1
|
Bhandari DD, Brandizzi F. Linking secretion and cytoskeleton in immunity- a case for Arabidopsis TGNap1. Bioessays 2024; 46:e2400150. [PMID: 39302180 DOI: 10.1002/bies.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
In plants, robust defense depends on the efficient and resilient trafficking supply chains to the site of pathogen attack. Though the importance of intracellular trafficking in plant immunity has been well established, a lack of clarity remains regarding the contribution of the various trafficking pathways in transporting immune-related proteins. We have recently identified a trans-Golgi network protein, TGN-ASSOCIATED PROTEIN 1 (TGNap1), which functionally links post-Golgi vesicles with the cytoskeleton to transport immunity-related proteins in the model plant species Arabidopsis thaliana. We propose new hypotheses on the various functional implications of TGNap1 and then elaborate on the surprising heterogeneity of TGN vesicles during immunity revealed by the discovery of TGNap1 and other TGN-associated proteins in recent years.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Nomura K, Imboden LA, Tanaka H, He SY. Multiple host targets of Pseudomonas effector protein HopM1 form a protein complex regulating apoplastic immunity and water homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551310. [PMID: 37577537 PMCID: PMC10418078 DOI: 10.1101/2023.07.31.551310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bacterial type III effector proteins injected into the host cell play a critical role in mediating bacterial interactions with plant and animal hosts. Notably, some bacterial effectors are reported to target sequence-unrelated host proteins with unknown functional relationships. The Pseudomonas syringae effector HopM1 is such an example; it interacts with and/or degrades several HopM1-interacting (MIN) Arabidopsis proteins, including HopM1-interacting protein 2 (MIN2/RAD23), HopM1-interacting protein 7 (MIN7/BIG5), HopM1-interacting protein 10 (MIN10/14-3-3ĸ), and HopM1-interacting protein 13 (MIN13/BIG2). In this study, we purified the MIN7 complex formed in planta and found that it contains MIN7, MIN10, MIN13, as well as a tetratricopeptide repeat protein named HLB1. Mutational analysis showed that, like MIN7, HLB1 is required for pathogen-associated molecular pattern (PAMP)-, effector-, and benzothiadiazole (BTH)-triggered immunity. HLB1 is recruited to the trans-Golgi network (TGN)/early endosome (EE) in a MIN7-dependent manner. Both min7 and hlb1 mutant leaves contained elevated water content in the leaf apoplast and artificial water infiltration into the leaf apoplast was sufficient to phenocopy immune-suppressing phenotype of HopM1. These results suggest that multiple HopM1-targeted MIN proteins form a protein complex with a dual role in modulating water level and immunity in the apoplast, which provides an explanation for the dual phenotypes of HopM1 during bacterial pathogenesis.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Lori Alice Imboden
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Hirokazu Tanaka
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-0033, Japan
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Xiao X, Liu R, Gong J, Li P, Li Z, Gong W, Liu A, Ge Q, Deng X, Li S, Chen Q, Zhang H, Peng R, Peng Y, Shang H, Pan J, Shi Y, Lu Q, Yuan Y. Fine mapping and candidate gene analysis of qFL-A12-5: a fiber length-related QTL introgressed from Gossypium barbadense into Gossypium hirsutum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:48. [PMID: 36912959 DOI: 10.1007/s00122-023-04247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.
