably after fertilization during developmental processes. This finding supports our view that B. hybridum is an attractive model to study ND in grasses.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Natalia Borowska-Zuchowska,
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Wartini
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Pinski
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
29
|
Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol 2021; 5:1367-1381. [PMID: 34413506 PMCID: PMC8484011 DOI: 10.1038/s41559-021-01525-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
Collapse
Affiliation(s)
- Robin Burns
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Terezie Mandáková
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Joanna Gunis
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Luz Mayela Soto-Jiménez
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- grid.9464.f0000 0001 2290 1502Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Martin A. Lysak
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Polina Yu. Novikova
- grid.511033.5VIB-UGent Center for Plant Systems Biology, Ghent, Belgium ,grid.419498.90000 0001 0660 6765Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Magnus Nordborg
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
30
|
Current Progress in Understanding and Recovering the Wheat Genes Lost in Evolution and Domestication. Int J Mol Sci 2020; 21:ijms21165836. [PMID: 32823887 PMCID: PMC7461589 DOI: 10.3390/ijms21165836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/19/2023] Open
Abstract
The modern cultivated wheat has passed a long evolution involving origin of wild emmer (WEM), development of cultivated emmer, formation of spelt wheat and finally establishment of modern bread wheat and durum wheat. During this evolutionary process, rapid alterations and sporadic changes in wheat genome took place, due to hybridization, polyploidization, domestication, and mutation. This has resulted in some modifications and a high level of gene loss. As a result, the modern cultivated wheat does not contain all genes of their progenitors. These lost genes are novel for modern wheat improvement. Exploring wild progenitor for genetic variation of important traits is directly beneficial for wheat breeding. WEM wheat (Triticum dicoccoides) is a great genetic resource with huge diversity for traits. Few genes and quantitative trait loci (QTL) for agronomic, quantitative, biotic and abiotic stress-related traits have already been mapped from WEM. This resource can be utilized for modern wheat improvement by integrating identified genes or QTLs through breeding.
Collapse
|
31
|
Borowska‐Zuchowska N, Kovarik A, Robaszkiewicz E, Tuna M, Tuna GS, Gordon S, Vogel JP, Hasterok R. The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1810-1825. [PMID: 32506573 PMCID: PMC7497271 DOI: 10.1111/tpj.14869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 05/22/2023]
Abstract
Nucleolar dominance (ND) consists of the reversible silencing of 35S/45S rDNA loci inherited from one of the ancestors of an allopolyploid. The molecular mechanisms by which one ancestral rDNA set is selected for silencing remain unclear. We applied a combination of molecular (Southern blot hybridization and reverse-transcription cleaved amplified polymorphic sequence analysis), genomic (analysis of variants) and cytogenetic (fluorescence in situ hybridization) approaches to study the structure, expression and epigenetic landscape of 35S rDNA in an allotetraploid grass that exhibits ND, Brachypodium hybridum (genome composition DDSS), and its putative progenitors, Brachypodium distachyon (DD) and Brachypodium stacei (SS). In progenitor genomes, B. stacei showed a higher intragenomic heterogeneity of rDNA compared with B. distachyon. In all studied accessions of B. hybridum, there was a reduction in the copy number of S homoeologues, which was accompanied by their inactive transcriptional status. The involvement of DNA methylation in CG and CHG contexts in the silencing of the S-genome rDNA loci was revealed. In the B. hybridum allotetraploid, ND is stabilized towards the D-genome units, irrespective of the polyphyletic origin of the species, and does not seem to be influenced by homoeologous 35S rDNA ratios and developmental stage.
