1
|
Datar A, Gudivada S, Matthews DA. Ab Initio Investigation of Intramolecular Charge Transfer States in DMABN by Calculation of Excited State X-ray Absorption Spectra. J Phys Chem A 2023. [PMID: 37209154 DOI: 10.1021/acs.jpca.3c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dual fluorescence in 4-(dimethylamino)benzonitrile (DMABN) and its derivatives in polar solvents has been studied extensively for the past several decades. An intramolecular charge transfer (ICT) minimum on the excited state potential energy surface, in addition to the localized low-energy (LE) minimum, has been proposed as a mechanism for this dual fluorescence, with large geometric relaxation and molecular orbital reorganization a key feature of the ICT pathway. Herein, we have used both equation-of-motion coupled-cluster with single and double excitations (EOM-CCSD) and time-dependent density functional (TDDFT) methods to investigate the landscape of excited state potential energy surfaces across a number of geometric conformations proposed as ICT structures. In order to correlate these geometries and valence excited states in terms of potential experimental observables, we have calculated the nitrogen K-edge ground and excited state absorption spectra for each of the predicted "signpost" structures and identified several key spectral features that could be used to interpret a future time-resolved X-ray absorption experiment.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Saisrinivas Gudivada
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
2
|
A Comprehensive Analysis of the Metal-Nitrile Bonding in an Organo-Diiron System. Molecules 2021; 26:molecules26237088. [PMID: 34885670 PMCID: PMC8659010 DOI: 10.3390/molecules26237088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Nitriles (N≡CR) are ubiquitous in coordination chemistry, yet literature studies on metal-nitrile bonding based on a multi-technique approach are rare. We selected an easily-available di-organoiron framework, containing both π-acceptor (CO, aminocarbyne) and donor (Cp = η5-C5H5) ligands, as a suitable system to provide a comprehensive description of the iron-nitrile bond. Thus, the new nitrile (2-12)CF3SO3 and the related imine/amine complexes (8-9)CF3SO3 were synthesized in 58-83% yields from the respective tris-carbonyl precursors (1a-d)CF3SO3, using the TMNO strategy (TMNO = trimethylamine-N-oxide). The products were fully characterized by elemental analysis, IR (solution and solid state) and multinuclear NMR spectroscopy. In addition, the structures of (2)CF3SO3, (3)CF3SO3, (5)CF3SO3 and (11)CF3SO3 were ascertained by single crystal X-ray diffraction. Salient spectroscopic data of the nitrile complexes are coherent with the scale of electron-donor power of the R substituents; otherwise, this scale does not match the degree of Fe → N π-back-donation and the Fe-N bond energies, which were elucidated in (2-7)CF3SO3 by DFT calculations.
Collapse
|
3
|
Synthesis and structural characterization of three nano-structured Ag(I) coordination polymers; Syntheses, characterization and X-ray crystal structural analysis. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Zachariasse KA, Druzhinin SI, Morawski O, Kozankiewicz B. Fluorescence of 4-(Diisopropylamino)benzonitrile (DIABN) Single Crystals from 300 K down to 5 K. Intramolecular Charge Transfer Disappears below 60 K. J Phys Chem A 2018; 122:6985-6996. [DOI: 10.1021/acs.jpca.8b06349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Klaas A. Zachariasse
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
| | - Sergey I. Druzhinin
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
| | - Olaf Morawski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Boleslaw Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
5
|
Modesto-Costa L, Borges I. Discrete and continuum modeling of solvent effects in a twisted intramolecular charge transfer system: The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:73-81. [PMID: 29734107 DOI: 10.1016/j.saa.2018.04.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule is a prototypical system displaying twisted intramolecular (TICT) charge transfer effects. The ground and the first four electronic excited states (S1-S4) in gas phase and upon solvation were studied. Charge transfer values as function of the torsion angle between the donor group (dimethylamine) and the acceptor moiety (benzonitrile) were explicitly computed. Potential energy curves were also obtained. The algebraic diagrammatic construction method at the second-order [ADC(2)] ab initio wave function was employed. Three solvents of increased polarities (benzene, DMSO and water) were investigated using discrete (average solvent electrostatic configuration - ASEC) and continuum (conductor-like screening model - COSMO) models. The results for the S3 and S4 excited states and the S1-S4 charge transfer curves were not previously available in the literature. Electronic gas phase and solvent vertical spectra are in good agreement with previous theoretical and experimental results. In the twisted (90°) geometry the optical oscillator strengths have negligible values even for the S2 bright state. Potential energy curves show two distinct pairs of curves intersecting at decreasing angles or not crossing in the more polar solvents. Charge transfer and electric dipole values allowed the rationalization of these results. The former effects are mostly independent of the solvent model and polarity. Although COSMO and ASEC solvent models mostly lead to similar results, there is an important difference: some crossings of the excitation energy curves appear only in the ASEC solvation model, which has important implications to the photochemistry of DMABN.
Collapse
Affiliation(s)
- Lucas Modesto-Costa
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, 22290-270 Rio de Janeiro, Brazil.
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, 22290-270 Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Rankine CD, Nunes JPF, Feixas TWBL, Young S, Wann DA. Structure of 4-(Dimethylamino)benzonitrile Using Gas Electron Diffraction: A New Lease of Life for the Only Gas Electron Diffractometer in the U.K. . J Phys Chem A 2018; 122:5656-5665. [PMID: 29870255 DOI: 10.1021/acs.jpca.8b03613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The continued demand for gas-phase molecular structures has led to the recommissioning of a gas electron diffractometer, formerly housed at the University of Reading. The gas electron diffractometer, now the only one of its kind in the U.K., is currently housed at the University of York, where it is now used routinely to determine directly structures of isolated molecules in the gas phase. The instrument has been fitted with an air-heated nozzle assembly to increase the range of molecules accessible to study in the gas phase; the efficacy of this assembly is demonstrated in this article via the determination of the gas-phase structure of 4-(dimethylamino)benzonitrile (DMABN) at high temperature. A series of complementary theoretical calculations using the B2PLYP DFT functional of Grimme et al. with correlation-consistent basis sets of double, triple, and quadruple-ζ quality are also presented. The agreement between the experimental and theoretical structural parameters attests to the accuracy of the applied theoretical calculations and of our gas-phase structural solution.
Collapse
Affiliation(s)
- Conor D Rankine
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| | - João Pedro F Nunes
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| | | | - Stuart Young
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| | - Derek A Wann
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| |
Collapse
|
7
|
Alimi LO, Lama P, Smith VJ, Barbour LJ. Large volumetric thermal expansion of a novel organic cocrystal over a wide temperature range. CrystEngComm 2018. [DOI: 10.1039/c7ce01848g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cocrystal ABN·2DMABN shows the largest volumetric thermal expansion over a wide temperature range of 100–300 K for an organic cocrystal.