Collapse
Affiliation(s)
- Xianghui Xiao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ruixian Liu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Juwu Gong
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Pengtao Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ziyin Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Hua Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke, 843900, Xinjiang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Quanwei Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
5
|
Arabidopsis CAP1 mediates ammonium-regulated root hair growth by influencing vesicle trafficking and the cytoskeletal arrangement in root hair cells. J Genet Genomics 2022; 49:986-989. [PMID: 35202888 DOI: 10.1016/j.jgg.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
|
6
|
Zhang Q, Wu L, Yin H, Xu Z, Zhao Y, Gao M, Wu H, Chen Y, Wang Y. D6 protein kinase in root xylem benefiting resistance to Fusarium reveals infection and defense mechanisms in tung trees. HORTICULTURE RESEARCH 2021; 8:240. [PMID: 34719680 PMCID: PMC8558330 DOI: 10.1038/s41438-021-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Fusarium oxysporum, a global soil-borne pathogen, causes severe disease in various cultivated plants. The mechanism underlying infection and resistance remains largely elusive. Vernicia fordii, known as the tung tree, suffers from disease caused by F. oxysporum f. sp. fordiis (Fof-1), while its sister species V. montana displays high resistance to Fof-1. To investigate the process of infection and resistance ability, we demonstrated that Fof-1 can penetrate the epidermis of root hairs and then centripetally invade the cortex and phloem in both species. Furthermore, Fof-1 spread upwards through the root xylem in susceptible V. fordii trees, whereas it failed to infect the root xylem in resistant V. montana trees. We found that D6 PROTEIN KINASE LIKE 2 (VmD6PKL2) was specifically expressed in the lateral root xylem and was induced after Fof-1 infection in resistant trees. Transgenic analysis in Arabidopsis and tomato revealed that VmD6PKL2 significantly enhanced resistance in both species, whereas the d6pkl2 mutant displayed reduced resistance against Fof-1. Additionally, VmD6PKL2 was identified to interact directly with synaptotagmin (VmSYT3), which is specifically expressed in the root xylem and mediates the negative regulation responding to Fof-1. Our data suggested that VmD6PKL2 could act as a resistance gene against Fof-1 through suppression of VmSYT3-mediated negative regulation in the lateral root xylem of the resistant species. These findings provide novel insight into Fusarium wilt resistance in plants.
Collapse
Affiliation(s)
- Qiyan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Zilong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Hong Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China.
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China.
| |
Collapse
|
7
|
Imaging the Cytoskeleton in Living Plant Roots. Methods Mol Biol 2021; 2364:139-148. [PMID: 34542851 DOI: 10.1007/978-1-0716-1661-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
For the past two decades, genetically encoded fluorescent proteins have emerged as the most popular method to image the plant cytoskeleton. Because fluorescent protein technology involves handling living plant cells, it is important to implement protocols that enable these delicate plant specimens to maintain optimal growth for the entire duration of the imaging experiment. To this end, we rely on a system that consists of a large coverslip coated with nutrient-supplemented agar. This agar-coverslip system is planted with surface-sterilized Arabidopsis thaliana seeds expressing cytoskeletal fluorescent protein reporters. The agar-coverslip system with planted seeds is then maintained in an environmentally controlled growth chamber. The entire setup is transferred onto the stage of a confocal microscope for imaging when roots of germinated seedlings reach a desired length. For plants with larger roots such as Medicago truncatula, the polymerized nutrient-supplemented agar is gently lifted or cut and used to secure pre-germinated seeds on the coverslip prior to root imaging. The agar-coverslip system we use for imaging the cytoskeleton in living roots along with general methods for expressing green fluorescent protein (GFP)-based cytoskeletal reporters in hairy roots of Medicago truncatula is described here.
Collapse
|
8
|
Chin S, Kwon T, Khan BR, Sparks JA, Mallery EL, Szymanski DB, Blancaflor EB. Spatial and temporal localization of SPIRRIG and WAVE/SCAR reveal roles for these proteins in actin-mediated root hair development. THE PLANT CELL 2021; 33:2131-2148. [PMID: 33881536 PMCID: PMC8364238 DOI: 10.1093/plcell/koab115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/31/2023]
Abstract
Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.
Collapse
Affiliation(s)
- Sabrina Chin
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Taegun Kwon
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Bibi Rafeiza Khan
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - J. Alan Sparks
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Eileen L. Mallery
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel B. Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elison B. Blancaflor
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
9
|
TRANVIA (TVA) facilitates cellulose synthase trafficking and delivery to the plasma membrane. Proc Natl Acad Sci U S A 2021; 118:2021790118. [PMID: 34290139 DOI: 10.1073/pnas.2021790118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellulose is synthesized at the plasma membrane by cellulose synthase (CESA) complexes (CSCs), which are assembled in the Golgi and secreted to the plasma membrane through the trans-Golgi network (TGN) compartment. However, the molecular mechanisms that guide CSCs through the secretory system and deliver them to the plasma membrane are poorly understood. Here, we identified an uncharacterized gene, TRANVIA (TVA), that is transcriptionally coregulated with the CESA genes required for primary cell wall synthesis. The tva mutant exhibits enhanced sensitivity to cellulose synthesis inhibitors; reduced cellulose content; and defective dynamics, density, and secretion of CSCs to the plasma membrane as compared to wild type. TVA is a plant-specific protein of unknown function that is detected in at least two different intracellular compartments: organelles labeled by markers for the TGN and smaller compartments that deliver CSCs to the plasma membrane. Together, our data suggest that TVA promotes trafficking of CSCs to the plasma membrane by facilitating exit from the TGN and/or interaction of CSC secretory vesicles with the plasma membrane.