Collapse
Affiliation(s)
- Natalia Borowska‐Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Ales Kovarik
- Department of Molecular EpigeneticsInstitute of BiophysicsAcademy of Sciences of the Czech Republic, v.v.i.Královopolská 135Brno612 65Czech Republic
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Metin Tuna
- Department of Field CropsFaculty of AgricultureTekirdag Namik Kemal UniversitySuleymanpasaTekirdag59030Turkey
| | | | - Sean Gordon
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
| | - John P. Vogel
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
- University CaliforniaBerkeley, BerkeleyCA94720USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| |
Collapse
|
32
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
33
|
Georgiev O, Mishev K, Krasnikova M, Kitanova M, Dimitrova A, Karagyozov L. The Hordeum bulbosum 25S-18S rDNA region: comparison with Hordeum vulgare and other Triticeae. ACTA ACUST UNITED AC 2019; 74:319-328. [PMID: 31421048 DOI: 10.1515/znc-2018-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Hordeum vulgare and Hordeum bulbosum are two closely related barley species, which share a common H genome. H. vulgare has two nucleolar organizer regions (NORs), while the NOR of H. bulbosum is only one. We sequenced the 2.5 kb 25S-18S region in the rDNA of H. bulbosum and compared it to the same region in H. vulgare as well as to the other Triticeae. The region includes an intergenic spacer (IGS) with a number of subrepeats, a promoter, and an external transcribed spacer (5'ETS). The IGS of H. bulbosum downstream of 25S rRNA contains two 143-bp repeats and six 128-bp repeats. In contrast, the IGS in H. vulgare contains an array of seven 79-bp repeats and a varying number of 135-bp repeats. The 135-bp repeats in H. vulgare and the 128-bp repeats in H. bulbosum show similarity. Compared to H. vulgare, the 5'ETS of H. bulbosum is shorter. Additionally, the 5'ETS regions in H. bulbosum and H. vulgare diverged faster than in other Triticeae genera. Alignment of the Triticeae promoter sequences suggests that in Hordeum, as in diploid Triticum, transcription starts with guanine and not with adenine as it is in many other plants.
Collapse
Affiliation(s)
- Oleg Georgiev
- Institute of Molecular Life Sciences, University Zurich-Irchel, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Maria Krasnikova
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Anna Dimitrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria, Phone: +359 2 9792677, Fax: +359 2 9785516, E-mail:
| | - Luchezar Karagyozov
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| |
Collapse
|
34
|
Williams WM, Verry IM, Ansari HA, Hussain SW, Ullah I, Ellison NW. 4xTrifolium ambiguum and 2xT. occidentale hybridise despite wide geographic separation and polyploidisation: implications for clover breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2899-2912. [PMID: 31321473 DOI: 10.1007/s00122-019-03395-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The widely divergent species 4xTrifolium ambiguum and 2xT.occidentale are inter-fertile long after speciation (including polyploidisation) has occurred. Tri-species hybrids (T. repens × T. ambiguum × T. occidentale) have the potential to achieve introgression of stress resistant traits from both wild species into white clover. Trifolium ambiguum and T. occidentale are geographically, adaptionally and phenotypically contrasting species in the white clover section (Trifoliastrum) of the genus. T. ambiguum occurs as a high-altitude polyploid series (2x, 4x, 6x) in W Asia and NE Europe. T. occidentale is a diploid coastal species, occurring at sea level in W Europe. This study investigated hybridisation between 4xT. ambiguum and 2xT. occidentale and considered the significance of the hybrids for introgression breeding of white clover. Partially fertile F1 hybrids between 4xT. ambiguum and 2x and 4xT. occidentale were generated by embryo rescue. Hybrid plant morphology and fertility varied widely and hybrids generally expressed traits from both species. Advanced generation (F2-F5) 4x hybrids were highly fertile and constitute a new synthetic allotetraploid species. FISH analyses of 4x hybrids showed multivalent chromosome configurations with homoeologous associations between T. ambiguum and T. occidentale chromosomes. Crosses of the hybrids with T. repens produced fertile tri-species progeny. These very divergent species remain inter-fertile long after speciation (including polyploidisation) has occurred. Tri-species hybrids have the potential to achieve introgression of stress resistance traits from both wild species into white clover.
Collapse
Affiliation(s)
- W M Williams
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand.