Collapse
Affiliation(s)
- Lukman O. Alimi
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| | - Prem Lama
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| | - Vincent J. Smith
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| | - Leonard J. Barbour
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| |
Collapse
|
8
|
Alimi LO, van Heerden DP, Lama P, Smith VJ, Barbour LJ. Reversible thermosalience of 4-aminobenzonitrile. Chem Commun (Camb) 2018; 54:6208-6211. [DOI: 10.1039/c8cc03636e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystals of 4-aminobenzonitrile grown by sublimation undergo a reversible thermosalient phase change during cooling and subsequent heating. Single-crystal diffraction studies have been carried out at 20 K intervals during cooling from 300 to 100 K in order to explain the structural change that occurs.
Collapse
Affiliation(s)
- Lukman O. Alimi
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| | - Dewald P. van Heerden
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| | - Prem Lama
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| | - Vincent J. Smith
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| | - Leonard J. Barbour
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Matieland
- South Africa
| |
Collapse
|
9
|
Segado M, Gómez I, Reguero M. Intramolecular charge transfer in aminobenzonitriles and tetrafluoro counterparts: fluorescence explained by competition between low-lying excited states and radiationless deactivation. Part I: A mechanistic overview of the parent system ABN. Phys Chem Chem Phys 2016; 18:6861-74. [DOI: 10.1039/c5cp04690d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simplicity of the fluorescence pattern of ABN is in fact the outcome of an intricate interplay between locally excited and charge transfer excited states.
Collapse
Affiliation(s)
- Mireia Segado
- Departament de Química Física i Inorgànica
- Facultat de Química
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | - Isabel Gómez
- Departament de Química Física i Inorgànica
- Facultat de Química
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | - Mar Reguero
- Departament de Química Física i Inorgànica
- Facultat de Química
- Universitat Rovira i Virgili
- Tarragona
- Spain
| |
Collapse
|
10
|
Segado M, Mercier Y, Gómez I, Reguero M. Intramolecular charge transfer in aminobenzonitriles and tetrafluoro counterparts: fluorescence explained by competition between low lying excited states and radiationless deactivation. Part II: influence of substitution on luminescence patterns. Phys Chem Chem Phys 2016; 18:6875-84. [DOI: 10.1039/c5cp04693a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Same fluorescence paterns, diferent topographies of excited states.
Collapse
Affiliation(s)
- Mireia Segado
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007-Tarragona
- Spain
| | - Yannick Mercier
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007-Tarragona
- Spain
| | - Isabel Gómez
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007-Tarragona
- Spain
| | - Mar Reguero
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007-Tarragona
- Spain
| |
Collapse
|
11
|
Druzhinin SI, Galievsky VA, Demeter A, Kovalenko SA, Senyushkina T, Dubbaka SR, Knochel P, Mayer P, Grosse C, Stalke D, Zachariasse KA. Two-State Intramolecular Charge Transfer (ICT) with 3,5-Dimethyl-4-(dimethylamino)benzonitrile (MMD) and Its Meta-Isomer mMMD. Ground State Amino Twist Not Essential for ICT. J Phys Chem A 2015; 119:11820-36. [PMID: 26559045 DOI: 10.1021/acs.jpca.5b09368] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From X-ray structure analysis, amino twist angles of 90.0° for 2,4-dimethyl-3-(dimethylamino)benzonitrile (mMMD), 82.7° for 4-(di-tert-butylamino)benzonitrile (DTABN), and 88.7° for 6-cyanobenzoquinuclidine (CBQ) are determined, all considerably larger than the 57.4° of 3,5-dimethyl-4-(dimethylamino)benzonitrile (MMD). This large twist leads to lengthening of the amino-phenyl bond, 143.5 pm (mMMD), 144.1 pm (DTABN), 144.6 pm (CBQ), and 141.4 pm (MMD), as compared with 136.5 pm for the planar 4-(dimethylamino)benzonitrile (DMABN). As a consequence, the electronic coupling between the amino and phenyl subgroups in mMMD, DTABN, CBQ, and MMD is much weaker than in DMABN, as seen from the strongly reduced molar absorption coefficients. The fluorescence spectrum of MMD in n-hexane at 25 °C consists of two emissions, from a locally excited (LE) and an intramolecular charge transfer (ICT) state, with a fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) of 12.8. In MeCN, a single ICT emission is found. With mMMD in n-hexane, in contrast, only LE fluorescence is observed, whereas the spectrum in MeCN originates from the ICT state. These differences are also seen from the half-widths of the overall fluorescence bands, which in n-hexane are larger for MMD than for mMMD, decreasing with solvent polarity for MMD and increasing for mMMD, reflecting the disappearance of LE and the onset of ICT in the overall spectra, respectively. From solvatochromic measurements the dipole moments μe(ICT) of MMD (16 D) and mMMD (15 D) are obtained. Femtosecond excited state absorption (ESA) spectra at 22 °C, together with the dual (LE + ICT) fluorescence, reveal that MMD in n-hexane undergoes a reversible LE ⇄ ICT reaction, with LE as the precursor, with a forward rate constant ka = 5.6 × 10(12) s(-1) and a back-reaction kd ∼ 0.05 × 10(12) s(-1). With MMD in the strongly polar solvent MeCN, ICT is faster: ka = 10 × 10(12) s(-1). In the case of mMMD in n-hexane, the ESA spectra show that ICT does not take place, contrary to MeCN, in which ka = 2.5 × 10(12) s(-1). The ICT reactions with MMD and mMMD are much faster than that of the parent compound DMABN in MeCN, with ka = 0.24 × 10(12) s(-1). Because of the very short ICT reaction times of 180 fs (MMD, n-hexane), 100 fs (MMD, MeCN), and 400 fs (mMMD, MeCN), it is clear that the picosecond fluorescence decays of these systems appear to be single exponential, due to the insufficient time resolution of 3 ps. It is concluded that the faster LE → ICT reaction of MMD as compared with DMABN (ka = 0.24 × 10(12) s(-1) in MeCN) is caused by a smaller energy gap ΔE(S1,S2) between the lowest singlet excited states and not by the large amino twist angle. Similarly, the larger ΔE(S1,S2) of mMMD as compared with MMD is held responsible for its smaller ICT efficiency (no reaction in n-hexane).