Collapse
|
10
|
Bhandari DD, Brandizzi F. Plant endomembranes and cytoskeleton: moving targets in immunity. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:8-16. [PMID: 33099211 DOI: 10.1016/j.pbi.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Pathogens attack plant cells to divert resources toward pathogen proliferation. To resist pathogens, plant cells rely on multilayered signaling pathways that hinge upon the secretory pathway for the synthesis and trafficking of pathogen sensors and defense molecules. In recent years, significant strides have been made in the understanding of the functional relationship between pathogen response and membrane traffic. Here we discuss how the plant cytoskeleton and endomembranes are targeted by pathogen effectors and highlight an emerging role of membrane contact sites in biotic stress responses.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Renna L, Brandizzi F. The mysterious life of the plant trans-Golgi network: advances and tools to understand it better. J Microsc 2020; 278:154-163. [PMID: 32115699 DOI: 10.1111/jmi.12881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022]
Abstract
By being at the interface of the exocytic and endocytic pathways, the plant trans-Golgi network (TGN) is a multitasking and highly diversified organelle. Despite governing vital cellular processes, the TGN remains one of the most uncharacterized organelle of plant cells. In this review, we highlight recent studies that have contributed new insights and to the generation of markers needed to answer several important questions on the plant TGN. Several drugs specifically affecting proteins critical for the TGN functions have been extremely useful for the identification of mutants of the TGN in the pursuit to understand how the morphology and the function of this organelle are controlled. In addition to these chemical tools, we review emerging microscopy techniques that help visualize the TGN at an unpreceded resolution and appreciate the heterogeneity and dynamics of this organelle in plant cells.
Collapse
Affiliation(s)
- L Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, U.S.A
| | - F Brandizzi
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
12
|
Fang DD, Naoumkina M, Thyssen GN, Bechere E, Li P, Florane CB. An EMS-induced mutation in a tetratricopeptide repeat-like superfamily protein gene (Ghir_A12G008870) on chromosome A12 is responsible for the li y short fiber phenotype in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:271-282. [PMID: 31624873 DOI: 10.1007/s00122-019-03456-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 05/15/2023]
Abstract
The EMS-induced threonine/isoleucine substitution in a tetratricopeptide repeat-like superfamily protein encoded by gene Ghir_A12G008870 is responsible for the Ligon-lintless-y (liy) short fiber phenotype in cotton. A short fiber mutant Ligon-lintless-y was created through treating the seeds of the cotton line MD15 with ethyl methanesulfonate. Genetic analysis indicated that the short fiber phenotype is controlled by a single recessive locus designated liy. From F2 populations derived from crosses between the mutant and its wild type (WT), we selected 132 short fiber progeny (liy/liy) and made two DNA bulks. We sequenced these DNA bulks along with the two parents of the population. The liy locus was located on chromosome A12. Using multiple F2 populations and F3 progeny plants, we mapped the liy locus within a genomic region of 1.18 Mb. In this region, there is only one gene, i.e., Ghir_A12G008870 encoding a tetratricopeptide repeat-like superfamily protein that has a non-synonymous mutation between the liy mutant and its WT. Analysis of a SNP marker representing this gene in the F2 and F3 progeny plants demonstrated its complete linkage with the liy short fiber phenotype. We further analyzed this SNP marker in a panel of 384 cotton varieties. The mutant allele is absent in all varieties analyzed. RNAseq and RT-qPCR analysis of the gene Ghir_A12G008870 during fiber development showed a significant expression difference between the liy mutant and its WT in developing fiber cells beginning at 12 days post-anthesis. Virus-induced gene silencing of the gene Ghir_A12G008870 significantly reduced the fiber length of the WT cotton line MD15. Taken together, our results suggest that the gene Ghir_A12G008870 is involved in the cotton fiber cell elongation process and is a promising candidate gene responsible for the liy short fiber phenotype.