- College of Sciences, Massey University, Palmerston North, 4442, New Zealand.
| | - I M Verry
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - H A Ansari
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - S W Hussain
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - I Ullah
- College of Sciences, Massey University, Palmerston North, 4442, New Zealand
- Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - N W Ellison
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- , Palmerston North, New Zealand
| |
Collapse
|
35
|
Su H, Liu Y, Liu C, Shi Q, Huang Y, Han F. Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. THE PLANT CELL 2019; 31:2035-2051. [PMID: 31311836 PMCID: PMC6751130 DOI: 10.1105/tpc.19.00133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
Centromeres mediate the pairing of homologous chromosomes during meiosis; this pairing is particularly challenging for polyploid plants such as hexaploid bread wheat (Triticum aestivum), as their meiotic machinery must differentiate homologs from similar homoeologs. However, the sequence compositions (especially functional centromeric satellites) and evolutionary history of wheat centromeres are largely unknown. Here, we mapped T. aestivum centromeres by chromatin immunoprecipitation sequencing using antibodies to the centromeric-specific histone H3 variant (CENH3); this identified two types of functional centromeric satellites that are abundant in two of the three subgenomes. These centromeric satellites had unit sizes greater than 500 bp and contained specific sites with highly phased binding to CENH3 nucleosomes. Phylogenetic analysis revealed that the satellites have diverged in the three T. aestivum subgenomes, and the more homogeneous satellite arrays are associated with CENH3. Satellite signals decreased and the degree of satellites variation increased from diploid to hexaploid wheat. Moreover, several T. aestivum centromeres lack satellite repeats. Rearrangements, including local expansion and satellite variations, inversions, and changes in gene expression, occurred during the evolution from diploid to tetraploid and hexaploid wheat. These results reveal the asymmetry in centromere organization among the wheat subgenomes, which may play a role in proper homolog pairing during meiosis.
Collapse
Affiliation(s)
- Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Zhang Z, Fu T, Liu Z, Wang X, Xun H, Li G, Ding B, Dong Y, Lin X, Sanguinet KA, Liu B, Wu Y, Gong L. Extensive changes in gene expression and alternative splicing due to homoeologous exchange in rice segmental allopolyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2295-2308. [PMID: 31098756 DOI: 10.1007/s00122-019-03355-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
We report rampant homoeologous exchanges in progenies of a newly synthesized rice segmental allotetraploid and demonstrate their consequences to changes of gene expression and alternative splicing. Allopolyploidization is recurrent across the tree of angiosperms and known as a driving evolutionary force in both plants and animals. A salient feature of allopolyploidization is the induction of homoeologous exchange (HE) events between the constituent subgenomes, which may in turn cause changes in gene expression, transcript alternative splicing, and phenotypic novelty. However, this issue has been poorly studied, largely because lack of a system in which the exact parentage donating the subgenomes is known and the HE events are occurring in real time. Here, we employed whole-genome re-sequencing and RNA-seq-based transcriptome profiling in four randomly chosen progeny individuals (at the 10th-selfed generation) of segmental allotetraploids that were constructed by colchicine-mediated whole-genome doubling of F1 hybrids between the two subspecies (japonica and indica) of Asian cultivated Oryza sativa. We show that rampant HE events occurred in these tetraploid individuals, which converted most of the otherwise heterozygous genomic regions into a homogenized state of one parental subgenome. We demonstrate that genes within these homogenized genomic regions in the tetraploids showed high frequencies of altered expression and enhanced alternative splicing relative to their counterparts in the corresponding diploid parents in the embryo tissue. Intriguingly, limited overlaps between the differentially expressed genes and the differential alternative spliced genes were identified, which were partitioned to distinctly enriched gene ontology terms. Together, our results indicate that HE is a major mechanism to rapidly generate novelty in gene expression and transcriptome diversity, which may facilitate phenotypic innovation in nascent allopolyploids and relevant to allopolyploid crop breeding.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhijian Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences (JAAS), Changchun, 136100, China