Collapse
Affiliation(s)
- Sergey I Druzhinin
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik , 37070 Göttingen, Germany
| | - Victor A Galievsky
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik , 37070 Göttingen, Germany
| | - Attila Demeter
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| | - Sergey A Kovalenko
- Institut für Chemie, Humboldt Universität zu Berlin , Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Tamara Senyushkina
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik , 37070 Göttingen, Germany
| | - Srinivas R Dubbaka
- Department Chemie und Biochemie, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, Haus F, 81377 München, Germany
| | - Paul Knochel
- Department Chemie und Biochemie, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, Haus F, 81377 München, Germany
| | - Peter Mayer
- Department Chemie und Biochemie, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, Haus F, 81377 München, Germany
| | - Christian Grosse
- Institut für Anorganische Chemie, Georg-August Universität , Tammannstrasse 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August Universität , Tammannstrasse 4, 37077 Göttingen, Germany
| | - Klaas A Zachariasse
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik , 37070 Göttingen, Germany
| |
Collapse
|
12
|
Georgieva I, Aquino AJA, Plasser F, Trendafilova N, Köhn A, Lischka H. Intramolecular Charge-Transfer Excited-State Processes in 4-(N,N-Dimethylamino)benzonitrile: The Role of Twisting and the πσ* State. J Phys Chem A 2015; 119:6232-43. [PMID: 25989536 PMCID: PMC4476306 DOI: 10.1021/acs.jpca.5b03282] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The
structural processes leading to dual fluorescence of 4-(dimethylamino)benzonitrile
in the gas phase and in acetonitrile solvent were investigated using
a combination of multireference configuration interaction (MRCI) and
the second-order algebraic diagrammatic construction (ADC(2)) methods.
Solvent effects were included on the basis of the conductor-like screening
model. The MRCI method was used for computing the nonadiabatic interaction
between the two lowest excited ππ* states (S2(La, CT) and S1(Lb, LE)) and the
corresponding minimum on the crossing seam (MXS) whereas the ADC(2)
calculations were dedicated to assessing the role of the πσ*
state. The MXS structure was found to have a twisting angle of ∼50°.
The branching space does not contain the twisting motion of the dimethylamino
group and thus is not directly involved in the deactivation process
from S2 to S1. Polar solvent effects are not
found to have a significant influence on this situation. Applying Cs symmetry restrictions, the ADC(2) calculations
show that CCN bending leads to a strong stabilization and to significant
charge transfer (CT). Nevertheless, this structure is not a minimum
but converts to the local excitation (LE) structure on releasing the
symmetry constraint. These findings suggest that the main role in
the dynamics is played by the nonadiabatic interaction of the LE and
CT states and that the main source for the dual fluorescence is the
twisted internal charge-transfer state in addition to the LE state.
Collapse
Affiliation(s)
- Ivelina Georgieva
- †Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Adélia J A Aquino
- ‡Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States.,§Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Felix Plasser
- §Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Natasha Trendafilova
- †Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Andreas Köhn
- ∥Institute for Theoretical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Hans Lischka
- ‡Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States.,§Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
13
|
Tan WS, Prabhakar C, Liu YH, Peng SM, Yang JS. Effects of iptycene scaffolds on the photoluminescence of N,N-dimethylaminobenzonitrile and its analogues. Photochem Photobiol Sci 2014; 13:211-23. [DOI: 10.1039/c3pp50196e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Affiliation(s)
- Aurora J Cruz-Cabeza
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Kummrow A, Dreyer J, Chudoba C, Stenger J, Theodorus E, Nibbering J, Elsaesser T. Ultrafast Charge Transfer Studied by Femtosecond IR-Spectroscopy and ab Initio Calculations. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200000099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Druzhinin SI, Demeter A, Zachariasse KA. Intramolecular charge transfer with crystal violet lactone in acetonitrile as a function of temperature: reaction is not solvent-controlled. J Phys Chem A 2013; 117:7721-36. [PMID: 23865629 DOI: 10.1021/jp405530j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Intramolecular charge transfer (ICT) with crystal violet lactone (CVL) in the excited singlet state takes place in solvents more polar than n-hexane, such as ethyl acetate, tetrahydrofuran, and acetonitrile (MeCN). In these solvents, the fluorescence spectrum of CVL consists of two emission bands, from a locally excited (LE) and an ICT state. The dominant deactivation channel of the lowest excited singlet state is internal conversion, as the quantum yields of fluorescence (0.007) and intersystem crossing (0.015) in MeCN at 25 °C are very small. CVL is a weakly coupled electron donor/acceptor (D/A) molecule, similar to an exciplex (1)(A(-)D(+)). A solvatochromic treatment of the LE and ICT emission maxima results in the dipole moments μe(LE) = 17 D and μe(ICT) = 33 D, much larger than those previously reported. This discrepancy is attributed to different Onsager radii and spectral fluorimeter calibration. The LE and ICT fluorescence decays of CVL in MeCN are double exponential. As determined by global analysis, the LE and ICT decays at 25 °C have the times τ2 = 9.2 ps and τ1 = 1180 ps, with an amplitude ratio of 35.3 for LE. From these parameters, the rate constants ka = 106 × 10(9) s(-1) and kd = 3.0 × 10(9) s(-1) of the forward and backward reaction in the LE ⇄ ICT equilibrium are calculated, resulting in a free enthalpy difference ΔG of -8.9 kJ/mol. The amplitude ratio of the ICT fluorescence decay equals -1.0, which signifies that the ICT state is not prepared by light absorption in the S0 ground state, but originates exclusively from the directly excited LE precursor. From the temperature dependence of the fluorescence decays of CVL in MeCN (-45 to 75 °C), activation energies E(a) = 3.9 kJ/mol (LE → ICT) and E(d) = 23.6 kJ/mol (ICT → LE) are obtained, giving an enthalpy difference ΔH (= E(a) - E(d)) of -19.7 kJ/mol, and an entropy difference ΔS = -35.5 J mol(-1) K(-1). These data show that the ICT reaction of CVL in MeCN is not barrierless. The ICT reaction time of 9.2 ps is much longer than the mean solvent relaxation time of MeCN (0.26 ps), indicating, in contrast with earlier reports in the literature, that the reaction is not solvent controlled. This conclusion is supported by the observation of double exponential LE and ICT fluorescence with the same decay times.
Collapse
Affiliation(s)
- Sergey I Druzhinin
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany.
| | | | | |
Collapse
|
17
|
|
18
|
Abstract
Abstract C7H6N2, monoclinic, P21/c (no. 14), a = 7.2382(6) Å, b = 5.4770(4) Å, c = 16.040(2) Å, β = 101.680(4)°, V = 622.7 Å3, Z = 4, Rgt(F) = 0.0500, wRref(F2) = 0.1377, T = 200 K.