Collapse
Affiliation(s)
- David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA.
| | - Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
- Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
| | - Efrem Bechere
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Ping Li
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
| | | |
Collapse
|
13
|
de Bang L, Paez-Garcia A, Cannon AE, Chin S, Kolape J, Liao F, Sparks JA, Jiang Q, Blancaflor EB. Brassinosteroids Inhibit Autotropic Root Straightening by Modifying Filamentous-Actin Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:5. [PMID: 32117357 PMCID: PMC7010715 DOI: 10.3389/fpls.2020.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/06/2020] [Indexed: 05/12/2023]
Abstract
When positioned horizontally, roots grow down toward the direction of gravity. This phenomenon, called gravitropism, is influenced by most of the major plant hormones including brassinosteroids. Epi-brassinolide (eBL) was previously shown to enhance root gravitropism, a phenomenon similar to the response of roots exposed to the actin inhibitor, latrunculin B (LatB). This led us to hypothesize that eBL might enhance root gravitropism through its effects on filamentous-actin (F-actin). This hypothesis was tested by comparing gravitropic responses of maize (Zea mays) roots treated with eBL or LatB. LatB- and eBL-treated roots displayed similar enhanced downward growth compared with controls when vertical roots were oriented horizontally. Moreover, the effects of the two compounds on root growth directionality were more striking on a slowly-rotating two-dimensional clinostat. Both compounds inhibited autotropism, a process in which the root straightened after the initial gravistimulus was withdrawn by clinorotation. Although eBL reduced F-actin density in chemically-fixed Z. mays roots, the impact was not as strong as that of LatB. Modification of F-actin organization after treatment with both compounds was also observed in living roots of barrel medic (Medicago truncatula) seedlings expressing genetically encoded F-actin reporters. Like in fixed Z. mays roots, eBL effects on F-actin in living M. truncatula roots were modest compared with those of LatB. Furthermore, live cell imaging revealed a decrease in global F-actin dynamics in hypocotyls of etiolated M. truncatula seedlings treated with eBL compared to controls. Collectively, our data indicate that eBL-and LatB-induced enhancement of root gravitropism can be explained by inhibited autotropic root straightening, and that eBL affects this process, in part, by modifying F-actin organization and dynamics.
Collapse
Affiliation(s)
- Louise de Bang
- Noble Research Institute LLC, Ardmore, OK, United States
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ashley E. Cannon
- Noble Research Institute LLC, Ardmore, OK, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Sabrina Chin
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Jaydeep Kolape
- Noble Research Institute LLC, Ardmore, OK, United States
- Center for Biotechnology, University of Nebraska—Lincoln, Lincoln, NE, United States
| | - Fuqi Liao
- Noble Research Institute LLC, Ardmore, OK, United States
| | - J. Alan Sparks
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Qingzhen Jiang
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Elison B. Blancaflor
- Noble Research Institute LLC, Ardmore, OK, United States
- *Correspondence: Elison B. Blancaflor,
| |
Collapse
|
14
|
AP3M harbors actin filament binding activity that is crucial for vacuole morphology and stomatal closure in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:18132-18141. [PMID: 31431522 DOI: 10.1073/pnas.1901431116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stomatal movement is essential for plant growth. This process is precisely regulated by various cellular activities in guard cells. F-actin dynamics and vacuole morphology are both involved in stomatal movement. The sorting of cargoes by clathrin adaptor protein (AP) complexes from the Golgi to the vacuole is critical for establishing a normal vacuole morphology. In this study, we demonstrate that the medium subunit of the AP3 complex (AP3M) binds to and severs actin filaments in vitro and that it participates in the sorting of cargoes (such as the sucrose exporter SUC4) to the tonoplast, and thereby regulates stomatal closure in Arabidopsis thaliana Defects in AP3 or SUC4 led to more rapid water loss and delayed stomatal closure, as well as hypersensitivity to drought stress. In ap3m mutants, the F-actin status was altered compared to the wild type, and the sorted cargoes failed to localize to the tonoplast. AP3M contains a previously unidentified F-actin binding domain that is conserved in AP3M homologs in both plants and animals. Mutations in the F-actin binding domain of AP3M abolished its F-actin binding activity in vitro, leading to an aberrant vacuole morphology and reduced levels of SUC4 on the tonoplast in guard cells. Our findings indicate that the F-actin binding activity of AP3M is required for the precise localization of AP3-dependent cargoes to the tonoplast and for the regulation of vacuole morphology in guard cells during stomatal closure.