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
37
|
Ibiapino A, García MA, Ferraz ME, Costea M, Stefanović S, Guerra M. Allopolyploid origin and genome differentiation of the parasitic species Cuscuta veatchii (Convolvulaceae) revealed by genomic in situ hybridization. Genome 2019; 62:467-475. [PMID: 31071271 DOI: 10.1139/gen-2018-0184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interspecific hybridization and genome duplication to form allopolyploids are major evolutionary events in angiosperms. In the parasitic genus Cuscuta (Convolvulaceae), molecular data suggested the existence of species of hybrid origin. One of them, C. veatchii, has been proposed as a hybrid between C. denticulata and C. nevadensis, both included in sect. Denticulatae. To test this hypothesis, a cytogenetic analysis was performed with CMA/DAPI staining and fluorescent in situ hybridization using 5S and 35S rDNA and genomic probes. Chromosomes of C. denticulata were small with a well-defined centromeric region, whereas C. nevadensis had larger, densely stained chromosomes, and less CMA+ heterochromatic bands. Cuscuta veatchii had 2n = 60 chromosomes, about 30 of them similar to those of C. denticulata and the remaining to C. nevadensis. GISH analysis confirmed the presence of both subgenomes in the allotetraploid C. veatchii. However, the number of rDNA sites and the haploid karyotype length in C. veatchii were not additive. The diploid parentals had already diverged in their chromosomes structure, whereas the reduction in the number of rDNA sites more probably occurred after hybridization. As phylogenetic data suggested a recent divergence of the progenitors, these species should have a high rate of karyotype evolution.
Collapse
Affiliation(s)
- Amália Ibiapino
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Miguel A García
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.,c Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, United Kingdom
| | - Maria Eduarda Ferraz
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Mihai Costea
- d Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Saša Stefanović
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Marcelo Guerra
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| |
Collapse
|
38
|
Wang L, Jiang Y, Shi Q, Wang Y, Sha L, Fan X, Kang H, Zhang H, Sun G, Zhang L, Zhou Y. Genome constitution and evolution of Elytrigia lolioides inferred from Acc1, EF-G, ITS, TrnL-F sequences and GISH. BMC PLANT BIOLOGY 2019; 19:158. [PMID: 31023230 PMCID: PMC6485066 DOI: 10.1186/s12870-019-1779-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Elytrigia lolioides (Kar. et Kir.) Nevski, which is a perennial, cross-pollinating wheatgrass that is distributed in Russia and Kazakhstan, is classified into Elytrigia, Elymus, and Lophopyrum genera by taxonomists on the basis of different taxonomic classification systems. However, the genomic constitution of E. lolioides is still unknown. To identify the genome constitution and evolution of E. lolioides, we used single-copy nuclear genes acetyl-CoA carboxylase (Acc1) and elongation factor G (EF-G), multi-copy nuclear gene internal transcribed space (ITS), chloroplast gene trnL-F together with fluorescence and genomic in situ hybridization. RESULTS Despite the widespread homogenization of ITS sequences, two distinct lineages (genera Pseudoroegneria and Hordeum) were identified. Acc1 and EF-G sequences suggested that in addition to Pseudoroegneria and Hordeum, unknown genome was the third potential donor of E. lolioides. Data from chloroplast DNA showed that Pseudoroegneria is the maternal donor of E. lolioides. Data from specific FISH marker for St genome indicated that E. lolioides has two sets of St genomes. Both genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) results confirmed the presence of Hordeum genome in this species. When E genome was used as the probe, no signal was found in 42 chromosomes. The E-like copy of Acc1 sequences was detected in E. lolioides possibly due to the introgression from E genome species. One of the H chromosomes in the accession W6-26586 from Kazakhstan did not hybridize H genome signals but had St genome signals on the pericentromeric regions in the two-color GISH. CONCLUSIONS Phylogenetic and in situ hybridization indicated the presence of two sets of Pseudoroegneria and one set of Hordeum genome in E. lolioides. The genome formula of E. lolioides was designed as StStStStHH. E. lolioides may have originated through the hybridization between tetraploid Elymus (StH) and diploid Pseudoroegneria species. E and unknown genomes may participate in the speciation of E. lolioides through introgression. According to the genome classification system, E. lolioides should be transferred into Elymus L. and renamed as Elymus lolioidus (Kar. er Kir.) Meld.