Collapse
|
19
|
Galievsky VA, Druzhinin SI, Demeter A, Kovalenko SA, Senyushkina T, Mayer P, Zachariasse KA. Presence and Absence of Excited State Intramolecular Charge Transfer with the Six Isomers of Dicyano-N,N-dimethylaniline and Dicyano-(N-methyl-N-isopropyl)aniline. J Phys Chem A 2011; 115:10823-45. [DOI: 10.1021/jp2045614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Victor A. Galievsky
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 220072 Minsk, Belarus
| | - Sergey I. Druzhinin
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
| | - Attila Demeter
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
- Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary
| | - Sergey A. Kovalenko
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Tamara Senyushkina
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
| | - Peter Mayer
- Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany
| | - Klaas A. Zachariasse
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
| |
Collapse
|
20
|
Galievsky VA, Druzhinin SI, Demeter A, Mayer P, Kovalenko SA, Senyushkina TA, Zachariasse KA. Ultrafast Intramolecular Charge Transfer with N-(4-Cyanophenyl)carbazole. Evidence for a LE Precursor and Dual LE + ICT Fluorescence. J Phys Chem A 2010; 114:12622-38. [DOI: 10.1021/jp1070506] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Victor A. Galievsky
- Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany; B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 22072 Minsk, Belarus; Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary; Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany; and
| | - Sergey I. Druzhinin
- Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany; B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 22072 Minsk, Belarus; Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary; Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany; and
| | - Attila Demeter
- Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany; B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 22072 Minsk, Belarus; Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary; Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany; and
| | - Peter Mayer
- Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany; B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 22072 Minsk, Belarus; Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary; Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany; and
| | - Sergey A. Kovalenko
- Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany; B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 22072 Minsk, Belarus; Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary; Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany; and
| | - Tamara A. Senyushkina
- Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany; B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 22072 Minsk, Belarus; Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary; Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany; and
| | - Klaas A. Zachariasse
- Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany; B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Nezavisimosti 68, 22072 Minsk, Belarus; Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary; Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany; and
| |
Collapse
|
21
|
von Der Haar T, Hebecker A, Il'Ichev Y, Jiang YB, Kühnle W, Zachariasse KA. Excited-state intramolecular charge transfer in donor/acceptor-substituted aromatic hydrocarbons and in biaryls. The significance of the redox potentials of the D/A subsystems. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19951141103] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Létard JF, Delmond S, Lapouyade R, Braun D, Rettig W, Kreissler M. New intrinsic fluoroionophores with dual fluorescence: DMABN-Crown4 and DMABN-Crown5. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19951141117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Druzhinin SI, Mayer P, Stalke D, von Bülow R, Noltemeyer M, Zachariasse KA. Intramolecular Charge Transfer with 1-tert-Butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) and Other Aminobenzonitriles. A Comparison of Experimental Vapor Phase Spectra and Crystal Structures with Calculations. J Am Chem Soc 2010; 132:7730-44. [DOI: 10.1021/ja101336n] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergey I. Druzhinin
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Peter Mayer
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Rixa von Bülow
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Mathias Noltemeyer
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Klaas A. Zachariasse
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Santhosh K, Banerjee S, Rangaraj N, Samanta A. Fluorescence Response of 4-(N,N′-Dimethylamino)benzonitrile in Room Temperature Ionic Liquids: Observation of Photobleaching under Mild Excitation Condition and Multiphoton Confocal Microscopic Study of the Fluorescence Recovery Dynamics. J Phys Chem B 2010; 114:1967-74. [DOI: 10.1021/jp910704y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kotni Santhosh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India, and Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sanghamitra Banerjee
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India, and Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Nandini Rangaraj
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India, and Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India, and Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
25
|
Zachariasse KA, Druzhinin SI, Mayer P, Kovalenko SA, Senyushkina T. Decay times of 4-(dimethylamino)benzonitrile in acetonitrile and conclusions on entropy of activation. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.10.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Meindl K, Henn J, Kocher N, Leusser D, Zachariasse KA, Sheldrick GM, Koritsanszky T, Stalke D. Experimental Charge Density Studies of Disordered N-Phenylpyrrole and N-(4-Fluorophenyl)pyrrole. J Phys Chem A 2009; 113:9684-91. [DOI: 10.1021/jp9026157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kathrin Meindl
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| | - Julian Henn
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| | - Nikolaus Kocher
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| | - Dirk Leusser
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| | - Klaas A. Zachariasse
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| | - George M. Sheldrick
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| | - Tibor Koritsanszky
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany,
Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany,
and Department of Chemistry, Middle Tennessee State University, MTSU
Box 0395, 1301 East Main Street, Murfreesboro, Tennessee 37132
| |
Collapse
|
27
|
Zachariasse KA, Druzhinin SI, Galievsky VA, Kovalenko S, Senyushkina TA, Mayer P, Noltemeyer M, Boggio-Pasqua M, Robb MA. Counterintuitive Absence of an Excited-State Intramolecular Charge Transfer Reaction with 2,4,6-Tricyanoanilines. Experimental and Computational Results. J Phys Chem A 2009; 113:2693-710. [DOI: 10.1021/jp8078925] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Klaas A. Zachariasse
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Sergey I. Druzhinin
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Victor A. Galievsky
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Sergey Kovalenko
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Tamara A. Senyushkina
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Peter Mayer
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Mathias Noltemeyer
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Martial Boggio-Pasqua
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| | - Michael A. Robb
- Spektroskopie and Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Department Chemie and Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS and
| |
Collapse
|
28
|
Druzhinin SI, Kovalenko SA, Senyushkina TA, Demeter A, Machinek R, Noltemeyer M, Zachariasse KA. Intramolecular Charge Transfer with the Planarized 4-Cyanofluorazene and Its Flexible Counterpart 4-Cyano-N-phenylpyrrole. Picosecond Fluorescence Decays and Femtosecond Excited-State Absorption. J Phys Chem A 2008; 112:8238-53. [DOI: 10.1021/jp8037413] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergey I. Druzhinin
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie and Photochemische Kinetik, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences. P. O. Box 17, 1525 Budapest, Hungary, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, and Institut für Anorganische Chemie,