Collapse
|
15
|
Sun L, Ge Y, Sparks JA, Robinson ZT, Cheng X, Wen J, Blancaflor EB. TDNAscan: A Software to Identify Complete and Truncated T-DNA Insertions. Front Genet 2019; 10:685. [PMID: 31428129 PMCID: PMC6690219 DOI: 10.3389/fgene.2019.00685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/01/2019] [Indexed: 01/28/2023] Open
Abstract
Transfer (T)-DNA insertions in mutants isolated from forward genetic screens are typically identified through thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR), inverse PCR, or plasmid rescue. Despite the popularity and success of these methods, they have limited capabilities, particularly in situations in which the T-DNA is truncated. Here, we present a next generation sequencing (NGS)-based platform to facilitate the identification of complete and truncated T-DNA insertions. Our method enables the detection of the corresponding T-DNA insertion orientation and zygosity as well as insertion annotation. This method, called TDNAscan, was developed to be an open source software. We expect that TDNAscan will be a valuable addition to forward genetics toolkits because it provides a solution to the problem of causal gene identification, particularly genes disrupted by truncated T-DNA insertions. We present a case study in which TDNAscan was used to determine that the recessive Arabidopsis thaliana hypersensitive to latrunculin B (hlb3) mutant isolated in a forward genetic screen of T-DNA mutagenized plants encodes a class II FORMIN.
Collapse
Affiliation(s)
- Liang Sun
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Yinbing Ge
- Noble Research Institute LLC, Ardmore, OK, United States
| | - J Alan Sparks
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Xiaofei Cheng
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, United States
| | | |
Collapse
|
16
|
Zwiewka M, Bielach A, Tamizhselvan P, Madhavan S, Ryad EE, Tan S, Hrtyan MN, Dobrev P, Vankovï R, Friml J, Tognetti VB. Root Adaptation to H2O2-Induced Oxidative Stress by ARF-GEF BEN1- and Cytoskeleton-Mediated PIN2 Trafficking. PLANT & CELL PHYSIOLOGY 2019; 60:255-273. [PMID: 30668780 DOI: 10.1093/pcp/pcz001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/03/2019] [Indexed: 05/12/2023]
Abstract
Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment.
Collapse
Affiliation(s)
- Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Prashanth Tamizhselvan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Sharmila Madhavan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Eman Elrefaay Ryad
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Shutang Tan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Mï Nika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany Czech Acad. Sci, Laboratory of Hormonal Regulations in Plants, Rozvojov� 263, Prague 6, Czech Republic
| | - Radomira Vankovï
- Institute of Experimental Botany Czech Acad. Sci, Laboratory of Hormonal Regulations in Plants, Rozvojov� 263, Prague 6, Czech Republic
| | - Jiřï Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| |
Collapse
|
17
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018. [PMID: 30552321 DOI: 10.1038/s41467-018-07662-7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
18
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018; 9:5313. [PMID: 30552321 PMCID: PMC6294250 DOI: 10.1038/s41467-018-07662-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Ding X, Pervere LM, Bascom C, Bibeau JP, Khurana S, Butt AM, Orr RG, Flaherty PJ, Bezanilla M, Vidali L. Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. PLoS Genet 2018; 14:e1007221. [PMID: 29746462 PMCID: PMC5944918 DOI: 10.1371/journal.pgen.1007221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
Abstract
Our ability to identify genes that participate in cell growth and division is limited because their loss often leads to lethality. A solution to this is to isolate conditional mutants where the phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-phase of the moss Physcomitrella patens to identify conditional loss-of-growth (CLoG) mutants with impaired growth at high temperature. We used whole-genome sequencing of pooled segregants to pinpoint the lesion of one of these mutants (clog1) and validated the identified mutation by rescuing the conditional phenotype by homologous recombination. We found that CLoG1 is a novel and ancient gene conserved in plants. At the restrictive temperature, clog1 plants have smaller cells but can complete cell division, indicating an important role of CLoG1 in cell growth, but not an essential role in cell division. Fluorescent protein fusions of CLoG1 indicate it is localized to microtubules with a bias towards depolymerizing microtubule ends. Silencing CLoG1 decreases microtubule dynamics, suggesting that CLoG1 plays a critical role in regulating microtubule dynamics. By discovering a novel gene critical for plant growth, our work demonstrates that P. patens is an excellent genetic system to study genes with a fundamental role in plant cell growth.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
| | - Leah M. Pervere
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
| | - Carl Bascom