Collapse
Affiliation(s)
- Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101 China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Nova Scotia Canada
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| |
Collapse
|
39
|
Handa H, Kanamori H, Tanaka T, Murata K, Kobayashi F, Robinson SJ, Koh CS, Pozniak CJ, Sharpe AG, Paux E, Wu J, Nasuda S. Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1148-1159. [PMID: 30238531 DOI: 10.1111/tpj.14094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
The reference genome sequence of wheat 'Chinese Spring' (CS) is now available (IWGSC RefSeq v1.0), but the core sequences defining the nucleolar organizer regions (NORs) have not been characterized. We estimated that the total copy number of the rDNA units in the wheat genome is 11 160, of which 30.5%, 60.9% and 8.6% are located on Nor-B1 (1B), Nor-B2 (6B) and other NORs, respectively. The total length of the NORs is estimated to be 100 Mb, corresponding to approximately 10% of the unassembled portion of the genome not represented in RefSeq v1.0. Four subtypes (S1-S4) of the rDNA units were identified based on differences within the 3' external transcribed spacer regions in Nor-B1 and Nor-B2, and quantitative PCR indicated locus-specific variation in rDNA subtype contents. Expression analyses of rDNA subtypes revealed that S1 was predominantly expressed and S2 weakly expressed, in contrast to the relative abundance of rDNA subtypes in the wheat genome. These results suggest a regulation mechanism of differential rDNA expression based on sequence differences. S3 expression increased in the ditelosomic lines Dt1BL and Dt6BL, suggesting that S3 is subjected to chromosome-mediated silencing. Structural differences were detected in the regions surrounding the NOR among homoeologous chromosomes of groups 1 and 6. The adjacent regions distal to the major NORs were expanded compared with their homoeologous counterparts, and the gene density of these expanded regions was relatively low. We provide evidence that these regions are likely to be important for autoregulation of the associated major NORs as well as silencing of minor NORs.
Collapse
Affiliation(s)
- Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Tsuyoshi Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Kazuki Murata
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Stephen J Robinson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Chu S Koh
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Etienne Paux
- GDEC, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
40
|
Abstract
Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.
Collapse
Affiliation(s)
- Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| |
Collapse
|
41
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Ding M, Chen ZJ. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:37-48. [PMID: 29502038 PMCID: PMC6058195 DOI: 10.1016/j.pbi.2018.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is a prominent feature for genome evolution of some animals and all flowering plants, including many important crops such as wheat, cotton, and canola. In autopolyploids, genome duplication often perturbs dosage regulation on biological networks. In allopolyploids, interspecific hybridization could induce genetic and epigenetic changes, the effects of which could be amplified by genome doubling (ploidy changes). Albeit the importance of genetic changes, some epigenetic changes can be stabilized and transmitted as epialleles into the progeny, which are subject to natural selection, adaptation, and domestication. Here we review recent advances for general and specific roles of epigenetic changes in the evolution of flowering plants and domestication of agricultural crops.