| | - Sergey A. Kovalenko
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie and Photochemische Kinetik, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences. P. O. Box 17, 1525 Budapest, Hungary, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, and Institut für Anorganische Chemie,
| | - Tamara A. Senyushkina
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie and Photochemische Kinetik, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences. P. O. Box 17, 1525 Budapest, Hungary, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, and Institut für Anorganische Chemie,
| | - Attila Demeter
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie and Photochemische Kinetik, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences. P. O. Box 17, 1525 Budapest, Hungary, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, and Institut für Anorganische Chemie,
| | - Reinhard Machinek
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie and Photochemische Kinetik, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences. P. O. Box 17, 1525 Budapest, Hungary, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, and Institut für Anorganische Chemie,
| | - Mathias Noltemeyer
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie and Photochemische Kinetik, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences. P. O. Box 17, 1525 Budapest, Hungary, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, and Institut für Anorganische Chemie,
| | - Klaas A. Zachariasse
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie and Photochemische Kinetik, 37070 Göttingen, Germany, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany, Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences. P. O. Box 17, 1525 Budapest, Hungary, Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, and Institut für Anorganische Chemie,
| |
Collapse
|
29
|
Druzhinin SI, Dubbaka SR, Knochel P, Kovalenko SA, Mayer P, Senyushkina T, Zachariasse KA. Ultrafast Intramolecular Charge Transfer with Strongly Twisted Aminobenzonitriles: 4-(Di-tert-butylamino)benzonitrile and 3-(Di-tert-butylamino)benzonitrile. J Phys Chem A 2008; 112:2749-61. [DOI: 10.1021/jp7097526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sergey I. Druzhinin
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Srinivas Reddy Dubbaka
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Paul Knochel
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Sergey A. Kovalenko
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Peter Mayer
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Tamara Senyushkina
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Klaas A. Zachariasse
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany, Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F, 81377 München, Germany, and Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
30
|
Chiba M, Tsuneda T, Hirao K. Long-range corrected time-dependent density functional study on fluorescence of 4,4′-dimethylaminobenzonitrile. J Chem Phys 2007; 126:034504. [PMID: 17249881 DOI: 10.1063/1.2426335] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dual fluorescence of 4,4(')-dimethylaminobenzonitrile (DMABN) was theoretically investigated on the basis of long-range corrected time-dependent density functional theory. Excited-state geometry optimization states and single-point energy calculations with and without solvent effect were carried out. It has been explained that DMABN emits dual fluorescence only in polar solvents through locally excited (LE) and charge transfer (CT) states. It was, however, concluded from this study that although the main spectrum of dual fluorescence in acetonitrile solvent is clearly due to twisted intramolecular CT fluorescence, small secondary fluorescence in acetonitrile may also emanate from CT fluorescence during the DMABN twisting process. This conclusion is supported by an experimental interpretation on polarization spectroscopy. It was also found that the optimized DMABN geometries have certain wagging angles for the CT state and no wagging angle for the LE state. This may support an early experimental hypothesis that the dual fluorescence of DMABN is induced by the wagging mode due to vibronic coupling between LE and CT states. Consequently, the authors propose a fluorescence mechanism of DMABN in gas phase and in acetonitrile solvent: the main absorption proceeds to the CT state in both situations. In gas phase, single fluorescence is chiefly emitted from the LE state through the internal conversion from CT to LE states. Dual fluorescence in acetonitrile solvent may only be emitted from the CT state.
Collapse
Affiliation(s)
- Mahito Chiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
31
|
Kwok WM, Ma C, George MW, Grills DC, Matousek P, Parker AW, Phillips D, Toner WT, Towrie M. Solvent effects on the charge transfer excited states of 4-dimethylaminobenzonitrile (DMABN) and 4-dimethylamino-3,5-dimethylbenzonitrile (TMABN) studied by time-resolved infrared spectroscopy: a direct observation of hydrogen bonding interactions. Photochem Photobiol Sci 2007; 6:987-94. [PMID: 17721598 DOI: 10.1039/b708414e] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved infrared absorption spectra of the C[triple bond]N bands of photoexcited TMABN and DMABN have been measured in non-polar hexane, polar aprotic THF and polar protic butanol with high temporal and spectral resolution (<0.5 ps and 5 cm(-1), respectively). In butanol, the intramolecular charge transfer (ICT) state C[triple bond]N infrared absorption bands of DMABN and TMABN both develop from an initial singlet into a doublet, demonstrating the co-existence of two charge transfer excited states, one of which is hydrogen-bonded and the other similar to the state formed in aprotic solvents. The ICT C[triple bond]N absorption band of TMABN is already strong at the earliest measurement time of 2 ps in THF, hexane, and butanol, indicating prompt population of ICT by a barrierless process, as expected from the pre-twisted structure of this molecule. There are little or no subsequent fast kinetics in hexane and THF but the signal observed in butanol continues to grow substantially at later times, prior to decay, indicating population transfer from a second state excited at 267 nm. No CN absorption band attributable to this state is observed, consistent with it being similar to the LE state of DMABN. The kinetics of the later stages of the hydrogen-bonding of both DMABN and TMABN in butanol takes place on timescales consistent with known values for dipolar solvation relaxation and result in a ratio of the hydrogen-bonded to non-bonded species of approximately 3 : 1 at equilibrium for both molecules. The contrast between the prompt population of the charge transfer state of TMABN in all three solvents and charge transfer rates in DMABN limited to 13 ps(-1) in THF and 9 ps(-1) in butanol is fully consistent with the TICT description for the ICT state structure.
Collapse
Affiliation(s)
- W M Kwok
- Department of Chemistry, Imperial College, Exhibition Road, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hättig C, Hellweg A, Köhn A. Intramolecular Charge-Transfer Mechanism in Quinolidines: The Role of the Amino Twist Angle. J Am Chem Soc 2006; 128:15672-82. [PMID: 17147377 DOI: 10.1021/ja0642010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum-chemical calculations with the approximate coupled-cluster singles-and-doubles model CC2 have been carried out for 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6). For this molecule dual fluorescence was experimentally observed, raising the discussion about the importance of the amino twist angle for this process. The calculations suggest that both the ground state and the normal fluorescent state are significantly twisted by 30 degrees -40 degrees and that the molecule is flexible enough to move into an even stronger twisted conformation (60 degrees -70 degrees ) in its intramolecular charge-transfer (ICT) state which is responsible for the anomalous fluorescence band. Such a conformation both minimizes the total energy in the S1 state and maximizes the dipole moment. The barrier from the normal fluorescent state to the ICT state region is very small. Comparison to the situation in the 1-methyl-derivative NMC6 suggests that a large alkyl substituent makes the preferably planar normal fluorescent state energetically unfavorable compared to the ICT state and thus promotes the occurrence of dual fluorescence.