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Jeffrey P. Bibeau
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Sakshi Khurana
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Allison M. Butt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Robert G. Orr
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Patrick J. Flaherty
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA
| | | | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
- * E-mail:
| |
Collapse
|
20
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Strehmel N, Hoehenwarter W, Mönchgesang S, Majovsky P, Krüger S, Scheel D, Lee J. Stress-Related Mitogen-Activated Protein Kinases Stimulate the Accumulation of Small Molecules and Proteins in Arabidopsis thaliana Root Exudates. FRONTIERS IN PLANT SCIENCE 2017; 8:1292. [PMID: 28785276 PMCID: PMC5520323 DOI: 10.3389/fpls.2017.01292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
A delicate balance in cellular signaling is required for plants to respond to microorganisms or to changes in their environment. Mitogen-activated protein kinase (MAPK) cascades are one of the signaling modules that mediate transduction of extracellular microbial signals into appropriate cellular responses. Here, we employ a transgenic system that simulates activation of two pathogen/stress-responsive MAPKs to study release of metabolites and proteins into root exudates. The premise is based on our previous proteomics study that suggests upregulation of secretory processes in this transgenic system. An advantage of this experimental set-up is the direct focus on MAPK-regulated processes without the confounding complications of other signaling pathways activated by exposure to microbes or microbial molecules. Using non-targeted metabolomics and proteomics studies, we show that MAPK activation can indeed drive the appearance of dipeptides, defense-related metabolites and proteins in root apoplastic fluid. However, the relative levels of other compounds in the exudates were decreased. This points to a bidirectional control of metabolite and protein release into the apoplast. The putative roles for some of the identified apoplastic metabolites and proteins are discussed with respect to possible antimicrobial/defense or allelopathic properties. Overall, our findings demonstrate that sustained activation of MAPKs alters the composition of apoplastic root metabolites and proteins, presumably to influence the plant-microbe interactions in the rhizosphere. The reported metabolomics and proteomics data are available via Metabolights (Identifier: MTBLS441) and ProteomeXchange (Identifier: PXD006328), respectively.
Collapse
Affiliation(s)
- Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Wolfgang Hoehenwarter
- Research Group Proteome Analytics, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Petra Majovsky
- Research Group Proteome Analytics, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Sylvia Krüger
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle, Germany
| |
Collapse
|
22
|
Montes-Rodriguez A, Kost B. Direct Comparison of the Performance of Commonly Employed In Vivo F-actin Markers (Lifeact-YFP, YFP-mTn and YFP-FABD2) in Tobacco Pollen Tubes. FRONTIERS IN PLANT SCIENCE 2017; 8:1349. [PMID: 28824684 PMCID: PMC5540898 DOI: 10.3389/fpls.2017.01349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/19/2017] [Indexed: 05/17/2023]
Abstract
In vivo markers for F-actin organization and dynamics are extensively used to investigate cellular functions of the actin cytoskeleton, which are essential for plant development and pathogen defense. The most widely employed markers are GFP variants fused to F-actin binding domains of mouse talin (GFP-mTn), Arabidopsis fimbrin1 (GFP-FABD2) or yeast Abp140 (Lifeact-GFP). Although numerous reports describing applications of one, or occasionally more, of these markers, are available in the literature, a direct quantitative comparison of the performance of all three markers at different expression levels has been missing. Here, we analyze F-actin organization and growth rate displayed by tobacco pollen tubes expressing YFP-mTn, YFP-FABD2 or Lifeact-YFP at different levels. Results obtained establish that: (1) all markers strongly affect F-actin organization and cell expansion at high expression levels, (2) YFP-mTn and Lifeact-YFP non-invasively label the same F-actin structures (longitudinally oriented filaments in the shank, a subapical fringe) at low expression levels, (3) Lifeact-YFP displays a somewhat lower potential to affect F-actin organization and cell expansion than YFP-mTn, and (4) YFP-FABD2 generally fails to label F-actin structures at the pollen tube tip and affects F-actin organization as well as cell expansion already at lowest expression levels. As pointed out in the discussion, these observations (1) are also meaningful for F-actin labeling in other cell types, which generally respond less sensitively to F-actin perturbation than pollen tubes, (2) help selecting suitable markers for future F-actin labeling experiments, and (3) support the assessment of a substantial amount of published data resulting from such experiments.