Collapse
Affiliation(s)
- Mingquan Ding
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Jiao W, Yuan J, Jiang S, Liu Y, Wang L, Liu M, Zheng D, Ye W, Wang X, Chen ZJ. Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:828-842. [PMID: 29265531 DOI: 10.1111/tpj.13805] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/04/2017] [Indexed: 05/26/2023]
Abstract
Polyploidy occurs in some animals and all flowering plants, including important crops such as wheat. The consequences of polyploidy in crops remain elusive, partly because their progenitors are unknown. Using two resynthesized wheat allotetraploids Sl Sl AA and AADD with known diploid progenitors, we analyzed mRNA and small RNA transcriptomes in the endosperm, compared transcriptomes between endosperm and root in AADD, and examined chromatin changes in the allotetraploids. In the endosperm, there were more non-additively expressed genes in Sl Sl AA than in AADD. In AADD, non-additively expressed genes were developmentally regulated, and the majority (62-70%) were repressed. The repressed genes in AADD included a group of histone methyltransferase gene homologs, which correlated with reduced histone H3K9me2 levels and activation of various transposable elements in AADD. In Sl Sl AA, there was a tendency for expression dominance of Sl over A homoeologs, but the histone methyltransferase gene homologs were additively expressed, correlating with insignificant changes in histone H3K9me2 levels. Moreover, more 24-nucleotide small inferring RNAs (siRNAs) in the A subgenome were disrupted in AADD than in Sl Sl AA, which were associated with expression changes of siRNA-associated genes. Our results indicate that asymmetrical changes in siRNAs, chromatin modifications, transposons and gene expression coincide with unstable AADD genomes and stable Sl Sl AA genomes, which could help explain the evolutionary trajectories of wheat allotetraploids formed by different progenitors.
Collapse
Affiliation(s)
- Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Shan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Mingming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Dewei Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
44
|
do Nascimento EFDMB, Dos Santos BV, Marques LOC, Guimarães PM, Brasileiro ACM, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG. The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. COMPARATIVE CYTOGENETICS 2018; 12:111-140. [PMID: 29675140 PMCID: PMC5904367 DOI: 10.3897/compcytogen.v12i1.20334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 05/03/2023]
Abstract
Peanut, Arachis hypogaea (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes derived from the hybridization between two diploid wild species, A. duranensis (Krapovickas & W. C. Gregory, 1994) and A. ipaensis (Krapovickas & W. C. Gregory, 1994), followed by spontaneous chromosomal duplication. To understand genome changes following polyploidy, the chromosomes of A. hypogaea, IpaDur1, an induced allotetraploid (A. ipaensis × A. duranensis)4x and the diploid progenitor species were cytogenetically compared. The karyotypes of the allotetraploids share the number and general morphology of chromosomes; DAPI+ bands pattern and number of 5S rDNA loci. However, one 5S rDNA locus presents a heteromorphic FISH signal in both allotetraploids, relative to corresponding progenitor. Whilst for A. hypogaea the number of 45S rDNA loci was equivalent to the sum of those present in the diploid species, in IpaDur1, two loci have not been detected. Overall distribution of repetitive DNA sequences was similar in both allotetraploids, although A. hypogaea had additional CMA3+ bands and few slight differences in the LTR-retrotransposons distribution compared to IpaDur1. GISH showed that the chromosomes of both allotetraploids had preferential hybridization to their corresponding diploid genomes. Nevertheless, at least one pair of IpaDur1 chromosomes had a clear mosaic hybridization pattern indicating recombination between the subgenomes, clear evidence that the genome of IpaDur1 shows some instability comparing to the genome of A. hypogaea that shows no mosaic of subgenomes, although both allotetraploids derive from the same progenitor species. For some reasons, the chromosome structure of A. hypogaea is inherently more stable, or, it has been at least, partially stabilized through genetic changes and selection.