Collapse
Affiliation(s)
- Christof Hättig
- Forschungszentrum Karlsruhe, Institute of Nanotechnology, D-76021 Karlsruhe, Germany
| | | | | |
Collapse
|
33
|
Alejandro E, Longarte A, Basterretxea FJ, Castaño F, Fernández JA. A REMPI and ZEKE-PFI study of 4-amino-3-ethylbenzonitrile. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Oshima J, Yoshihara T, Tobita S. Water-induced fluorescence quenching of mono- and dicyanoanilines. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.03.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Wright RJ, Steiner J, Beaini S, Power PP. Synthesis of the sterically encumbering terphenyl silyl and alkyl amines (R=Me and SiMe3), their lithium derivatives , and the tertiary amine. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2005.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Peach MJG, Cohen AJ, Tozer DJ. Influence of Coulomb-attenuation on exchange–correlation functional quality. Phys Chem Chem Phys 2006; 8:4543-9. [PMID: 17047751 DOI: 10.1039/b608553a] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence of functional quality on the attenuation parameters--which control the limiting (r12-->0, infinity) values and the rate of attenuation--is investigated for a Coulomb-attenuated exchange-correlation functional. For the attenuation and functional form considered, satisfaction of an exact long-range condition is detrimental for properties such as atomisation energies and bond lengths, but does improve classical reaction barriers and small molecule electronic excitation energies. The functionals considered can provide high quality valence, Rydberg, intramolecular and asymptotic intermolecular charge transfer (CT) excitations, but none are able to provide a simultaneously optimal description of all classes; CT excitations are not necessarily improved compared to those from conventional functionals. The study highlights the need for further development of Coulomb-attenuated functionals.
Collapse
Affiliation(s)
- Michael J G Peach
- Department of Chemistry, University of Durham, South Road, Durham, UK DH1 3LE
| | | | | |
Collapse
|
37
|
Batsanov AS, Collings JC, Ward RM, Goeta AE, Porrès L, Beeby A, Howard JAK, Steed JW, Marder TB. Crystal engineering with ethynylbenzenes : Part 2. Structures of 4-trimethylsilylethynyl-N,N-dimethylaniline, and 4-ethynyl-N,N-dimethylaniline with Z′ = 12 and a single-crystal to single-crystal phase transition at 122.5 ± 2 K. CrystEngComm 2006. [DOI: 10.1039/b606327f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Galievsky VA, Druzhinin SI, Demeter A, Jiang YB, Kovalenko SA, Pérez Lustres L, Venugopal K, Ernsting NP, Allonas X, Noltemeyer M, Machinek R, Zachariasse KA. Ultrafast Intramolecular Charge Transfer and Internal Conversion with Tetrafluoro-aminobenzonitriles. Chemphyschem 2005; 6:2307-23. [PMID: 16273565 DOI: 10.1002/cphc.200500267] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The five 2,3,5,6-tetrafluoro-4-aminobenzonitriles XABN4F with a dimethyl-amino (DMABN4F), diethyl-amino (DEABN4F), azetidinyl (AZABN4F), methyl-amino (MABN4F) or amino (ABN4F) group undergo ultrafast intramolecular charge transfer (ICT) at room temperature, in the polar solvent acetonitrile (MeCN) as well as in the nonpolar n-hexane. ICT also takes place with the corresponding non-fluorinated aminobenzonitriles DMABN, DEABN and AZABN in MeCN, whereas for these molecules in n-hexane only minor (DMABN, DEABN) or no (AZABN) ICT fluorescence is detected. For the secondary (MABN) and primary (ABN) amines, an ICT reaction does not occur, which makes ABN4F the first electron donor/acceptor molecule with an NH(2) group for which ICT is observed. The ICT state of the XABN4Fs has a dipole moment of around 14 D, clearly smaller than that of DMABN (17 D). This difference is attributed to the electron withdrawing from the CN group to the phenyl ring, exerted by the four F-substituents. The reaction from the initially prepared locally excited (LE) to the ICT state in n-hexane proceeds in the sub-picosecond time range: 0.35 ps (DMABN4F), 0.29 ps (DEABN4F) and 0.13 ps (AZABN4F), as determined from femtosecond transient absorption measurements. In the highly polar solvent MeCN, an ICT reaction time of around 90 fs is observed for all five XABN4Fs, irrespective of the nature of their amino group. This shows that with these molecules in MeCN the ICT reaction rate is limited by the solvent dielectric relaxation time of MeCN, for which a value of around 90 fs has been reported. It is therefore concluded that, during this ultrashort ICT reaction, a large-amplitude motion such as a full 90 degrees twist of the amino group is unlikely to occur in the XABN4Fs. The ICT state of the XABN4Fs is strongly quenched via internal conversion (IC), with a lifetime tau'(0) (ICT) down to 3 ps, possibly by a reaction passing through a conical intersection made accessible due to a deformation of the phenyl group by out-of-plane motions induced by vibronic coupling between low-lying pisigma* and pipi* states in the XABN4Fs.
Collapse
Affiliation(s)
- Victor A Galievsky
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cordiner RL, Albesa-Jové D, Roberts RL, Farmer JD, Puschmann H, Corcoran D, Goeta AE, Howard JA, Low PJ. Syntheses and molecular structures of group 8 benzonitrile complexes. J Organomet Chem 2005. [DOI: 10.1016/j.jorganchem.2005.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Photophysical properties of pyrrolobenzenes with different linking and substitution pattern: The transition between charge transfer states with large (MICT) and small (TICT) resonance interaction. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Minezawa N, Kato S. Intramolecular Charge-Transfer State Formation of 4-(N,N-Dimethylamino)benzonitrile in Acetonitrile Solution: RISM-SCF Study. J Phys Chem A 2005; 109:5445-53. [PMID: 16839072 DOI: 10.1021/jp0580064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intramolecular charge-transfer (ICT) state formation of 4-(N,N-dimethylamino)benzonitrile in acetonitrile solution is studied by the reference interaction site model self-consistent field (RISM-SCF) method. Geometry optimizations are performed for each electronic state in solution with the complete-active-space SCF wave functions. Dynamic electron correlation effects are taken into account by using the multiconfigurational quasidegenerate perturbation theory. Two-dimensional free energy surfaces are constructed as the function of the twisting and wagging angles of the dimethylamino group for the ground and locally excited (LE) states. The calculated absorption and fluorescence energies are in good agreement with experiments. The validity of the twisted ICT (TICT) model is confirmed in explaining the dual fluorescence, and the possibility of the planar ICT model is ruled out. To examine the mechanism of the TICT state formation, a "crossing" seam between the LE and charge-transfer (CT) state surfaces is determined. The inversion of two electronic states occurs at a relatively small twisting angle. The effect of solvent reorganization is also examined. It is concluded that the intramolecular twisting coordinate is more important than the solvent fluctuation for the TICT state formation, because the energy difference between the two states is minimally dependent on the solvent configuration.