Collapse
|
23
|
Yoo CM, Naramoto S, Sparks JA, Khan BR, Nakashima J, Fukuda H, Blancaflor EB. Deletion analysis of AGD1 reveals domains crucial for its plasma membrane recruitment and function in root hair polarity. J Cell Sci 2017. [DOI: 10.1242/jcs.203828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AGD1, a plant ACAP-type ADP-ribosylation factor-GTPase activating protein (ARF-GAP), functions in specifying root hair polarity in Arabidopsis thaliana. To better understand how AGD1 modulates root hair growth, we generated full length and domain-deleted AGD1-green fluorescent protein (GFP) constructs, and followed their localization during root hair development. AGD1-GFP localized to the cytoplasm and was recruited to specific regions of the root hair plasma membrane (PM). Distinct PM AGD1-GFP signal was first detected along the site of root hair bulge formation. The construct continued to mark the PM at the root hair apical dome but only during periods of reduced growth. During rapid tip-growth, AGD1-GFP labeled the PM of the lateral flanks and dissipated from the apical-most PM. Deletion analysis and a single domain GFP fusion revealed that the pleckstrin homology (PH) domain is the minimal unit required for recruitment of AGD1 to the PM. Our results indicate that differential recruitment of AGD1 to specific PM domains is an essential component of the membrane trafficking machinery that facilitates root hair developmental phase transitions and responses to changes in the root microenvironment.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Present address: Gulf Coast Research and Education Center, University of Florida, 14625 CR 672, Wimauma, FL 33598, USA
| | - Satoshi Naramoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aobaku, Japan
| | - J. Alan Sparks
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Bibi Rafeiza Khan
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jin Nakashima
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
24
|
Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells. Int J Mol Sci 2016; 17:ijms17060887. [PMID: 27271618 PMCID: PMC4926421 DOI: 10.3390/ijms17060887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
A genome-wide analysis identified the set of small RNAs (sRNAs) from the agronomical important legume Phaseolus vulgaris (common bean), including novel P. vulgaris-specific microRNAs (miRNAs) potentially important for the regulation of the rhizobia-symbiotic process. Generally, novel miRNAs are difficult to identify and study because they are very lowly expressed in a tissue- or cell-specific manner. In this work, we aimed to analyze sRNAs from common bean root hairs (RH), a single-cell model, induced with pure Rhizobium etli nodulation factors (NF), a unique type of signal molecule. The sequence analysis of samples from NF-induced and control libraries led to the identity of 132 mature miRNAs, including 63 novel miRNAs and 1984 phasiRNAs. From these, six miRNAs were significantly differentially expressed during NF induction, including one novel miRNA: miR-RH82. A parallel degradome analysis of the same samples revealed 29 targets potentially cleaved by novel miRNAs specifically in NF-induced RH samples; however, these novel miRNAs were not differentially accumulated in this tissue. This study reveals Phaseolus vulgaris-specific novel miRNA candidates and their corresponding targets that meet all criteria to be involved in the regulation of the early nodulation events, thus setting the basis for exploring miRNA-mediated improvement of the common bean–rhizobia symbiosis.
Collapse
|