Collapse
Affiliation(s)
- Eliza F de M B do Nascimento
- University of Brasilia, Institute of Biological Sciences, Campus Darcy Ribeiro, CEP 70.910-900, Brasília, DF, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Bruna V Dos Santos
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Lara O C Marques
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
- Catholic University of Brasilia, Campus I, CEP 71966-700, Brasília, DF, Brazil
| | - Patricia M Guimarães
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Ana C M Brasileiro
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Soraya C M Leal-Bertioli
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA
| | - Ana C G Araujo
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| |
Collapse
|
45
|
Ren D, Fang X, Jiang P, Zhang G, Hu J, Wang X, Meng Q, Cui W, Lan S, Ma X, Wang H, Kong L. Genetic Architecture of Nitrogen-Deficiency Tolerance in Wheat Seedlings Based on a Nested Association Mapping (NAM) Population. FRONTIERS IN PLANT SCIENCE 2018; 9:845. [PMID: 29997636 PMCID: PMC6028695 DOI: 10.3389/fpls.2018.00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
Genetic divergence for nitrogen utilization in germplasms is important in wheat breeding programs, especially for low nitrogen input management. In this study, a nested association mapping (NAM) population, derived from "Yanzhan 1" (a Chinese domesticated cultivar) crossed with "Hussar" (a British domesticated cultivar) and another three semi-wild wheat varieties, namely, "Cayazheda 29" (Triticum aestivum ssp. tibetanum Shao), "Yunnan" (T. aestivum ssp. yunnanense King), and "Yutian" (T. aestivum petropavloski Udats et Migusch), was used to detect quantitative trait loci (QTLs) for nitrogen utilization at the seedling stage. An integrated genetic map was constructed using 2,059 single nucleotide polymorphism (SNP) markers from a 90 K SNP chip, with a total coverage of 2,355.75 cM and an average marker spacing of 1.13 cM. A total of 67 QTLs for RDW (root dry weight), SDW (shoot dry weight), TDW (total dry weight), and RSDW (root to shoot ratio) were identified under normal nitrogen conditions (N+) and nitrogen deficient conditions (N-). Twenty-three of these QTLs were only detected under N- conditions. Moreover, 23 favorable QTLs were identified in the domesticated cultivar Yanzhan 1, 15 of which were detected under N+ conditions, while only four were detected under N- conditions. In contrast, the semi-wild cultivars contributed more favorable N--specific QTLs (eight from Cayazheda 29; nine from Yunnan), which could be further explored for breeding cultivars adapted to nitrogen-deficient conditions. In particular, QRSDW-5A.1 from YN should be further evaluated using high-resolution mapping.
Collapse
Affiliation(s)
- Deqiang Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaojian Fang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Peng Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Guangxu Zhang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Junmei Hu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qing Meng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Weian Cui
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shengjie Lan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| |
Collapse
|
46
|
Sergeeva EM, Shcherban AB, Adonina IG, Nesterov MA, Beletsky AV, Rakitin AL, Mardanov AV, Ravin NV, Salina EA. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome. BMC PLANT BIOLOGY 2017; 17:183. [PMID: 29143604 PMCID: PMC5688495 DOI: 10.1186/s12870-017-1120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. RESULTS Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. CONCLUSION A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
Collapse
Affiliation(s)
- Ekaterina M Sergeeva
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia.
| | - Irina G Adonina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Michail A Nesterov
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Alexey V Beletsky
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey L Rakitin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey V Mardanov
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Nikolai V Ravin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| |
Collapse
|
47
|
Mirzaghaderi G, Abdolmalaki Z, Zohouri M, Moradi Z, Mason AS. Dynamic nucleolar activity in wheat × Aegilops hybrids: evidence of C-genome dominance. PLANT CELL REPORTS 2017; 36:1277-1285. [PMID: 28456843 DOI: 10.1007/s00299-017-2152-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