Collapse
Affiliation(s)
- Noriyuki Minezawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
42
|
Xu X, Cao Z, Zhang Q. Theoretical study of photoinduced singlet and triplet excited states of 4-dimethylaminobenzonitrile and its derivatives. J Chem Phys 2005; 122:194305. [PMID: 16161571 DOI: 10.1063/1.1895673] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Singlet and triplet low-lying states of the 4-dimethylaminobenzonitrile and its derivatives have been studied by the density functional theory and ab initio methodologies. Calculations reveal that the existence of the methyl groups in the phenyl ring and the amino twisting significantly modify properties of their excited states. A twisted singlet intramolecular charge-transfer state can be accessed through decay of the second planar singlet excited state with charge-transfer character along the amino twisting coordinate or by an intramolecular charge-transfer reaction involved with a locally first excited singlet state. Plausible charge-transfer triplet states and intersystem crossing processes among singlet and triplet states have been explored by spin-orbit coupling calculations. The intersystem crossing process was predicted to be the dominant deactivation channel of the photoexcited 4-dimethylaminobenzonitrile.
Collapse
Affiliation(s)
- Xuefei Xu
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
43
|
Gómez I, Reguero M, Boggio-Pasqua M, Robb MA. Intramolecular Charge Transfer in 4-Aminobenzonitriles Does Not Necessarily Need the Twist. J Am Chem Soc 2005; 127:7119-29. [PMID: 15884954 DOI: 10.1021/ja042413w] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In electron donor/acceptor species such as 4-(dimethylamino)benzonitrile (DMABN), the excitation to the S(2) state is followed by internal conversion to the locally excited (LE) state. Dual fluorescence then becomes possible from both the LE and the twisted intramolecular charge-transfer (TICT) states. A detailed mechanism for the ICT of DMABN and 4-aminobenzonitrile (ABN) is presented in this work. The two emitting S(1) species are adiabatically linked along the amino torsion reaction coordinate. However, the S(2)/S(1) CT-LE radiationless decay occurs via an extended conical intersection "seam" that runs almost parallel to this torsional coordinate. At the lowest energy point on this conical intersection seam, the amino group is untwisted; however, the seam is accessible for a large range of torsional angles. Thus, the S(1) LE-TICT equilibration and dual fluorescence will be controlled by (a) the S(1) torsional reaction path and (b) the position along the amino group twist coordinate where the S(2)/S(1) CT-LE radiationless decay occurs. For DMABN, population of LE and TICT can occur because the two species have similar stabilities. However, in ABN, the equilibrium lies in favor of LE, as a TICT state was found at much higher energy with a low reaction barrier toward LE. This explains why dual fluorescence cannot be observed in ABN. The S(1)-->S(0) deactivation channel accessible from the LE state was also studied.
Collapse
Affiliation(s)
- Isabel Gómez
- Departament de Química Física i Inorgànica, Pl. Imperial Tarraco 1, 43005 Tarragona, Spain
| | | | | | | |
Collapse
|
44
|
Yoshihara T, Druzhinin SI, Demeter A, Kocher N, Stalke D, Zachariasse KA. Kinetics of Intramolecular Charge Transfer with N-Phenylpyrrole in Alkyl Cyanides. J Phys Chem A 2005; 109:1497-509. [PMID: 16833471 DOI: 10.1021/jp046586j] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the electron acceptor/donor molecule N-phenylpyrrole (PP), the fast intramolecular charge transfer (ICT) reaction accompanied by dual fluorescence from a locally excited (LE) and an ICT state is investigated in alkyl cyanide solvents as a function of temperature. After a comparison of the X-ray crystal structure of PP with calculations from the literature, absorption and fluorescence spectra of PP in a series of solvents over a wide polarity range are discussed. ICT with PP strongly depends on solvent polarity and starts to appear in solvents more polar than diethyl ether. From an analysis of the ICT/LE fluorescence quantum yield ratio Phi'(ICT)/Phi(LE), approximate data for the change in enthalpy -DeltaH of the ICT reaction of PP are obtained, ranging from 9 kJ/mol in acetonitrile (MeCN) to 4 kJ/mol in n-butyl cyanide (BuCN). From ICT and LE fluorescence decays of PP measured as a function of temperature, the forward (Ea = 9 kJ/mol in ethyl cyanide (EtCN) and 6 kJ/mol in MeCN) and backward (Ed = 16 kJ/mol in EtCN and MeCN) ICT reaction barriers are determined. From these data, -Delta H (7 kJ/mol (EtCN); 10 kJ/mol (MeCN)) is calculated, in good agreement with the results coming from Phi'(ICT)/Phi(LE). The data for Ea show that the forward ICT barrier becomes smaller with increasing solvent polarity, whereas the absence of change for Ed comes from the compensating increase of -DeltaH. Both observations are indicative of a late transition state for the LE --> ICT reaction. For PP in EtCN and MeCN, the ICT radiative rate constant k'(f)(ICT) increases with temperature. This is caused by the ICT low transition dipole moment and hence does not contain information on the molecular structure (twisted or planar) of the ICT state. The fast ICT observed with PP supports our previous conclusion, based on a comparison of PP with its planarized derivative fluorazene, that the pyrrole and phenyl moieties in the ICT state of PP are coplanar and possess substantial electronic coupling.