NOR loci of C-subgenome are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and evolution. After interspecific hybridisation, some genes are often expressed from only one of the progenitor species, shaping subsequent allopolyploid genome evolution processes. A well-known example is nucleolar dominance, i.e. the formation of cell nucleoli from chromosomes of only one parental species. We studied nucleolar organizing regions (NORs) in diploid Aegilops markgrafii (syn: Ae. caudata; CC), Ae. umbellulata (UU), allotetraploids Aegilops cylindrica (CcCcDcDc) and Ae. triuncialis (CtCtUtUt), synthetic interspecific F1 hybrids between these two allotetraploids and bread wheat (Triticum aestivum, AABBDD) and in F3 generation hybrids with genome composition AABBDDCtCtUtUt using silver staining and fluorescence in situ hybridization (FISH). In Ae. markgrafii (CC), NORs of both 1C and 5C or only 5C chromosome pairs were active in different individual cells, while only NORs on 1U chromosomes were active in Ae. umbellulata (UU). Although all 35S rDNA loci of the Ct subgenome (located on 1Ct and 5Ct) were active in Ae. triuncialis, only one pair (occupying either 1Cc or 5Cc) was active in Ae. cylindrica, depending on the genotype studied. These C-genome expression patterns were transmitted to the F1 and F3 generations. Wheat chromosome NOR activity was variable in Ae. triuncialis × T. aestivum F1 seeds, but silenced by the F3 generation. No effect of maternal or paternal cross direction was observed. These results indicate that C-subgenome NOR loci are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and allopolyploid evolution.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Zinat Abdolmalaki
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Mohsen Zohouri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Zeinab Moradi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
48
|
Abstract
An interesting and possibly unique pattern of genome evolution following polyploidy can be observed among allopolyploids of the Triticum and Aegilops genera (wheat group). Most polyploids in this group are presumed to share a common unaltered (pivotal) subgenome (U, D, or A) together with one or two modified (differential) subgenomes, a status that has been referred to as 'pivotal-differential' genome evolution. In this review we discuss various mechanisms that could be responsible for this evolutionary pattern, as well as evidence for and against the putative evolutionary mechanisms involved. We suggest that, in light of recent advances in genome sequencing and related technologies in the wheat group, the time has come to reopen the investigation into pivotal-differential genome evolution.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, PO Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Research Center for Biosystems, Land Use, and Nutrition (IFZ), Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| |
Collapse
|
49
|
Borowska-Zuchowska N, Hasterok R. Epigenetics of the preferential silencing of Brachypodium stacei-originated 35S rDNA loci in the allotetraploid grass Brachypodium hybridum. Sci Rep 2017; 7:5260. [PMID: 28706212 PMCID: PMC5509716 DOI: 10.1038/s41598-017-05413-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/30/2017] [Indexed: 01/16/2023] Open
Abstract
Nucleolar dominance (ND), initially described as ‘differential amphiplasty’, is a phenomenon observed in some plant and animal allopolyploids and hybrids in which the selective suppression of the activity of 35S rRNA gene loci that have been inherited from one of the two or more ancestral genomes occurs. Although more than 80 years have passed since the discovery of ND, there is still a significant lack in our understanding of the mechanisms that determine this phenomenon. Here, we aimed to investigate the epigenetic status of 35S rRNA gene loci in the monocotyledonous Brachypodium hybridum, which is an allotetraploid that has resulted from a cross between B. distachyon and B. stacei. We revealed that the repressed B. stacei-inherited rDNA loci are characterised by a high level of DNA methylation. The global hypomethylation of B. hybridum nuclear DNA induced by 5-azacytidine, however, seems to be insufficient for the transcriptional reactivation of these loci, which indicates that factors other than DNA methylation are behind the suppression of B. stacei-originated loci. We also showed that the transcriptionally active and silenced fractions of rRNA genes that had been inherited from B. distachyon occupy different domains within the chromocentres adjacent to the nucleolus, depending on their epigenetic status.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032, Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032, Katowice, Poland
| |
Collapse
|
50
|
Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics 2017; 18:391. [PMID: 28521734 PMCID: PMC5437419 DOI: 10.1186/s12864-017-3774-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n = 2x = 50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes. Results The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30–38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10–30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides. Conclusions Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation suggesting its recent origin and/or intensive homogenisation processes. The dense methylation of units indicates that powerful epigenetic mechanisms have evolved in this group of fish to silence amplified genes. We discuss how the higher-order repeat structures impact on homogenisation of 5S rDNA in the genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3774-7) contains supplementary material, which is available to authorized users.
Collapse
|