Collapse
Affiliation(s)
- Toshitada Yoshihara
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Jamorski CJ, Casida ME. Time-Dependent Density-Functional Theory Investigation of the Fluorescence Behavior as a Function of Alkyl Chain Size for the 4-(N,N-Dimethylamino)benzonitrile-like Donor−Acceptor Systems 4-(N,N-Diethylamino)benzonitrile and 4-(N,N-Diisopropylamino)benzonitrile. J Phys Chem B 2004. [DOI: 10.1021/jp0307699] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine Jödicke Jamorski
- Laboratorium für Physikalische Chemie, ETH Hoenggerberg, CH-8093 Zürich, Switzerland, and Laboratoire d'Études Dynamiques et Structurales de la Sélectivité (LÉDSS), Équipe de Chimie Théorique (LÉSS-ÉCT), Université Joseph Fourier (Grenoble I), 38041 Grenoble, France
| | - Mark E. Casida
- Laboratorium für Physikalische Chemie, ETH Hoenggerberg, CH-8093 Zürich, Switzerland, and Laboratoire d'Études Dynamiques et Structurales de la Sélectivité (LÉDSS), Équipe de Chimie Théorique (LÉSS-ÉCT), Université Joseph Fourier (Grenoble I), 38041 Grenoble, France
| |
Collapse
|
46
|
Köhn A, Hättig C. On the Nature of the Low-Lying Singlet States of 4-(Dimethyl-amino)benzonitrile. J Am Chem Soc 2004; 126:7399-410. [PMID: 15186180 DOI: 10.1021/ja0490572] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-(N,N-Dimethyl-amino)benzonitrile (DMABN) is a prototype molecule for dual fluorescence. The anomalous emission has been attributed to an intramolecular charge-transfer (ICT) state, and the structure of the latter is still subject to some controversy. We applied a recently developed analytical gradient code for the approximate coupled-cluster singles-and-doubles method CC2 in combination with accurate basis sets to address this problem. Fully optimized excited state structures are presented for the ICT state and the so-called locally excited state, and recent transient IR and Raman measurements on the excited states are interpreted by means of calculated harmonic frequencies. Strong evidence is found for an electronic decoupling of the phenyl and the dimethyl-amino moiety, resulting in a minimum structure for the ICT state with a twisted geometry. In contrast to previous findings, the structure of this state is, at least in the gas phase, not C(2v) symmetric but distorted towards C(s) symmetry. The distortion coordinate is a pyramidalization of the phenyl carbon atom carrying the dimethyl-amino group. The results from the CC2 model are supported by single-point calculations using more elaborate coupled-cluster models (CCSD, CCSDR(3)) and by CASSCF calculations.
Collapse
Affiliation(s)
- Andreas Köhn
- Forschungszentrum Karlsruhe, Institute of Nanotechnology, P.O. Box 3640, D-76021 Karlsruhe, Germany.
| | | |
Collapse
|
47
|
Techert S, Zachariasse KA. Structure Determination of the Intramolecular Charge Transfer State in Crystalline 4-(Diisopropylamino)benzonitrile from Picosecond X-ray Diffraction. J Am Chem Soc 2004; 126:5593-600. [PMID: 15113231 DOI: 10.1021/ja0379518] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The molecular structure of photoexcited crystalline 4-(diisopropylamino)benzonitrile (DIABN) is determined by time-resolved X-ray diffraction with a time resolution of 70 ps. Spectroscopic results suggest that an ICT state with a lifetime of 3 ns is produced after photoexcitation. According to structural refinement of the X-ray data (powder diffraction), the torsional angle of the diisopropylamino group with respect to the plane of the phenyl ring of DIABN decreases from 14 degrees in the electronic ground state to 10 degrees in the equilibrated ICT state.
Collapse
Affiliation(s)
- Simone Techert
- Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Goettingen, Germany.
| | | |
Collapse
|
48
|
Zachariasse KA, Druzhinin SI, Bosch W, Machinek R. Intramolecular Charge Transfer with the Planarized 4-Aminobenzonitrile 1-tert-Butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6). J Am Chem Soc 2004; 126:1705-15. [PMID: 14871101 DOI: 10.1021/ja037544w] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fast and efficient intramolecular charge transfer (ICT) and dual fluorescence is observed with the planarized aminobenzonitrile 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in a series of solvents from n-hexane to acetonitrile and methanol. Such a reaction does not take place for the related molecules with 1-isopropyl (NIC6) and 1-methyl (NMC6) groups, nor with the 1-alkyl-5-cyanoindolines with methyl (NMC5), isopropyl (NIC5), or tert-butyl (NTC5) substituents. For these molecules, a single fluorescence band from a locally excited (LE) state is found. The charge transfer reaction of NTC6 is favored by its relatively small energy gap DeltaE(S(1),S(2)), in accordance with the PICT model for ICT in aminobenzonitriles. For the ICT state of NTC6, a dipole moment of around 19 D is obtained from solvatochromic measurements, similar to micro(e)(ICT) = 17 D of 4-(dimethylamino)benzonitrile (DMABN). For NMC5, NIC5, NTC5, NMC6, and NIC6, a dipole moment of around 10 D is determined by solvatochromic analysis, the same as that of the LE state of DMABN. For NTC6 in diethyl ether at -70 degrees C, the forward ICT rate constant (1.3 x 10(11) s(-1)) is much smaller than that of the back reaction (5.9 x 10(9) s(-1)), showing that the equilibrium is on the ICT side. The results presented here make clear that ICT can very well take place with a planarized molecule such as NTC6, when DeltaE(S(1),S(2)) is sufficiently small, indicating that a perpendicular twist of the amino group relative to the rest of the molecule is not necessary for reaching an ICT state with a large dipole moment. The six-membered alicyclic ring in NMC6, for example, prevents ICT by increasing DeltaE(S(1),S(2)) relative to that of DMABN.
Collapse
Affiliation(s)
- Klaas A Zachariasse
- Max-Planck-Institut für Biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany.
| | | | | | | |
Collapse
|
49
|
Rappoport D, Furche F. Photoinduced Intramolecular Charge Transfer in 4-(Dimethyl)aminobenzonitrile − A Theoretical Perspective. J Am Chem Soc 2004; 126:1277-84. [PMID: 14746501 DOI: 10.1021/ja037806u] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in time-dependent density functional theory (TDDFT) have led to computational methods that can predict properties of photoexcited molecules with satisfactory accuracy at comparably moderate cost. We apply these methods to study the photophysics and photochemistry of 4-(dimethyl)aminobenzonitrile (DMABN). DMABN is considered the paradigm of photoinduced intramolecular charge transfer (ICT), leading to dual fluorescence in polar solvents. By comparison of calculated emission energies, dipole moments, and vibrational frequencies with recent results from transient spectroscopy measurements, a definitive assignment of the electronic and geometric structure of the two lowest singlet excited states of DMABN is possible for the first time. We investigate the mechanism of the ICT reaction by means of minimum energy path calculations. The results confirm existing state-crossing models of dual fluorescence. Our study suggests that analytical TDDFT derivative methods will be useful to predict and classify emissive properties of other donor-acceptor systems as well.
Collapse
Affiliation(s)
- Dmitrij Rappoport
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, 76128 Karlsruhe, Germany
| | | |
Collapse
|
50
|
Jamorski CJ, Lüthi HP. Rational classification of a series of aromatic donor–acceptor systems within the twisting intramolecular charge transfer model, a time-dependent density-functional theory investigation. J Chem Phys 2003. [DOI: 10.1063/1.1627292] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|